Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pyrrole-stabilized free carbenes generated from alkynyl imidates or aldimines and electrophilic alkynes give pyrrolone- or pyrrole-containing products

Abstract

Pyrrole and 2-pyrrolone derivatives are valuable heterocyclic compounds and while classical condensation methods for their synthesis have a long history, many of the recent developments for their preparation involve the use of transition metal catalysis. Here we report a complementary, metal-free strategy for constructing structurally diverse derivatives of these heterocycles. The key feature of the approach is the in situ creation of a reactive intermediate by an initial facile event that simultaneously generates a pyrrole ring bearing a free carbene. This is straightforwardly accessed via a spontaneous, net [3 + 2] cyclization reaction of a linear alkynyl O-silylimidate or alkynyl aldimine with an electrophilic alkyne. The carbene then undergoes either 1,4-silyl migration (to produce 2-pyrrolone derivatives) or C–H insertion, cycloaddition, cyclopropanation or macrocyclization reactions (leading to pyrrole derivatives).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pyrrole is a prized heterocycle.
Fig. 2: DFT-computed potential energy surface for the reaction starting with 28 and 30.
Fig. 3: The nature of the terminal group on the alkyne of the imidate dictates the reaction pathway.
Fig. 4: Variation of the electrophilic partners and of the migrating group.
Fig. 5: Pyrrole products from diverse types of carbene capture reactions.

Data availability

The Supplementary Information includes preparation procedures and characterization data for all new compounds, computational methodology and results, and static copies of NMR spectra of all new compounds. The X-ray diffraction structure of 44a can be found at the Cambridge Crystallographic Data Centre under Deposition Number 2431543. These data, available free of charge, can be accessed at https://www.ccdc.cam.ac.uk/structures/. A master.mnova file containing the raw data files of NMR spectra for all new compounds is available from figshare via https://doi.org/10.6084/m9.figshare.29649548 (ref. 34).

References

  1. Bhardwaj, V., Gumber, D., Abbot, V., Dhiman, S. & Sharma, P. Pyrrole: A resourceful small molecule in key medicinal hetero-aromatics. RSC Adv. 5, 15233–15266 (2015).

    Article  CAS  Google Scholar 

  2. Petri, G. L. et al. Bioactive pyrrole-based compounds with target selectivity. Eur. J. Med. Chem. 208, 112783 (2020).

    Article  Google Scholar 

  3. Jeelan Basha, N., Basavarajaiah, S. M. & Shyamsunder, K. Therapeutic potential of pyrrole and pyrrolidine analogs: An update. Mol. Divers. 26, 2915–2937 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Singh, N. et al. Recent progress in the total synthesis of pyrrole-containing natural products (2011–2020). Org. Chem. Front. 8, 5550–5573 (2021).

    Article  CAS  Google Scholar 

  5. Forte, B. et al. A submarine journey: The pyrrole-imidazole alkaloids. Mar. Drugs 7, 705–753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yen, Y.-S. et al. Pyrrole-based organic dyes for dye-sensitized solar cells. J. Phys. Chem. C 112, 12557–12567 (2008).

    Article  CAS  Google Scholar 

  7. Pang, A. L., Arsad, A. & Ahmadipour, M. Synthesis and factor affecting on the conductivity of polypyrrole: A short review. Polym. Adv. Technol. 32, 1428–1454 (2021).

    Article  CAS  Google Scholar 

  8. Guo, J.-L., Feng, Z.-M., Yang, Y.-J., Zhang, Z.-W. & Zhang, P.-C. Pollenopyrroside A and B, novel pyrrole ketohexoside derivatives from bee-collected Brassica campestris pollen. Chem. Pharm. Bull. 58, 983–985 (2010).

    Article  CAS  Google Scholar 

  9. Tong, X.-G. et al. Acortatarins A and B, two novel antioxidative spiroalkaloids with a naturally unusual morpholine motif from Acorus tatarinowii. Org. Lett. 12, 1844–1847 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Shuda, M. et al. CDK1 substitutes for mTOR kinase to activate mitotic cap-dependent protein translation. Proc. Natl Acad. Sci. USA 112, 5875–5882 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Khajuria, R., Dham, S. & Kapoor, K. K. Active methylenes in the synthesis of a pyrrole motif: An imperative structural unit of pharmaceuticals, natural products and optoelectronic materials. RSC Adv. 6, 37039–37066 (2016).

    Article  CAS  Google Scholar 

  12. Philkhana, S. C., Badmus, F. O., Dos Reis, I. C. & Kartika, R. Recent advancements in pyrrole synthesis. Synth. 53, 1531–1555 (2021).

    Article  CAS  Google Scholar 

  13. Estévez, V., Villacampa, M. & Menéndez, J. C. Multicomponent reactions for the synthesis of pyrroles. Chem. Soc. Rev. 39, 4402–4421 (2010).

    Article  PubMed  Google Scholar 

  14. Kel’in, A. V., Sromek, A. W. & Gevorgyan, V. A novel Cu-assisted cycloisomerization of alkynyl imines: Efficient synthesis of pyrroles and pyrrole-containing heterocycles. J. Am. Chem. Soc. 123, 2074–2075 (2001).

    Article  PubMed  Google Scholar 

  15. Gilbert, Z. W., Hue, R. J. & Tonks, I. A. Catalytic formal [2 + 2 + 1] synthesis of pyrroles from alkynes and diazenes via TiII/TiIV redox catalysis. Nat. Chem. 8, 63–68 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Zhou, Y., Zhou, L., Jesikiewicz, L. T., Liu, P. & Buchwald, S. L. Synthesis of pyrroles through the CuH-catalyzed coupling of enynes and nitriles. J. Am. Chem. Soc. 142, 9908–9914 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu, Q. & Hoye, T. R. Free carbenes from complementarily paired alkynes. Nat. Chem. 16, 1083–1092 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guzman, A. L., Mann, A. N. & Hoye, T. R. Alkynes to (free) carbenes to polycyclic cyclopropanes. J. Am. Chem. Soc. 146, 28642–28647 (2024).

    Article  CAS  PubMed  Google Scholar 

  19. Xu, Q. & Hoye, T. R. A distinct mode of strain-driven cyclic allene reactivity: Group migration to the central allene carbon atom. J. Am. Chem. Soc. 145, 9867–9875 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu, Q. & Hoye, T. R. A cascade of strain-driven events converting benzynes to alkynylbenzocyclobutenes to 1,3-dien-5-ynes to cyclic allenes to benzocyclohexadienones. J. Am. Chem. Soc. 146, 6438–6443 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Klebe, J. F. Silyl-proton exchange reactions. Acc. Chem. Res. 3, 299–305 (1970).

    Article  CAS  Google Scholar 

  22. Kashutina, M. V., Ioffe, S. L. & Tartakovskii, V. A. Silylation of organic compounds. Russ. Chem. Rev. 44, 733–747 (1975).

    Article  Google Scholar 

  23. Deleris, G., Dunogues, J. & Calas, R. Synthese regioselective de nitriles par voie organosilicique. J. Organomet. Chem. 116, C45–C48 (1976).

    Article  CAS  Google Scholar 

  24. Seeman, J. I. The Curtin-Hammett principle and the Winstein-Holness equation: New definition and recent extensions to classical concepts. J. Chem. Educ. 63, 42–48 (1986).

    Article  CAS  Google Scholar 

  25. Kanzian, T., Nigst, T. A., Maier, A., Pichl, S. & Mayr, H. Nucleophilic reactivities of primary and secondary amines in acetonitrile. Eur. J. Org. Chem. 2009, 6379–6385 (2009).

    Article  Google Scholar 

  26. Maji, B. & Mayr, H. Nucleophilic reactivities of Schiff bases. Z. Naturforsch. B 68, 693–699 (2013).

    Article  CAS  Google Scholar 

  27. Minegishi, S., Kobayashi, S. & Mayr, H. Solvent nucleophilicity. J. Am. Chem. Soc. 126, 5174–5181 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Zanardi, M. M. & Sarotti, A. M. Sensitivity analysis of DP4+ with the probability distribution terms: development of a universal and customizable method. J. Org. Chem. 86, 8544–8548 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Shen, M. & Schultz, A. G. Preparation and Diels-Alder reactivity of ethyl-β-phenylsulfonylpropiolate. Tetrahedron Lett. 22, 3347–3350 (1981).

    Article  CAS  Google Scholar 

  30. Wang, R., Xu, Q. & Hoye, T. R. Reactions of electrophilic allenoates [and isocyanates/isothiocyanates] with a 2-alkynylpyridine via a free carbene intermediate. Org. Lett. 26, 7805–7808 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Watson, W. On byproducts and side products. Org. Process Res. Dev. 16, 1877 (2012).

    Article  CAS  Google Scholar 

  32. David, O., Vanucci-Bacque, C., Fargeau-Bellassoued, M.-C. & Lhommet, G. New access to chiral cyclic ω-oxygenated β-enamino esters by intramolecular aminocyclisation reactions. Heterocycles 62, 839–846 (2004).

    Article  CAS  Google Scholar 

  33. Garcia Jimenez, D., Poongavanam, V. & Kihlberg, J. Macrocycles in drug discovery─ learning from the past for the future. J. Med. Chem. 66, 5377–5396 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu, Q., Shi, J. & Hoye, T. R. Master MNova File of all NMR spectra for Nat Synth.zip. figshare https://doi.org/10.6084/m9.figshare.29649548 (2025).

  35. Wiberg, K. B. Application of the Pople-Santry-Segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24, 1083–1096 (1968).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was enabled by a grant from the United States National Science Foundation (CHE-2155042) (T.R.H.). High-resolution mass spectrometry data (electrospray ionization) were obtained in the Analytical Biochemistry Shared Resource Laboratory of the University of Minnesota (UMN). DFT computations were performed utilizing resources provided by the UMN Supercomputing Institute (MSI). The X-ray diffraction analysis of 44a was performed by A. Lovstedt in the X-Ray Crystallographic Laboratory in the Department of Chemistry, UMN.

Author information

Authors and Affiliations

Authors

Contributions

Q.X. performed the experimental and computational studies shown in Figs. 14. J.S. performed the experimental studies shown in Fig. 5. Q.X., J.S. and T.R.H. interactively interpreted the data and co-wrote the manuscript.

Corresponding author

Correspondence to Thomas R. Hoye.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental details, Supplementary sections I–VII.

Supplementary Data 1

Excel data sheets for NMR spectroscopy computations.

Supplementary Data 2

Computed geometries for conformers for NMR spectroscopy calculations.

Supplementary Data 3

X-ray crystallographic data for compound 44a cif (.cif) and checkcif (as PDF) files, CCDC 2431543.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Shi, J. & Hoye, T.R. Pyrrole-stabilized free carbenes generated from alkynyl imidates or aldimines and electrophilic alkynes give pyrrolone- or pyrrole-containing products. Nat. Synth (2025). https://doi.org/10.1038/s44160-025-00899-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-025-00899-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing