Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Model thiophene-decorated nickel porphyrins for tandem CO2 reduction

Abstract

Tandem systems that integrate CO-generating catalysts with copper have shown promise for enhanced carbon dioxide reduction reaction (CO2RR) performance. Sulfur-containing single-atom catalysts are particularly effective for CO production; however, the role and positioning of sulfur in facilitating both CO2-to-CO conversion and tandem CO2RRs remain elusive. Here we show model thiophene-decorated nickel porphyrins as model single-atom catalysts that exhibit tandem activities in the CO2RR. Spectroscopic and theoretical analyses reveal that thiophene substituents induce ligand holes, regulating the d orbitals and d-band centre of the nickel centre to reduce the reaction barrier and promote CO formation. Coupling these single-atom catalysts with a copper catalyst achieves a Faradaic efficiency of 74.3% and a partial current density of 445.8 mA cm−2 for C2 products in a neutral solution, a 46% improvement over bare copper. Operando studies confirm the formation of CO intermediates from the single-atom catalysts, highlighting their role in facilitating tandem catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanistic study of nickel porphyrins with thiophene substituents.
Fig. 2: Materials characterization of nickel porphyrins with thiophene substituents.
Fig. 3: Tandem catalytic performance of nickel porphyrins with thiophene substituents on copper.
Fig. 4: In situ investigation of nickel porphyrins with thiophene substituents on copper.

Data availability

The authors declare that all data supporting the findings of this study are available within the paper and the Supplementary Information. All data are available from Figshare via https://doi.org/10.6084/m9.figshare.29926913 (ref. 73). Source data are provided with this paper.

References

  1. Dresselhaus, M. S. & Thomas, I. L. Alternative energy technologies. Nature 414, 332–337 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Article  PubMed  Google Scholar 

  4. Segets, D., Andronescu, C. & Apfel, U.-P. Accelerating CO2 electrochemical conversion towards industrial implementation. Nat. Commun. 14, 7950 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xu, A. et al. Copper/alkaline earth metal oxide interfaces for electrochemical CO2-to-alcohol conversion by selective hydrogenation. Nat. Catal. 5, 1081–1088 (2022).

    Article  CAS  Google Scholar 

  6. Liang, Y. et al. Stabilizing copper sites in coordination polymers toward efficient electrochemical C–C coupling. Nat. Commun. 14, 474 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fan, M. et al. Single-site decorated copper enables energy- and carbon-efficient CO2 methanation in acidic conditions. Nat. Commun. 14, 3314 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hung, S.-F. Electrochemical flow systems enable renewable energy industrial chain of CO2 reduction. Pure Appl. Chem. 92, 1937–1951 (2020).

    Article  CAS  Google Scholar 

  9. Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Zhong, M. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581, 178–183 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Hung, S.-F. et al. A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation. Nat. Commun. 13, 819 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, P. et al. p–d orbital hybridization induced by p-block metal-doped Cu promotes the formation of C2+ products in ampere-level CO2 electroreduction. J. Am. Chem. Soc. 145, 4675–4682 (2023).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, Y. et al. Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat. Catal. 3, 98–106 (2020).

    Article  CAS  Google Scholar 

  14. Wu, Q. et al. Nanograin-boundary-abundant Cu2O–Cu nanocubes with high C2+ selectivity and good stability during electrochemical CO2 reduction at a current density of 500 mA/cm2. ACS Nano 17, 12884–12894 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, X. et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat. Energy 5, 478–486 (2020).

    Article  CAS  Google Scholar 

  16. Hong, S. et al. Tuning the C1/C2 selectivity of electrochemical CO2 reduction on Cu–CeO2 nanorods by oxidation state control. Adv. Mater. 35, 2208996 (2023).

    Article  CAS  Google Scholar 

  17. Handoko, A. D., Wei, F., Jenndy, Yeo, B. S. & Seh, Z. W. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nat. Catal. 1, 922–934 (2018).

    Article  CAS  Google Scholar 

  18. Birdja, Y. Y. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019).

    Article  CAS  Google Scholar 

  19. Li, F. et al. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces. Nat. Catal. 3, 75–82 (2020).

    Article  CAS  Google Scholar 

  20. Möller, T., Filippi, M., Brückner, S., Ju, W. & Strasser, P. A CO2 electrolyzer tandem cell system for CO2–CO co-feed valorization in a Ni–N–C/Cu-catalyzed reaction cascade. Nat. Commun. 14, 5680 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen, Y. et al. Efficient multicarbon formation in acidic CO2 reduction via tandem electrocatalysis. Nat. Nanotechnol. 19, 311–318 (2023).

    Article  PubMed  Google Scholar 

  22. Morales-Guio, C. G. et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 1, 764–771 (2018).

    Article  CAS  Google Scholar 

  23. Li, J. et al. Weak CO binding sites induced by Cu–Ag interfaces promote CO electroreduction to multi-carbon liquid products. Nat. Commun. 14, 698 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee, S., Park, G. & Lee, J. Importance of Ag–Cu biphasic boundaries for selective electrochemical reduction of CO2 to ethanol. ACS Catal. 7, 8594–8604 (2017).

    Article  CAS  Google Scholar 

  25. Xiong, L. et al. Breaking the linear scaling relationship by compositional and structural crafting of ternary Cu–Au/Ag nanoframes for electrocatalytic ethylene production. Angew. Chem. Int. Ed. 60, 2508–2518 (2021).

    Article  CAS  Google Scholar 

  26. Kong, X. et al. Understanding the effect of *CO coverage on C–C coupling toward CO2 electroreduction. Nano Lett. 22, 3801–3808 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, X. et al. Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2–CO co-feeds on Cu and Cu-tandem electrocatalysts. Nat. Nanotechnol. 14, 1063–1070 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Lin, L. et al. Synergistic catalysis over iron–nitrogen sites anchored with cobalt phthalocyanine for efficient CO2 electroreduction. Adv. Mater. 31, 1903470 (2019).

    Article  CAS  Google Scholar 

  29. Varela, A. S., Ju, W. & Strasser, P. Molecular nitrogen–carbon catalysts, solid metal organic framework catalysts, and solid metal/nitrogen-doped carbon (MNC) catalysts for the electrochemical CO2 reduction. Adv. Energy Mater. 8, 1703614 (2018).

    Article  Google Scholar 

  30. Wang, J. et al. Linkage effect in the heterogenization of cobalt complexes by doped graphene for electrocatalytic CO2 reduction. Angew. Chem. Int. Ed. 58, 13532–13539 (2019).

    Article  CAS  Google Scholar 

  31. Yang, H. B. et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018).

    Article  CAS  Google Scholar 

  32. Pan, F. et al. Boosting CO2 reduction on Fe–N–C with sulfur incorporation: synergistic electronic and structural engineering. Nano Energy 68, 104384 (2020).

    Article  CAS  Google Scholar 

  33. Pan, F. et al. Promoting electrocatalytic CO2 reduction on nitrogen-doped carbon with sulfur addition. Appl. Catal. B 252, 240–249 (2019).

    Article  CAS  Google Scholar 

  34. Li, X. et al. Unveiling the in situ generation of a monovalent Fe(I) site in the single-Fe-atom catalyst for electrochemical CO2 reduction. ACS Catal. 11, 7292–7301 (2021).

    Article  CAS  Google Scholar 

  35. Chen, Z. et al. Unraveling the origin of sulfur-doped Fe–N–C single-atom catalyst for enhanced oxygen reduction activity: effect of iron spin-state tuning. Angew. Chem. Int. Ed. 60, 25404–25410 (2021).

    Article  CAS  Google Scholar 

  36. Lu, Y.-R. et al. Turn the trash into treasure: egg-white-derived single-atom electrocatalysts boost oxygen reduction reaction. ACS Sustain. Chem. Eng. 10, 6736–6742 (2022).

    Article  CAS  Google Scholar 

  37. Calogero, G., Bartolotta, A., Di Marco, G., Di Carlo, A. & Bonaccorso, F. Vegetable-based dye-sensitized solar cells. Chem. Soc. Rev. 44, 3244–3294 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Calogero, G. et al. Natural dye senstizers for photoelectrochemical cells. Energy Environ. Sci. 2, 1162–1172 (2009).

    Article  CAS  Google Scholar 

  39. Koenig, J. D. B., Willkomm, J., Roesler, R., Piers, W. E. & Welch, G. C. Electrocatalytic CO2 reduction at lower overpotentials using iron(III) tetra(meso-thienyl)porphyrins. ACS Appl. Energy Mater. 2, 4022–4026 (2019).

    Article  CAS  Google Scholar 

  40. Prasath, R., Butcher, R. J. & Bhavana, P. Nitrothienylporphyrins: synthesis, crystal structure and, the effect of position and number of nitro groups on the spectral and electrochemical properties. Spectrochim. Acta A 87, 258–264 (2012).

    Article  CAS  Google Scholar 

  41. Zhang, Y., Jiao, L., Yang, W., Xie, C. & Jiang, H.-L. Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction. Angew. Chem. Int. Ed. 60, 7607–7611 (2021).

    Article  CAS  Google Scholar 

  42. Zhang, Q. et al. Boosting the proton-coupled electron transfer via Fe−P atomic pair for enhanced electrochemical CO2 reduction. Angew. Chem. Int. Ed. 62, e202311550 (2023).

    Article  CAS  Google Scholar 

  43. Kelemen, S. R. et al. Delayed coker coke morphology fundamentals: mechanistic implications based on XPS analysis of the composition of vanadium- and nickel-containing additives during coke formation. Energy Fuels 21, 927–940 (2007).

    Article  CAS  Google Scholar 

  44. Krasnikov, S. A. et al. An X-ray absorption and photoemission study of the electronic structure of Ni porphyrins and Ni N-confused porphyrin. J. Phys. Condens. Matter 20, 235207 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Wang, H. et al. Nickel L-edge soft X-ray spectroscopy of nickel−iron hydrogenases and model compounds: evidence for high-spin nickel(II) in the active enzyme. J. Am. Chem. Soc. 122, 10544–10552 (2000).

    Article  CAS  Google Scholar 

  46. de Groot, F. M. F. X-ray absorption and dichroism of transition metals and their compounds. J. Electron Spectrosc. 67, 529–622 (1994).

    Article  Google Scholar 

  47. Glatzel, P. et al. Electronic structure of Ni complexes by X-ray resonance Raman spectroscopy (resonant inelastic X-ray scattering). J. Am. Chem. Soc. 124, 9668–9669 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Hu, Z. et al. On the electronic structure of Cu(III) and Ni(III) in La2Li1/2Cu1/2O4, Nd2Li1/2Ni1/2O4, and Cs2KCuF6. Chem. Phys. 232, 63–74 (1998).

    Article  CAS  Google Scholar 

  49. Merrien, N. et al. XAS and XPS study of electronic structure of the trivalent cuprate La2Li0.5Cu0.5O4−δ. J. Phys. Chem. Solids 54, 499–506 (1993).

    Article  CAS  Google Scholar 

  50. Weekes, D. M., Salvatore, D. A., Reyes, A., Huang, A. & Berlinguette, C. P. Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 51, 910–918 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Liu, M. et al. Potential alignment in tandem catalysts enhances CO2-to-C2H4 conversion efficiencies. J. Am. Chem. Soc. 146, 468–475 (2024).

    Article  CAS  PubMed  Google Scholar 

  52. Chen, J. et al. Accelerated transfer and spillover of carbon monoxide through tandem catalysis for kinetics-boosted ethylene electrosynthesis. Angew. Chem. Int. Ed. 62, e202215406 (2023).

    Article  CAS  Google Scholar 

  53. Yin, Z. et al. Hybrid catalyst coupling single-atom Ni and nanoscale Cu for efficient CO2 electroreduction to ethylene. J. Am. Chem. Soc. 144, 20931–20938 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Duan, G.-Y. et al. Highly efficient electrocatalytic CO2 reduction to C2+ products on a poly(ionic liquid)-based Cu0–CuI tandem catalyst. Angew. Chem. Int. Ed. 61, e202110657 (2022).

    Article  CAS  Google Scholar 

  55. Wu, J., Sharifi, T., Gao, Y., Zhang, T. & Ajayan, P. M. Emerging carbon-based heterogeneous catalysts for electrochemical reduction of carbon dioxide into value-added chemicals. Adv. Mater. 31, 1804257 (2019).

    Article  Google Scholar 

  56. Hung, S.-F. et al. Unraveling geometrical site confinement in highly efficient iron-doped electrocatalysts toward oxygen evolution reaction. Adv. Energy Mater. 8, 1701686 (2018).

    Article  Google Scholar 

  57. Hung, S. F. et al. Identification of stabilizing high-valent active sites by operando high-energy resolution fluorescence-detected X-ray absorption spectroscopy for high-efficiency water oxidation. J. Am. Chem. Soc. 140, 17263–17270 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Hung, S. F. et al. Operando X-ray absorption spectroscopic studies of the carbon dioxide reduction reaction in a modified flow cell. Catal. Sci. Technol. 12, 2739–2743 (2022).

    Article  CAS  Google Scholar 

  59. Lin, Z.-Y. et al. Operando studies for CO2/CO reduction in flow-based devices. ChemNanoMat 10, e202400070 (2024).

    Article  CAS  Google Scholar 

  60. Zhou, Y. et al. Asymmetric dinitrogen-coordinated nickel single-atomic sites for efficient CO2 electroreduction. Nat. Commun. 14, 3776 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Li, H., Wei, P., Gao, D. & Wang, G. In situ Raman spectroscopy studies for electrochemical CO2 reduction over Cu catalysts. Curr. Opin. Green Sustain. Chem. 34, 100589 (2022).

    Article  CAS  Google Scholar 

  62. Wu, F.-Y. et al. Copper–barium-decorated carbon-nanotube composite for electrocatalytic CO2 reduction to C2 products. J. Mater. Chem. A 11, 13217–13222 (2023).

    Article  CAS  Google Scholar 

  63. Schindler, J. et al. Sterically induced distortions of nickel(II) porphyrins—comprehensive investigation by DFT calculations and resonance Raman spectroscopy. Coord. Chem. Rev. 360, 1–16 (2018).

    Article  CAS  Google Scholar 

  64. Shelnutt, J. A. et al. Resonance Raman spectroscopy of non-planar nickel porphyrins. J. Raman Spectrosc. 23, 523–529 (1992).

    Article  CAS  Google Scholar 

  65. Shelnutt, J. A., Medforth, C. J., Berber, M. D., Barkigia, K. M. & Smith, K. M. Relationships between structural parameters and Raman frequencies for some planar and nonplanar nickel(II) porphyrins. J. Am. Chem. Soc. 113, 4077–4087 (1991).

    Article  CAS  Google Scholar 

  66. Edgell, W. F. & Dunkle, M. P. The infrared and Raman spectra of a triphenylphosphine derivative of Ni(CO)4. Inorg. Chem. 4, 1629–1636 (1965).

    Article  CAS  Google Scholar 

  67. Betoni Momo, P., Pavani, C., Baptista, M. S., Brocksom, T. J. & Thiago de Oliveira, K. Chemical transformations and photophysical properties of meso-tetrathienyl-substituted porphyrin derivatives. Eur. J. Org. Chem. 2014, 4536–4547 (2014).

    Article  CAS  Google Scholar 

  68. Rayati, S., Zakavi, S., Bohloulbandi, E., Jafarian, M. & avei, M. R. Comparative study of the catalytic activity of a series of β-brominated Mn–porphyrins in the oxidation of olefins and organic sulfides: better catalytic performance of the partially brominated ones. Polyhedron 34, 102–107 (2012).

    Article  CAS  Google Scholar 

  69. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  70. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  71. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  73. Lu, Y. H. et al. Model thiophene-decorated nickel porphyrins for tandem CO2 reduction. Figshare https://doi.org/10.6084/m9.figshare.29926913 (2025).

Download references

Acknowledgements

Support from the National Science and Technology Council, Taiwan (contract numbers NSTC 113-2628-M-A49-008 and NSTC 114-2628-M-A49-005) is gratefully acknowledged. We also thank the Yushan Young Scholar Program (MOE 114-YSFMS-0010-003-P2) and the Center for Emergent Functional Matter Science, Ministry of Education, Taiwan for support. This work was supported by the Higher Education Sprout Project of the National Yang Ming Chiao Tung University and the Ministry of Education (MOE), Taiwan. A.X. is grateful for the support of a Sydney Horizon Fellowship and to the ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide (CE230100017). M. T. Chang and R.-F. Cai are responsible for acquiring the high-angle annular dark-field scanning transmission electron microscopy atomic images and for the analysis of the EELS spectra. S.-Y. Liu and M. Lun Wu are responsible for preparing the plane-view transmission electron microscopy samples and for focused ion beam sample pretreatment. We thank L.-C. Shen for assistance with NMR experiments.

Author information

Authors and Affiliations

Authors

Contributions

S.-F.H. supervised the project. S.-F.H., Y.-H. Lu and A.X. conceived the idea and carried out the experiments. Y.-H. Lu and S.-F.H. wrote the paper. A.X., Y.-Y.H. and C.-C.C. carried out the DFT calculations. Y.-H. Lu, Y.-J.S. and Y.-H. Lee synthesized the porphyrin molecules. Y.-H. Lu and Y.-J.S. performed the electrochemical measurements. Y.-H. Lu conducted the in situ Raman and XAS measurements. H.-J.T., Z.-Y.L. and T.-J.L. performed the XAS and RIXS measurements. W.-Y.H., G.-L.C. H.-J.L. and S.-H.H. helped to characterize the materials. N.H. and H.I. analysed the XAS and RIXS results. All authors discussed the results and assisted during manuscript preparation.

Corresponding authors

Correspondence to Aoni Xu or Sung-Fu Hung.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Jongwoo Lim and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–36 and Tables 1–4.

Supplementary Data 1

Source data for SI Figures

Source data

Source Data Fig. 1

Source data for Figs. 1b, 1c, 1d

Source Data Fig. 2

Source data for Figs. 2a, 2b, 2c, 2d, 2e, 2f, 2g, 2h

Source Data Fig. 3

Source data for Figs. 3a, 3b, 3c, 3d, 3e, 3f

Source Data Fig. 4

Source data for Figs. 4a, 4b, 4c, 4d, 4e, 4f

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, YH., Shen, YJ., Tsai, HJ. et al. Model thiophene-decorated nickel porphyrins for tandem CO2 reduction. Nat. Synth (2025). https://doi.org/10.1038/s44160-025-00903-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-025-00903-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing