Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Three-dimensional divergent hydroheteroarylation of internal alkynes with indolizines

Abstract

Divergent synthesis approaches generate all isomers of a molecule, but typically focus on single-dimensional selectivity control. The more challenging two-dimensional divergent synthesis dictating two types of selectivity to achieve all four isomers has recently received some attention. As such, three-dimensional divergent synthesis through dictation of three types of selectivity to prepare eight isomers or analogues is very challenging. Here we report a catalyst-controlled three-dimensional divergent protocol for the synthesis of eight types of diaryl allyl skeleton (through combinations of E/Z and R/S stereochemistry and 1,1-/1,3-substitution patterns) from the reaction of alkynes and heteroarenes. Good geometric selectivity, regioselectivity and enantioselectivity are observed for the hydroheteroarylation process of internal alkynes with indolizines via Pd and Rh catalysis. Experimental data and density functional theory calculations reveal that the Pd and Rh catalysts have differing mechanistic pathways for the hydroarylation of the internal alkynes and corresponding allene intermediates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Different stages of divergent synthesis.
Fig. 2: Rh-catalysed hydroheteroarylation of alkynes to prepare (E)-1,1-diaryls.
Fig. 3: Divergent hydroheteroarylation of alkynes.
Fig. 4: Three-dimensional divergent synthesis, gram-scale test and transformations.
Fig. 5: Mechanistic elucidation of Rh- and Pd-catalysed hydrofunctionalizations of internal alkynes.
Fig. 6: DFT calculations on the origin of different mechanistic pathways.

Similar content being viewed by others

Data availability

All relevant data are available with the Article and its Supplementary Information. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2463493 (3r) and 2381076 (6p). Copies of the data can be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/.

References

  1. Harper, M. J. K. & Walpole, A. L. Contrasting endocrine activities of cis and trans isomers in a series of substituted triphenylethylenes. Nature 212, 87 (1966).

    Article  CAS  PubMed  Google Scholar 

  2. Caldwell, J. The importance of stereochemistry in drug action and disposition. J. Clin. Pharmacol. 32, 925–929 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Krautwald, S. & Carreira, E. M. Stereodivergence in asymmetric catalysis. J. Am. Chem. Soc. 139, 5627–5639 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Beletskaya, I. P., Nájera, C. & Yus, M. Stereodivergent catalysis. Chem. Rev. 118, 5080–5200 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Lin, L. & Feng, X. Catalytic strategies for diastereodivergent synthesis. Chem. Eur. J. 23, 6464–6482 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Bihani, M. & Zhao, J. C.-G. Advances in asymmetric diastereodivergent catalysis. Adv. Synth. Catal. 359, 534–575 (2017).

    Article  CAS  Google Scholar 

  7. Moser, D., Schmidt, T. A. & Sparr, C. Diastereodivergent catalysis. JACS Au 3, 2612–2630 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim, Y. H. Dual enantioselective control in asymmetric synthesis. Acc. Chem. Res. 34, 955–962 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Zanoni, G., Castronovo, F., Franzini, M., Vidari, G. & Giannini, E. Toggling enantioselective catalysis—a promising paradigm in the development of more efficient and versatile enantioselective synthetic methodologies. Chem. Soc. Rev. 32, 115–129 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Bartok, M. Unexpected inversions in asymmetric reactions: reactions with chiral metal complexes, chiral organocatalysts, and heterogeneous chiral catalysts. Chem. Rev. 110, 1663–1705 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Escorihuela, J., Burguete, M. I. & Luis, S. V. New advances in dual stereocontrol for asymmetric reactions. Chem. Soc. Rev. 42, 5595–5617 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Funken, N., Zhang, Y.-Q. & Gansäuer, A. Regiodivergent catalysis: a powerful tool for selective catalysis. Chem. Eur. J. 23, 19–32 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Nájera, C., Beletskaya, I. P. & Yus, M. Metal-catalyzed regiodivergent organic reactions. Chem. Soc. Rev. 48, 4515–4618 (2019).

    Article  PubMed  Google Scholar 

  14. Neveselý, T., Wienhold, M., Molloy, J. J. & Gilmour, R. Advances in the EZ isomerization of alkenes using small molecule photocatalysts. Chem. Rev. 122, 2650–2694 (2022).

    Article  PubMed  Google Scholar 

  15. Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Lovering, F. Escape from Flatland 2: complexity and promiscuity. MedChemComm 4, 515–519 (2013).

    Article  CAS  Google Scholar 

  17. Zhan, G., Du, W. & Chen, Y.-C. Switchable divergent asymmetric synthesis via organocatalysis. Chem. Soc. Rev. 46, 1675–1692 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Kalita, S. J., Huang, Y.-Y. & Schneider, U. Stereodivergent catalytic asymmetric allylic alkylation. Sci. Bull. 65, 1865–1868 (2020).

    Article  CAS  Google Scholar 

  19. Huo, X., Li, G., Wang, X. & Zhang, W. Bimetallic catalysis in stereodivergent synthesis. Angew. Chem. Int. Ed. 61, e202210086 (2022).

    Article  CAS  Google Scholar 

  20. Wei, L., Fu, C., Wang, Z.-F., Tao, H.-Y. & Wang, C.-J. Synergistic dual catalysis in stereodivergent synthesis. ACS Catal. 14, 3812–3844 (2024).

    Article  CAS  Google Scholar 

  21. Sun, H., Ma, Y., Xiao, G. & Kong, D. Stereodivergent dual catalysis in organic synthesis. Trends Chem. 6, 684–701 (2024).

    Article  CAS  Google Scholar 

  22. Chen, P., Li, Y., Chen, Z.-C., Du, W. & Chen, Y.-C. Pseudo-stereodivergent synthesis of enantioenriched tetrasubstituted alkenes by cascade 1,3-oxo-allylation/Cope rearrangement. Angew. Chem. Int. Ed. 59, 7083–7088 (2020).

    Article  CAS  Google Scholar 

  23. Tang, M.-Q., Yang, Z.-J. & He, Z.-T. Asymmetric formal sp2-hydrocarbonations of dienes and alkynes via palladium hydride catalysis. Nat. Commun. 14, 6303 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li, P. et al. Stereodivergent access to non-natural α-amino acids via enantio- and Z/E-selective catalysis. Science 385, 972–979 (2024).

    Article  CAS  PubMed  Google Scholar 

  25. Luo, P. et al. Switchable chemo-, regio- and pseudo-stereodivergence in palladium-catalyzed cycloaddition of allenes. Angew. Chem. Int. Ed. 63, e202412179 (2024).

    Article  CAS  Google Scholar 

  26. Wang, J. et al. Photocatalytic Z/E isomerization unlocking the stereodivergent construction of axially chiral alkene frameworks. Nat. Commun. 15, 3254 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Koschker, P. & Breit, B. Branching out: rhodium-catalyzed allylation with alkynes and allenes. Acc. Chem. Res. 49, 1524–1536 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Haydl, A. M., Breit, B., Liang, T. & Krische, M. J. Alkynes as electrophilic or nucleophilic allylmetal precursors in transition-metal catalysis. Angew. Chem. Int. Ed. 56, 11312–11325 (2017).

    Article  CAS  Google Scholar 

  29. Li, G., Huo, X., Jiang, X. & Zhang, W. Asymmetric synthesis of allylic compounds via hydrofunctionalisation and difunctionalisation of dienes, allenes, and alkynes. Chem. Soc. Rev. 49, 2060–2118 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Cera, G. & Maestri, G. Palladium/Brøsted acid catalysis for hydrofunctionalizations of alkynes: from Tsuji–Trost allylations to stereoselective methodologies. ChemCatChem 14, e202200295 (2022).

    Article  CAS  Google Scholar 

  31. Kadota, I., Shibuya, A., Gyoung, Y. S. & Yamamoto, Y. Palladium/acetic acid catalyzed allylation of some pronucleophiles with simple alkynes. J. Am. Chem. Soc. 120, 10262–10263 (1998).

    Article  CAS  Google Scholar 

  32. Gellrich, U. et al. Mechanistic investigations of the rhodium catalyzed propargylic C–H activation. J. Am. Chem. Soc. 136, 1097–1104 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Lutete, L. M., Kadota, I. & Yamamoto, Y. Palladium-catalyzed intramolecular asymmetric hydroamination of alkynes. J. Am. Chem. Soc. 126, 1622–1623 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Lumbroso, A., Koschker, P., Vautravers, N. R. & Breit, B. Redox neutral atom economic rhodium-catalyzed coupling of terminal alkynes with carboxylic acids toward branched allylic esters. J. Am. Chem. Soc. 133, 2386–2389 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Koschker, P., Kahny, M. & Breit, B. Enantioselective redox-neutral Rh-catalyzed coupling of terminal alkynes with carboxylic acids toward branched allylic esters. J. Am. Chem. Soc. 137, 3131–3137 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Chen, Q.-A., Chen, Z.-W. & Dong, V. M. Rhodium-catalyzed enantioselective hydroamination of alkynes with indolines. J. Am. Chem. Soc. 137, 8392–8395 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu, Z. & Breit, B. Rhodium-catalyzed enantioselective intermolecular hydroalkoxylation of allenes and alkynes with alcohols: synthesis of branched allylic ethers. Angew. Chem. Int. Ed. 55, 8440–8443 (2016).

    Article  CAS  Google Scholar 

  38. Cruz, F. A. & Dong, V. M. Stereodivergent coupling of aldehydes and alkynes via synergistic catalysis using Rh and Jacobsen’s amine. J. Am. Chem. Soc. 139, 1029–1032 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cruz, F. A., Zhu, Y.-M., Tercenio, Q. D., Shen, Z.-M. & Dong, V. M. Alkyne hydroheteroarylation: enantioselective coupling of indoles and alkynes via Rh-hydride catalysis. J. Am. Chem. Soc. 139, 10641–10644 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Su, Y.-L. et al. Asymmetric α-allylation of aldehydes with alkynes by integrating chiral hydridopalladium and enamine catalysis. Org. Lett. 20, 2403–2406 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Lee, J. T. D. & Zhao, Y. Direct enantioselective α-allylation of unfunctionalized cyclic ketones with alkynes through Pd-amine cooperative catalysis. Chem. Eur. J. 24, 9520–9524 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Xie, L.-Y., Yang, H.-J., Ma, M.-L. & Xing, D. Rhodium-catalyzed branched and enantioselective direct α-allylic alkylation of simple ketones with alkynes. Org. Lett. 22, 2007–2011 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Wu, M.-S., Han, Z.-Y. & Gong, L.-Z. Asymmetric α‑pentadienylation of aldehydes with cyclopropylacetylenes. Org. Lett. 23, 636–641 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Davison, R. T. et al. Enantioselective addition of α‑nitroesters to alkynes. Angew. Chem. Int. Ed. 60, 4599–4603 (2021).

    Article  CAS  Google Scholar 

  45. Velasco-Rubio, A. ́, Bernárdez, R., Varela, J. A. & Saá, C. Enantioenriched α-vinyl 1,4-benzodiazepines and 1,4-benzoxazepines via enantioselective rhodium-catalyzed hydrofunctionalizations of alkynes and allenes. J. Org. Chem. 86, 10889–10902 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang, J. et al. Asymmetric coupling of β-ketocarbonyls and alkynes by chiral primary amine/Rh synergistic catalysis. Org. Lett. 24, 1186–1189 (2022).

    Article  CAS  PubMed  Google Scholar 

  47. Ma, C., Liang Chen, L. & He, Z.-T. Asymmetric intramolecular O-hydroximation of alkynes. CCS Chem. 7, 1168–1176 (2025).

    Article  CAS  Google Scholar 

  48. Lin, Y. et al. Asymmetric αallylation of amino acid esters with alkynes enabled by chiral aldehyde/palladium combined catalysis. Org. Lett. 26, 7908–7913 (2024).

    Article  CAS  PubMed  Google Scholar 

  49. Chang, C.-Y. & Aponick, A. Enantioselective synthesis of allylic sulfones via rhodium-catalyzed direct hydrosulfonylation of allenes and alkynes. J. Am. Chem. Soc. 146, 16996–17002 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu, Y., Chen, H. & Wang, X. Synergistic homogeneous asymmetric Cu catalysis with Pd nanoparticle catalysis in stereoselective coupling of alkynes with aldimine esters. J. Am. Chem. Soc. 146, 28427–28436 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang, S.-Q., Wang, Y.-F., Zhao, W.-C., Lin, G.-Q. & He, Z.-T. Stereodivergent synthesis of tertiary fluoride-tethered allenes via copper and palladium dual catalysis. J. Am. Chem. Soc. 143, 7285–7291 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Chen, Y.-W., Liu, Y., Lu, H.-Y., Lin, G.-Q. & He, Z.-T. Palladium-catalyzed regio- and enantioselective migratory allylic C(sp3)–H functionalization. Nat. Commun. 12, 5626 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, Y.-C. et al. Umpolung asymmetric 1,5-conjugate addition via palladium hydride catalysis. Angew. Chem. Int. Ed. 62, e202215568 (2023).

    Article  CAS  Google Scholar 

  54. Yang, S.-Q. et al. Catalytic asymmetric hydroalkoxylation and formal hydration and hydroaminoxylation of conjugated dienes. J. Am. Chem. Soc. 145, 3915–3925 (2023).

    Article  CAS  Google Scholar 

  55. Chen, X.-X., Luo, H., Chen, Y.-W., Liu, Y. & He, Z.-T. Enantioselective palladium-catalyzed directed migratory allylation of remote dienes. Angew. Chem. Int. Ed. 62, e202307628 (2023).

    Article  CAS  Google Scholar 

  56. Tang, M.-Q., Yang, Z.-J., Han, A.-J. & He, Z.-T. Diastereoselective and enantioselective hydrophosphinylations of conjugated enynes, allenes and dienes via synergistic Pd/Co catalysis. Angew. Chem. Int. Ed. 64, e202413428 (2025).

    Article  CAS  Google Scholar 

  57. Jiang, R., Ding, L., Zheng, C. & You, S.-L. Iridium-catalyzed Z-retentive asymmetric allylic substitution reactions. Science 371, 380–386 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Roberts, C. C., Matías, D. M., Goldfogel, M. J. & Meek, S. J. Lewis acid activation of carbodicarbene catalysts for Rh-catalyzed hydroarylation of dienes. J. Am. Chem. Soc. 137, 6488–6491 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Goldfogel, M. L. & Meek, S. J. Diastereoselective synthesis of vicinal tertiary and N-substituted quaternary stereogenic centers by catalytic hydroalkylation of dienes. Chem. Sci. 7, 4079–4084 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cooke, M. L., Xu, K. & Breit, B. Enantioselective rhodium-catalyzed synthesis of branched allylic amines by intermolecular hydroamination of terminal allenes. Angew. Chem. Int. Ed. 51, 10876–10879 (2012).

    Article  CAS  Google Scholar 

  61. Beck, T. M. & Breit, B. Regioselective rhodium-catalyzed addition of 1,3-dicarbonyl compounds to terminal alkynes. Org. Lett. 18, 124–127 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Pritzius, A. B. & Breit, B. Z-selective hydrothiolation of racemic 1,3-disubstituted allenes: an atom-economic rhodium-catalyzed dynamic kinetic resolution. Angew. Chem. Int. Ed. 54, 15818–15822 (2015).

    Article  CAS  Google Scholar 

  63. Hilpert, L. J. & Breit, B. Rhodium-catalyzed parallel kinetic resolution of racemic internal allenes towards enantiopure allylic 1,3-diketones. Angew. Chem. Int. Ed. 58, 9939–9943 (2019).

    Article  CAS  Google Scholar 

  64. Correia, J. T. M., List, B. & Coelho, F. Catalytic asymmetric conjugate addition of indolizines to α,β-unsaturated ketones. Angew. Chem. Int. Ed. 56, 7967–7970 (2017).

    Article  CAS  Google Scholar 

  65. Zhang, Y.-Z. et al. Organocatalytic C3-functionalization of indolizines: synthesis of biologically important indolizine derivatives. Org. Biomol. Chem. 18, 5688–5696 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Singh, K., Staig, S. J. & Weaver, J. D. Facile synthesis of Z-alkenes via uphill catalysis. J. Am. Chem. Soc. 136, 5275–5278 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Z.-T.H acknowledges the National Natural Science Foundation of China (grant no. 22371292), Ningbo Natural Science Foundation (grant no. 2023J036), Strategic Priority Research Program of the Chinese Academy of Sciences (grant no. XDB0610000), State Key Laboratory of Organometallic Chemistry and Shanghai Institute of Organic Chemistry for financial support. X.-S.X. acknowledges the funding from the National Natural Science Foundation of China (grant no. 22193012), the CAS Project for Young Scientists in Basic Research (grant no. YSBR-095) and the Strategic Priority Research Program of the Chinese Academy of Sciences (grant no. XDB0590000).

Author information

Authors and Affiliations

Authors

Contributions

Z.-T.H. conceived the project. A.H. and Z.-J.Y. performed the experiments. H.-R.X. and X.-S.X. conducted the computations. Z.-T.H. and X.-S.X. supervised the project and wrote the manuscript with the feedback from all authors.

Corresponding authors

Correspondence to Xiao-Song Xue or Zhi-Tao He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Zhihui Shao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Stephanie Greed, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental details, Supplementary Sections 1–13 and Supplementary Fig. 1.

Supplementary Data 1

X-ray crystallographic data for 3r. CCDC 2463493.

Supplementary Data 2

X-ray crystallographic data for 6p. CCDC 2381076.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, A., Xu, HR., Yang, ZJ. et al. Three-dimensional divergent hydroheteroarylation of internal alkynes with indolizines. Nat. Synth (2025). https://doi.org/10.1038/s44160-025-00870-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-025-00870-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing