Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enantioconvergent carbenoid insertion into carbon–boron bonds

Abstract

Developing a unified method that can construct almost all types of chiral centres has been an unrealized aspiration for synthetic chemists. Boron-mediated homologation can generate versatile boron-substituted stereocentres via asymmetric carbenoid insertion, potentially leading to diverse chiral centres. However, limitations of the current methods make it challenging to incorporate a wide range of functionalized carbenoids with high stereochemical control. Here we report an enantioconvergent approach for direct insertion of various carbon-, oxygen-, nitrogen-, sulfur- and silicon-substituted carbenoids into carbon–boron bonds of readily available boronic acid derivatives, which can then be transformed into a wide range of tertiary chiral centres. Excellent stereoselectivity was achieved and enabled by a class of chiral oxazaborolidines derived from inexpensive α-amino esters. Computational studies revealed that the non-C2-symmetric oxazaborolidine features a puckered geometry and the cooperative effects of multiple substituents create an asymmetric environment for effective enantioinduction. This method is scalable, and each chiral centre can be independently controlled by the chiral oxazaborolidine without being influenced by nearby stereocentres. In addition to forming singular chiral centres, iterative operations of this asymmetric homologation simplify syntheses of complex molecules with multiple stereocentres.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strategies for asymmetric boron homologation.
Fig. 2: Design for enantioconvergent boron homologation.
Fig. 3: Computational investigations.
Fig. 4: Scope of the enantioconvergent boron homologation with carbon-substituted carbenoids.
Fig. 5: Asymmetric insertion of heteroatom-substituted carbenoids.
Fig. 6: Synthetic utility.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and its Supplementary Information. The X-ray crystallographic coordinates for structures reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers 2311818 (9f) and 2312263 (27). These data can be obtained free of charge from the CCDC via www.ccdc.cam.ac.uk/data_request/cif.

References

  1. Matteson, D. S. α-Halo boronic esters: intermediates for stereodirected synthesis. Chem. Rev. 89, 1535–1551 (1989).

    Article  CAS  Google Scholar 

  2. Matteson, D. S. Boronic esters in asymmetric synthesis. J. Org. Chem. 78, 10009–10023 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Leonori, D. & Aggarwal, V. K. Lithiation–borylation methodology and its application in synthesis. Acc. Chem. Res. 47, 3174–3183 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Pace, V., Holzer, W. & Kimpe, N. D. Lithium halomethylcarbenoids: preparation and use in the homologation of carbon electrophiles. Chem. Rec. 16, 2061–2076 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Castoldi, L., Monticelli, S., Senatore, R., Ielo, L. & Pace, V. Homologation chemistry with nucleophilic α-substituted organometallic reagents: chemocontrol, new concepts and (solved) challenges. Chem. Commun. 54, 6692–6704 (2018).

    Article  CAS  Google Scholar 

  6. Matteson, D. S., Collins, B. S. L., Aggarwal, V. K. & Ciganek, E. The Matteson reaction. Org. React. 105, 427–860 (2021).

    Google Scholar 

  7. Yeung, K., Mykura, R. C. & Aggarwal, V. K. Lithiation–borylation methodology in the total synthesis of natural products. Nat. Synth. 1, 117–126 (2022).

    Article  CAS  Google Scholar 

  8. Pace, V. (ed.) Homologation Reactions: Reagents, Applications, and Mechanisms (Wiley, 2023).

  9. Cherney, A. H., Kadunce, N. T. & Reisman, S. E. Enantioselective and enantiospecific transition-metal-catalyzed cross-coupling reactions of organometallic reagents to construct C–C bonds. Chem. Rev. 115, 9587–9652 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sandford, C. & Aggarwal, V. K. Stereospecific functionalizations and transformations of secondary and tertiary boronic esters. Chem. Commun. 53, 5481–5494 (2017).

    Article  CAS  Google Scholar 

  11. Xie, Q. & Dong, G. Aza-Matteson reactions via controlled mono-and double-methylene insertions into nitrogen–boron bonds. J. Am. Chem. Soc. 143, 14422–14427 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Xie, Q. & Dong, G. Programmable ether synthesis enabled by oxa-Matteson reaction. J. Am. Chem. Soc. 144, 8498–8503 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Xie, Q., Zhang, R. & Dong, G. Programmable amine synthesis via iterative boron homologation. Angew. Chem. Int. Ed. 62, e202307118 (2023).

    Article  CAS  Google Scholar 

  14. Matteson, D. S. & Peterson, M. L. Synthesis of l-(+)-ribose via (S)-pinanediol (αS)-α-bromo boronic esters. J. Org. Chem. 52, 5116–5121 (1987).

    Article  CAS  Google Scholar 

  15. Matteson, D. S., Kandil, A. A. & Soundararajan, R. Synthesis of asymmetrically deuterated glycerol and dibenzyl glyceraldehyde via boronic esters. J. Am. Chem. Soc. 112, 3964–3969 (1990).

    Article  CAS  Google Scholar 

  16. Matteson, D. S., Man, H.-W. & Ho, O. C. Asymmetric synthesis of stegobinone via boronic ester chemistry. J. Am. Chem. Soc. 118, 4560–4566 (1996).

    Article  CAS  Google Scholar 

  17. Blakemore, P. R. & Burge, M. S. Iterative stereospecific reagent-controlled homologation of pinacol boronates by enantioenriched α-chloroalkyllithium reagents. J. Am. Chem. Soc. 129, 3068–3069 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Burns, M. et al. Assembly-line synthesis of organic molecules with tailored shapes. Nature 513, 183–188 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Balieu, S. et al. Toward ideality: the synthesis of (+)-kalkitoxin and (+)-hydroxyphthioceranic acid by assembly-line synthesis. J. Am. Chem. Soc. 137, 4398–4403 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Wu, J. et al. Synergy of synthesis, computation and NMR reveals correct baulamycin structures. Nature 547, 436–440 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Gorges, J. & Kazmaier, U. Matteson homologation-based total synthesis of lagunamide A. Org. Lett. 20, 2033–2036 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Andler, O. & Kazmaier, U. Stereoselective synthesis of a protected side chain of meliponamycin A. Org. Lett. 24, 2541–2545 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Matteson, D. S. & Ray, R. Directed chiral synthesis with pinanediol boronic esters. J. Am. Chem. Soc. 102, 7590–7591 (1980).

    Article  CAS  Google Scholar 

  24. Matteson, D. S. & Sadhu, K. M. Boronic ester homologation with 99% chiral selectivity and its use in syntheses of the insect pheromones (3S,4S)-4-methyl-3-heptanol and exo-brevicomin. J. Am. Chem. Soc. 105, 2077–2078 (1983).

    Article  CAS  Google Scholar 

  25. Sharma, H. A., Essman, J. Z. & Jacobsen, E. N. Enantioselective catalytic 1,2-boronate rearrangements. Science 374, 752–757 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jonker, S. J. et al. Organocatalytic synthesis of α-trifluoromethyl allylboronic acids by enantioselective 1,2-borotropic migration. J. Am. Chem. Soc. 142, 21254–21259 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hiscox, W. C. & Matteson, D. S. An efficient preparation of (R,R)-1, 2-dicyclohexylethane-1,2-diol, a superior chiral director for synthesis with boronic esters. J. Org. Chem. 61, 8315–8316 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Matteson, D. S., Ray, R., Rocks, R. R. & Tsai, D. J. Directed chiral synthesis by way of α-chloro boronic esters. Organometallics 2, 1536–1543 (1983).

    Article  CAS  Google Scholar 

  29. Aggarwal, V. K., Fang, G. Y. & Schmidt, A. T. Synthesis and applications of chiral organoboranes generated from sulfonium ylides. J. Am. Chem. Soc. 127, 1642–1643 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Stymiest, J. L., Dutheuil, G., Mahmood, A. & Aggarwal, V. K. Lithiated carbamates: chiral carbenoids for iterative homologation of boranes and boronic esters. Angew. Chem. Int. Ed. 46, 7491–7494 (2007).

    Article  CAS  Google Scholar 

  31. Blakemore, P. R., Marsden, S. P. & Vater, H. D. Reagent-controlled asymmetric homologation of boronic esters by enantioenriched main-group chiral carbenoids. Org. Lett. 8, 773–776 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Sun, X. & Blakemore, P. R. Programmed synthesis of a contiguous stereotriad motif by triple stereospecific reagent-controlled homologation. Org. Lett. 15, 4500–4503 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Hoppe, D., Hintze, F. & Tebben, P. Chiral lithium-1-oxyalkanides by asymmetric deprotonation; enantioselective synthesis of 2-hydroxyalkanoic acids and secondary alkanols. Angew. Chem. Int. Ed. 29, 1422–1424 (1990).

    Article  Google Scholar 

  34. Partridge, B. M., Chausset-Boissarie, L., Burns, M., Pulis, A. P. & Aggarwal, V. K. Enantioselective synthesis and cross-coupling of tertiary propargylic boronic esters using lithiation–borylation of propargylic carbamates. Angew. Chem. Int. Ed. 51, 11795–11799 (2012).

    Article  CAS  Google Scholar 

  35. Ritter, S. K. Where has all the sparteine gone? Chem. Eng. News 95, 18–20 (2017).

    Google Scholar 

  36. Zuccarello, G., Batiste, S. M., Cho, H. & Fu, G. C. Enantioselective synthesis of α-aminoboronic acid derivatives via copper-catalyzed N-alkylation. J. Am. Chem. Soc. 145, 3330–3334 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schmidt, J., Choi, J., Liu, A. T., Slusarczyk, M. & Fu, G. C. A general, modular method for the catalytic asymmetric synthesis of alkylboronate esters. Science 354, 1265–1269 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Matthew, S., Glasspoole, B. W., Eisenberger, P. & Crudden, C. M. Synthesis of enantiomerically enriched triarylmethanes by enantiospecific Suzuki–Miyaura cross-coupling reactions. J. Am. Chem. Soc. 136, 5828–5831 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Barsamian, A. L., Wu, Z. & Blakemore, P. R. Enantioselective synthesis of α-phenyl- and α-(dimethylphenylsilyl)alkylboronic esters by ligand mediated stereoinductive reagent-controlled homologation using configurationally labile carbenoids. Org. Biomol. Chem. 13, 3781–3786 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Chen, M., Tugwell, T. H., Liu, P. & Dong, G. Synthesis of alkenyl boronates through stereoselective vinylene homologation of organoboronates. Nat. Synth. 3, 337–346 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bootwicha, T., Feilner, J. M., Myers, E. L. & Aggarwal, V. K. Iterative assembly line synthesis of polypropionates with full stereocontrol. Nat. Chem. 9, 896–902 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Pereira, C. L., Chen, Y.-H. & McDonald, F. E. Total synthesis of the sphingolipid biosynthesis inhibitor fumonisin B1. J. Am. Chem. Soc. 131, 6066–6067 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Matteson, D. S. & Man, H.-W. Hydrolysis of substituted 1,3,2-dioxaborolanes and an asymmetric synthesis of a differentially protected syn,syn-3-methyl-2, 4-hexanediol. J. Org. Chem. 61, 6047–6051 (1996).

    Article  CAS  Google Scholar 

  44. Ghosh, S., Greenwood, J. R., Harriman, G. C. & Leit de Moradei, S. M. Triazole ACC inhibitors and uses thereof. International patent WO2017091617 A1 (2017).

  45. Chandrasekhar, S. & Sreelakshmi, L. Formal synthesis of fumonisin B1, a potent sphingolipid biosynthesis inhibitor. Tetrahedron Lett. 53, 3233–3236 (2012).

    Article  CAS  Google Scholar 

  46. Bonet, A., Odachowski, M., Leonori, D., Essafi, S. & Aggarwal, V. K. Enantiospecific sp2sp3 coupling of secondary and tertiary boronic esters. Nat. Chem. 6, 584–589 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Edelstein, E. K., Grote, A. C., Palkowitz, M. D. & Morken, J. P. A protocol for direct stereospecific amination of primary, secondary, and tertiary alkylboronic esters. Synlett 29, 1749–1752 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xu, N., Liang, H. & Morken, J. P. Copper-catalyzed stereospecific transformations of alkylboronic esters. J. Am. Chem. Soc. 144, 11546–11552 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the University of Chicago and the NIH (R35 GM128779, P.L.). We thank Z. Zhang, X. Liu, S. Anferov and A. Filatov for X-ray crystallography. We thank X. Liu for checking the experimental procedure. DFT calculations were carried out at the University of Pittsburgh Center for Research Computing and the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) programme, supported by NSF award numbers OAC-2117681, OAC-1928147 and OAC-1928224.

Author information

Authors and Affiliations

Authors

Contributions

Q.X. and G.D. conceived of the idea and designed the experiments. Q.X. and J.L. conducted the experimental investigation. P.L., T.H.T. and M.C.M. conceived and designed the computational studies. T.H.T. and M.C.M. performed the computational studies. Q.X., T.H.T., P.L. and G.D. wrote the paper. P.L. and G.D. directed the research.

Corresponding authors

Correspondence to Peng Liu or Guangbin Dong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Per-Ola Norrby, Tian Qin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Stereoretentive derivatizations of the homologation product.

Diverse tertiary chiral centres can be formed via versatile stereospecific transformations of the carbon−boron bond. NIS, N-iodosuccinimide; e.s., enantiospecificity.

Extended Data Fig. 2 Summary on how to choose the optimal chiral auxiliary.

The choice of the best auxiliary depends on the substrates and carbenoids employed. X, leaving group.

Supplementary information

Supplementary information

Experimental details, Supplementary sections 1–16, Figs. 1–13 and Tables 1–4.

Supplementary Data 1

Crystallographic data for compound 9f; CCDC reference 2311818.

Supplementary Data 2

Crystallographic data for compound 27; CCDC reference 2312263.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Q., Tugwell, T.H., Madhusudhanan, M.C. et al. Enantioconvergent carbenoid insertion into carbon–boron bonds. Nat. Synth 4, 1297–1307 (2025). https://doi.org/10.1038/s44160-025-00836-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44160-025-00836-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing