Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Divergent housane synthesis via intramolecular [2 + 2] cycloaddition of 1,4-dienes

Abstract

Highly strained rings serve as privileged building blocks for the synthesis of saturated, three-dimensional scaffolds, which are increasingly recognized as critical components in modern drug discovery. Here we disclose a substrate-dependent, divergent strategy to access a broad family of housanes through an intramolecular-energy-transfer-mediated [2 + 2] cycloaddition of 1,4-dienes—a transformation that has long been considered challenging. This method rapidly builds up strain while suppressing the di-π-methane rearrangement, thereby expanding the toolkit for efficient exploration of housane chemical space. Substituent engineering enables switching between single and double energy-transfer pathways to deliver 1,3- and 1,2-disubstituted housanes with excellent stereocontrol and broad functional-group tolerance. Mechanistic studies and density functional theory calculations support an energy-transfer pathway and rationalize the observed selectivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of housane synthesis and current work.
Fig. 2: Scope for 1,3-disubstituted housanes.
Fig. 3: Scope for 1,2-disubstituted housanes.
Fig. 4: Scale-up experiment and postsynthetic diversification.
Fig. 5: Mechanistic investigations.
Fig. 6: Mechanistic outline.

Similar content being viewed by others

Data availability

All data are available in the main text or the Supplementary Information. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2486494 (2k), 2486495 (2ao), 2486496 (3av) and 2504328 (7). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. Computational data (ORCA input and output files) can be accessed in the IOChemBD repository (https://doi.org/10.19061/iochem-bd-6-583).

References

  1. Mykhailiuk, P. K. Saturated bioisosteres of benzene: where to go next?. Org. Biomol. Chem. 17, 2839–2849 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Sodano, T. M., Combee, L. A. & Stephenson, C. R. J. Recent advances and outlook for the isosteric replacement of anilines. ACS Med. Chem. Lett. 11, 1785–1788 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Subbaiah, M. A. M. & Meanwell, N. A. Bioisosteres of the phenyl ring: recent strategic applications in lead optimization and drug design. J. Med. Chem. 64, 14046–14128 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Lovering, F. Escape from Flatland 2: complexity and promiscuity. Med. Chem. Commun. 4, 515–519 (2013).

    Article  CAS  Google Scholar 

  5. Ritchie, T. J. & Macdonald, S. J. F. The impact of aromatic ring count on compound developability—are too many aromatic rings a liability in drug design?. Drug Discov. Today 14, 1011–1020 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Wei, W., Cherukupalli, S., Jing, L., Liu, X. & Zhan, P. Fsp3: a new parameter for drug-likeness. Drug Discov. Today 25, 1839–1845 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Denisenko, A. et al. 2-Oxabicyclo[2.1.1]hexanes as saturated bioisosteres of the ortho-substituted phenyl ring. Nat. Chem. 15, 1155–1163 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dong, W. et al. Exploiting the sp2 character of bicyclo[1.1.1]pentyl radicals in the transition-metal-free multi-component difunctionalization of [1.1.1]propellane. Nat. Chem. 14, 1068–1077 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Frank, N. et al. Synthesis of meta-substituted arene bioisosteres from [3.1.1]propellane. Nature 611, 721–726 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Gianatassio, R. et al. Strain-release amination. Science 351, 241–246 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang, Y. et al. An intramolecular coupling approach to alkyl bioisosteres for the synthesis of multisubstituted bicycloalkyl boronates. Nat. Chem. 13, 950–955 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang, X. et al. Copper-mediated synthesis of drug-like bicyclopentanes. Nature 580, 220–226 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lopchuk, J. M. et al. Strain-release heteroatom functionalization: development, scope, and stereospecificity. J. Am. Chem. Soc. 139, 3209–3226 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cohen, Y., Cohen, A. & Marek, I. Creating stereocenters within acyclic systems by C–C bond cleavage of cyclopropanes. Chem. Rev. 121, 140–161 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Harmata, A. S., Roldan, B. J. & Stephenson, C. R. J. Formal cycloadditions driven by the homolytic opening of strained, saturated ring systems. Angew. Chem. Int. Ed. 62, e202213003 (2023).

    Article  CAS  Google Scholar 

  16. Sterling, A. J., Smith, R. C., Anderson, E. A. & Duarte, F. Beyond strain release: delocalization-enabled organic reactivity. J. Org. Chem. 89, 9979–9989 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Turkowska, J., Durka, J. & Gryko, D. Strain release—an old tool for new transformations. Chem. Commun. 56, 5718–5734 (2020).

    Article  CAS  Google Scholar 

  18. Zhou, X., Hu, Y., Huang, Y. & Xiong, Y. Recent advances in photochemical strain-release reactions of bicyclo[1.1.0]butanes. Chem. Commun. 61, 23–32 (2025).

    Article  CAS  Google Scholar 

  19. Hu, Q.-Q., Chen, J., Yang, Y., Yang, H. & Zhou, L. Strain-release transformations of bicyclo[1.1.0]butanes and [1.1.1]propellanes. Tetrahedron Chem 9, 100070 (2024).

    Article  CAS  Google Scholar 

  20. Bellotti, P. & Glorius, F. Strain-release photocatalysis. J. Am. Chem. Soc. 145, 20716–20732 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Pramanik, M. M. D., Qian, H., Xiao, W.-J. & Chen, J.-R. Photoinduced strategies towards strained molecules. Org. Chem. Front. 7, 2531–2537 (2020).

    Article  CAS  Google Scholar 

  22. Golfmann, M. & Walker, J. C. L. Bicyclobutanes as unusual building blocks for complexity generation in organic synthesis. Commun. Chem. 6, 9 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kelly, C. B., Milligan, J. A., Tilley, L. J. & Sodano, T. M. Bicyclobutanes: from curiosities to versatile reagents and covalent warheads. Chem. Sci. 13, 11721–11737 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tyler, J. L. & Aggarwal, V. K. Synthesis and applications of bicyclo[1.1.0]butyl and azabicyclo[1.1.0]butyl organometallics. Chem. Eur. J. 29, e202300008 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xiao, Y. et al. Catalytic asymmetric strategies for bicyclo[1.1.0]butane transformations: advances and applications. CCS Chemistry 7, 1903–1934 (2025).

    Article  CAS  Google Scholar 

  26. Dilmaç, A. M., Spuling, E., de Meijere, A. & Bräse, S. Propellanes—from a chemical curiosity to “explosive” materials and natural products. Angew. Chem. Int. Ed. 56, 5684–5718 (2017).

    Article  Google Scholar 

  27. He, F.-S., Xie, S., Yao, Y. & Wu, J. Recent advances in the applications of [1.1.1]propellane in organic synthesis. Chin. Chem. Lett. 31, 3065–3072 (2020).

    Article  CAS  Google Scholar 

  28. Kanazawa, J. & Uchiyama, M. Recent advances in the synthetic chemistry of bicyclo[1.1.1]pentane. Synlett 30, 1–11 (2019).

    Article  CAS  Google Scholar 

  29. Ma, X. & Nhat Pham, L. Selected topics in the syntheses of bicyclo[1.1.1]pentane (BCP) analogues. Asian J. Org. Chem. 9, 8–22 (2020).

    Article  CAS  Google Scholar 

  30. Shire, B. R. & Anderson, E. A. Conquering the synthesis and functionalization of bicyclo[1.1.1]pentanes. JACS Au 3, 1539–1553 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu, X., He, J., Lin, K., Wang, X. & Cao, H. State-of-the-art strategies for Lewis acid-catalyzed strain-release cycloadditions of bicyclo[1.1.0]butanes (BCBs). Org. Chem. Front. 11, 6942–6957 (2024).

    Article  CAS  Google Scholar 

  32. Chang, Y.-C., Salome, C., Fessard, T. & Brown, M. K. Synthesis of 2-azanorbornanes via strain-release formal cycloadditions initiated by energy transfer. Angew. Chem. Int. Ed. 62, e202314700 (2023).

    Article  CAS  Google Scholar 

  33. Roy, D. et al. SmI2-catalyzed coupling of alkyl housane ketones and alkenes in an approach to norbornanes. Angew. Chem. Int. Ed. 64, e202512018 (2025).

    Article  CAS  Google Scholar 

  34. Jung, M. & Lindsay, V. N. G. One-pot synthesis of strain-release reagents from methyl sulfones. J. Am. Chem. Soc. 144, 4764–4769 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu, Y. et al. Facile synthesis of housanes by an unexpected strategy. J. Am. Chem. Soc. 147, 6318–6325 (2025).

    Article  CAS  PubMed  Google Scholar 

  36. Park, Y. S., Wang, S. C., Tantillo, D. J. & Little, R. D. A highly selective rearrangement of a housane-derived cation radical: an electrochemically mediated transformation. J. Org. Chem. 72, 4351–4357 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Semeno, V. V. et al. Building the housane: diastereoselective synthesis and characterization of bicyclo[2.1.0]pentane carboxylic acids. J. Org. Chem. 85, 2321–2337 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Coto, D. et al. From cyclopropene to housane derivatives via intramolecular cyclopropanation. Angew. Chem. Int. Ed. 63, e202409226 (2024).

    Article  CAS  Google Scholar 

  39. Keen, B. et al. Stereoselective synthesis of highly functionalized bicyclo[2.1.0]pentanes by sequential [2 + 1] and [2 + 2] cycloadditions. Org. Lett. 27, 1673–1678 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mondal, A. R. S., Bapat, N. A., Mishra, H. & Hari, D. P. Highly stereoselective synthesis of polysubstituted housanes and spiro-oxa-housanes: application and mechanistic insights. Chem. Sci. 16, 12350–12361 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sharland, J. C. & Davies, H. M. L. One-pot synthesis of difluorobicyclo[1.1.1]pentanes from α-allyldiazoacetates. Org. Lett. 25, 5214–5219 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Eckart-Frank, I. K., Arnold, E. S., Murphy, L. P. & Wilkerson-Hill, S. M. Synthesis of bicyclo[2.1.0]pentanes and vinylcyclopropanes using palladium carbenes: ligand-controlled carbene reactivity. J. Am. Chem. Soc. 147, 33923–33931 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chintawar, C. C. et al. Photoredox-catalysed amidyl radical insertion to bicyclo[1.1.0]butanes. Nat. Catal. 7, 1232–1242 (2024).

    Article  CAS  Google Scholar 

  44. Dutta, S. et al. Photoredox-enabled dearomative [2π + 2σ] cycloaddition of phenols. J. Am. Chem. Soc. 146, 2789–2797 (2024).

    Article  CAS  PubMed  Google Scholar 

  45. Dutta, S. et al. Double strain-release [2π + 2σ]-photocycloaddition. J. Am. Chem. Soc. 146, 5232–5241 (2024).

    Article  CAS  PubMed  Google Scholar 

  46. Kleinmans, R. et al. Ortho-selective dearomative [2π + 2σ] photocycloadditions of bicyclic aza-arenes. J. Am. Chem. Soc. 145, 12324–12332 (2023).

    Article  CAS  PubMed  Google Scholar 

  47. Kleinmans, R. et al. Intermolecular [2π + 2σ]-photocycloaddition enabled by triplet energy transfer. Nature 605, 477–482 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Liang, Y., Nematswerani, R., Daniliuc, C. G. & Glorius, F. Silver-enabled cycloaddition of bicyclobutanes with isocyanides for the synthesis of polysubstituted 3-azabicyclo[3.1.1]heptanes. Angew. Chem. Int. Ed. 63, e202402730 (2024).

    Article  CAS  Google Scholar 

  49. Liang, Y., Paulus, F., Daniliuc, C. G. & Glorius, F. Catalytic formal [2π + 2σ] cycloaddition of aldehydes with bicyclobutanes: expedient access to polysubstituted 2-oxabicyclo[2.1.1]hexanes. Angew. Chem. Int. Ed. 62, e202305043 (2023).

    Article  CAS  Google Scholar 

  50. Tyler, J. L. et al. Bicyclo[1.1.0]butyl radical cations: synthesis and application to [2π + 2σ] cycloaddition reactions. J. Am. Chem. Soc. 146, 16237–16247 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang, H. et al. syn-Selective difunctionalization of bicyclobutanes enabled by photoredox-mediated C–S σ-bond scission. J. Am. Chem. Soc. 145, 23771–23780 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, H. et al. Dearomative ring expansion of thiophenes by bicyclobutane insertion. Science 381, 75–81 (2023).

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, F. et al. Solvent-dependent divergent cyclization of bicyclo[1.1.0]butanes. Angew. Chem. Int. Ed. 64, e202418239 (2025).

    Article  CAS  Google Scholar 

  54. Meinwald, J. & Smith, G. W. Mercury-photosensitized reactions of 1,4-dienes. J. Am. Chem. Soc. 89, 4923–4932 (1967).

    Article  CAS  Google Scholar 

  55. Tsuno, T., Hoshino, H., Okuda, R. & Sugiyama, K. Allenyl(vinyl)methane photochemistry. Photochemistry of γ-(3-methyl-1-phenyl-1,2-butadienyl)-substituted α,β-unsaturated ester and nitrile derivatives. Tetrahedron 57, 4831–4840 (2001).

    Article  CAS  Google Scholar 

  56. Tsuno, T. & Sugiyama, K. Allenyl(vinyl)methane photochemistry. Photochemistry of methyl 4,4-dimethyl-2,5,6-heptatrienoate derivatives. Bull. Chem. Soc. Jpn. 72, 519–531 (1999).

    Article  CAS  Google Scholar 

  57. Zimmerman, H. E., Penn, J. H. & Johnson, M. R. New reactions and theory in organic photochemistry: the 1,3-vinyl migration and its relevance to exchange integral control. Proc. Natl Acad. Sci. USA 78, 2021–2025 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hixson, S. S., Mariano, P. S. & Zimmerman, H. E. Di-π-methane and oxa-di-π-methane rearrangements. Chem. Rev. 73, 531–551 (1973).

    Article  CAS  Google Scholar 

  59. Zimmerman, H. E. & Armesto, D. Synthetic aspects of the di-π-methane rearrangement. Chem. Rev. 96, 3065–3112 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Tsuno, T., Yoshida, M., Iwata, T. & Sugiyama, K. Allenyl(vinyl)methane photochemistry. Photochemistry of γ-allenyl-substituted α,β-unsaturated enone derivatives. Tetrahedron 58, 7681–7689 (2002).

    Article  CAS  Google Scholar 

  61. Kunio, S. & Takashi, T. Novel chemistry of 5-methylene-substituted 1,3-dioxane-4,6-dione derivatives. Trends Heterocycl. Chem. 7, 91–106 (2001).

    Google Scholar 

  62. Tyler, J. L., Trauner, D. & Glorius, F. Reaction development: a student’s checklist. Chem. Soc. Rev. 54, 3272–3292 (2025).

    Article  CAS  PubMed  Google Scholar 

  63. Pitzer, L., Schäfers, F. & Glorius, F. Rapid assessment of the reaction-condition-based sensitivity of chemical transformations. Angew. Chem. Int. Ed. 58, 8572–8576 (2019).

    Article  CAS  Google Scholar 

  64. Schäfer, F., Lückemeier, L. & Glorius, F. Improving reproducibility through condition-based sensitivity assessments: application, advancement and prospect. Chem. Sci. 15, 14548–14555 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Collins, K. D. & Glorius, F. A robustness screen for the rapid assessment of chemical reactions. Nat. Chem. 5, 597–601 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Hirbawi, N., Lin, P. C. & Jarvo, E. R. Halogenation reactions of alkyl alcohols employing methyl Grignard reagents. J. Org. Chem. 87, 12352–12369 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, M., Huang, Y., Li, C. & Lu, P. Diastereoselective synthesis of 1,1,3,3-tetrasubstituted cyclobutanes enabled by cycloaddition of bicyclo[1.1.0]butanes. Org. Chem. Front. 9, 2149–2153 (2022).

    Article  Google Scholar 

  68. Nandy, M. et al. Total Synthesis of (+)-brevianamides A and B. Org. Lett. 26, 10424–10429 (2024).

    Article  CAS  PubMed  Google Scholar 

  69. Dhote, P. S., Patel, P., Vanka, K. & Ramana, C. V. Total synthesis of the pseudoindoxyl class of natural products. Org. Biomol. Chem. 19, 7970–7994 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Joshi-Pangu, A. et al. Acridinium-based photocatalysts: a sustainable option in photoredox catalysis. J. Org. Chem. 81, 7244–7249 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Strieth-Kalthoff, F., James, M. J., Teders, M., Pitzer, L. & Glorius, F. Energy transfer catalysis mediated by visible light: principles, applications, directions. Chem. Soc. Rev. 47, 7190–7202 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Popescu, M. V. & Paton, R. S. Dynamic vertical triplet energies: understanding and predicting triplet energy transfer. Chem 10, 3428–3443 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Carpenter, B. K. Understanding the puzzling chemistry of bicyclo[2.1.0]pentane. Org. Biomol. Chem. 2, 103–109 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by Muenster University. J.D. acknowledges PhD fellowship funding by the Hans und Ria Messer Stiftung. N.H. acknowledges PhD fellowship funding by the German National Academic Foundation (Studienstiftung des deutschen Volkes). The authors thank D. Rana and L. Schlosser for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

F.G. and F.Z. conceived the project. F.Z. designed all the experiments. F.Z. and J.D. performed synthetic experiments. N.H. conducted computational investigations. All authors analysed the data. C.G.D. analysed X-ray structures. F.G. and F.Z. supervised the research and wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to Frank Glorius.

Ethics declarations

Competing interests

Authors declare that they have no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Joel Cejas-Sánchez, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental details, Supplementary sections 1–12, Figs. 1–19 and Tables 1–8.

Supplementary Data 1

Crystallographic data for compound 2ao, CCDC 2486495.

Supplementary Data 2

Crystallographic data for compound 2k, CCDC 2486494.

Supplementary Data 3

Crystallographic data for compound 3av, CCDC 2486496.

Supplementary Data 4

Crystallographic data for compound 7, CCDC 2504328.

Source data

Source Data Fig. 5

Statistical source data for Fig. 5a–c.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Domack, J., Hölter, N. et al. Divergent housane synthesis via intramolecular [2 + 2] cycloaddition of 1,4-dienes. Nat. Synth (2026). https://doi.org/10.1038/s44160-026-00997-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s44160-026-00997-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing