Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Melting-assisted assembly of twisted graphene/h-BN superlattices with clean interfaces

Abstract

Twisted van der Waals heterostructures (vdWHs) designed with atomic-scale precision have interesting properties and are important for modern electronics. However, fabricating large-area, two-dimensional (2D) vdWHs with clean interfaces and controllable twist angles remains challenging. Here we successfully fabricated twisted graphene (Gr)/hexagonal boron nitride (h-BN) heterojunctions under vacuum by developing a quasi-melting transfer technique for Gr/Ge (110) and h-BN/Ge (210) substrates. By precisely aligning the Gr/Ge and h-BN/Ge stacks with specific in-plane lattices, we achieved ultraclean transfer of Gr/h-BN superlattices with adjustable stacking orders and precise angles through the sequential transfer of Gr and h-BN monolayers. Transmission electron microscopy, atomic force microscopy, nano angle-resolved photoemission spectroscopy and second-harmonic generation measurement confirmed that the Gr/h-BN superlattices fabricated exhibit atomic-level precision, are of high quality, are free of wrinkles and have controllable twist angles. Theoretical calculations demonstrated that breaking the Ge–Ge bonds in the melted substrate greatly weakens the binding strength of Gr and h-BN to the surface, thereby facilitating the clean transfer of the 2D materials. This study provides a viable pathway for the precise fabrication of large-scale 2D vdWHs and lays a solid material foundation for their application in next-generation electronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fabrication and transfer of a single-crystalline Gr/h-BN bilayer.
Fig. 2: The manipulation of twisted Gr/h-BN by the orientation design and alignment of the Ge substrate.
Fig. 3: The interaction energy between Gr (or h-BN) and the Ge substrate, and the substrate electronic properties.
Fig. 4: Patterning and characterization of twisted Gr and h-BN.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are provided in Supplementary Information. Source data are provided with this paper.

References

  1. Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moire superlattices. Nature 497, 598–602 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Kim, H. et al. Evidence for unconventional superconductivity in twisted trilayer graphene. Nature 606, 494–500 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Zheng, Z. et al. Unconventional ferroelectricity in moire heterostructures. Nature 588, 71–76 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021).

    Article  CAS  Google Scholar 

  11. Hong, H. et al. Twist phase matching in two-dimensional materials. Phys. Rev. Lett. 131, 233801 (2023).

    Article  CAS  PubMed  Google Scholar 

  12. Yao, K. et al. Enhanced tunable second harmonic generation from twistable interfaces and vertical superlattices in boron nitride homostructures. Sci. Adv. 7, eabe8691 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim, C. J. et al. Stacking order dependent second harmonic generation and topological defects in h-BN bilayers. Nano Lett. 13, 5660–5665 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Turkel, S. et al. Orderly disorder in magic-angle twisted trilayer graphene. Science 376, 193–199 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Park, J. M. et al. Robust superconductivity in magic-angle multilayer graphene family. Nat. Mater. 21, 877–883 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Pizzocchero, F. et al. The hot pick-up technique for batch assembly of van der Waals heterostructures. Nat. Commun. 7, 11894 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang, Z. et al. Versatile construction of van der Waals heterostructures using a dual-function polymeric film. Nat. Commun. 11, 3029 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, B. et al. Controlled folding of single crystal graphene. Nano Lett. 17, 1467–1473 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Du, X. et al. Electronically weak coupled bilayer MoS2 at various twist angles via folding. ACS Appl. Mater. Interfaces 13, 22819–22827 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Ribeiro-Palau, R. et al. Twistable electronics with dynamically rotatable heterostructures. Science 361, 690–693 (2018).

    Article  CAS  Google Scholar 

  22. Chen, H. et al. Atomically precise, custom-design origami graphene nanostructures. Science 365, 1036–1040 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Liao, M. et al. Precise control of the interlayer twist angle in large scale MoS2 homostructures. Nat. Commun. 11, 2153 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu, C. et al. Designed growth of large bilayer graphene with arbitrary twist angles. Nat. Mater. 21, 1263–1268 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017).

    Article  PubMed  Google Scholar 

  26. Yuan, G. et al. Stacking transfer of wafer-scale graphene-based van der Waals superlattices. Nat. Commun. 14, 5457 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou, Z. et al. Stack growth of wafer-scale van der Waals superconductor heterostructures. Nature 621, 499–505 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Su, C. et al. Tuning colour centres at a twisted hexagonal boron nitride interface. Nat. Mater. 21, 896–902 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Dong, J., Zhang, L., Dai, X. & Ding, F. The epitaxy of 2D materials growth. Nat. Commun. 11, 5862 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao, T. et al. Substrate engineering for wafer-scale two-dimensional material growth: strategies, mechanisms, and perspectives. Chem. Soc. Rev. 52, 1650–1671 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Lee, J.-H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344, 286–289 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, C. et al. Silicon-assisted growth of hexagonal boron nitride to improve oxidation resistance of germanium. 2D Mater. 8, 035041 (2021).

    Article  CAS  Google Scholar 

  33. Yin, J. et al. Aligned growth of hexagonal boron nitride monolayer on germanium. Small 11, 5375–5380 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Giovannetti, G., Khomyakov, P. A., Brocks, G., Kelly, P. J. & van den Brink, J. Substrate-induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations. Phys. Rev. B 76, 073103 (2007).

    Article  Google Scholar 

  35. Yong, K., Ashraf, A., Kang, P. & Nam, S. Rapid stencil mask fabrication enabled one-step polymer-free graphene patterning and direct transfer for flexible graphene devices. Sci. Rep. 6, 24890 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu, Y. et al. Patterning graphene film by magnetic-assisted UV ozonation. Sci. Rep. 7, 46583 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tao, H. et al. Photochemically patterning graphene in a highly efficient, anisotropic, and clean way. ACS Appl. Nano Mater. 7, 10690–10698 (2024).

    Article  CAS  Google Scholar 

  38. Finney, N. R. et al. Tunable crystal symmetry in graphene-boron nitride heterostructures with coexisting moire superlattices. Nat. Nanotechnol. 14, 1029–1034 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to X. Yue and C. Cong from Fudan University for Raman mapping characterization. We are grateful to B. Yang and J. Liu from Shanghai Tech University for DFT calculations. T.W. and W.G. acknowledge support from the National Key Research and Development Project of China (grant nos 2024YFA1410600 and 2021YFA1200801), the National Natural Science Foundation of China (grant nos 62174169, 12104476 and 22173031) and the Key Project of Frontier Science Research of Chinese Academy of Sciences (grant no. XDB30000000). C.Z. acknowledges support from National Natural Science Foundation of China (grant no. 52402195) and the China Postdoctoral Science Foundation (grant no. 2023M742225). H.W. acknowledges support from National Natural Science Foundation of China (grant nos 91964102, 51772317, 12004406, 62074099 and 12304113).

Author information

Authors and Affiliations

Authors

Contributions

C.Z. and Q.X. contributed equally to this work. T.W. and C.Z. conceived the project. C.Z. and B.G. performed the growth and transfer experiments. C. Jiang and H.W. performed the AFM measurements. B.W. and C. Jin performed the TEM and SAED experiments. W.G., J.W., C.Z. and K.Y. performed the EELS experiments. Q.Y. and Q.X. performed the calculations. Z.C. conducted the SHG characterizations. H.X. and Z.L. conducted the ARPES characterizations. W.G., Q.Y., T.W. and T.D. provided comprehensive guidance and financial support for all experiments and characterization. All the authors revised and commented on the paper.

Corresponding authors

Correspondence to Wenpei Gao, Qinghong Yuan or Tianru Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Peter Bøggild, Miguel Espitia-Rico and Libo Gao for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–21 and Tables 1 and 2.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Xie, Q., Jiang, C. et al. Melting-assisted assembly of twisted graphene/h-BN superlattices with clean interfaces. Nat. Synth (2026). https://doi.org/10.1038/s44160-026-01000-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s44160-026-01000-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing