Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Brain and body energy metabolism and potential for treatment of psychiatric disorders

Abstract

Brain function is critically dependent on energy metabolism. Research over the past half century has provided many insights into energy production and utilization in the brain, and identified ways that it can be improved in brain disorders. A parallel literature indicates that major aberrations exist in brain bioenergetics in neuropsychiatric disorders. Targeting bioenergetic abnormalities may be an efficacious approach to treatment for these conditions. In this Perspective, we provide a survey of the relevant literature on these topics and sketch the outlines of a research agenda to maximize the impact of future research and treatment interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Paulus, M. P. & Thompson, W. K. The challenges and opportunities of small effects: the new normal in academic psychiatry. JAMA Psychiatry 76, 353–354 (2019).

    Article  PubMed  Google Scholar 

  2. Abi-Dargham, A. et al. Candidate biomarkers in psychiatric disorders: state of the field. World Psychiatry 22, 236–262 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Freyberg, Z., Aslanoglou, D., Shah, R. & Ballon, J. S. Intrinsic and antipsychotic drug-induced metabolic dysfunction in schizophrenia. Front. Neurosci. 11, 432 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pillinger, T., D'Ambrosio, E., McCutcheon, R. & Howes, O. D. Is psychosis a multisystem disorder? A meta-review of central nervous system, immune, cardiometabolic, and endocrine alterations in first-episode psychosis and perspective on potential models. Mol. Psychiatry 24, 776–794 (2019).

    Article  PubMed  Google Scholar 

  5. Kaul, I. et al. Efficacy and safety of xanomeline-trospium chloride in schizophrenia: a randomized clinical trial. JAMA Psychiatry 81, 749–756 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bogenschutz, M. P. et al. Percentage of heavy drinking days following psilocybin-assisted psychotherapy vs placebo in the treatment of adult patients With alcohol use disorder: a randomized clinical trial. JAMA Psychiatry 79, 953–962 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Needham, N. et al. Pilot study of a ketogenic diet in bipolar disorder. BJPsych Open 9, e176 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sethi, S. et al. Ketogenic diet intervention on metabolic and psychiatric health in bipolar and schizophrenia: a pilot trial. Psychiatry Res. 335, 115866 (2024).

    Article  PubMed  Google Scholar 

  9. Picard, M., McEwen, B. S., Epel, E. S. & Sandi, C. An energetic view of stress: focus on mitochondria. Front. Neuroendocrinol. 49, 72–85 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shaulson, E. D., Cohen, A. A. & Picard, M. The brain–body energy conservation model of aging. Nat. Aging 4, 1354–1371 (2024).

    Article  PubMed  Google Scholar 

  11. Shulman, R. G., Hyder, F. & Rothman, D. L. Biophysical basis of brain activity: implications for neuroimaging. Q. Rev. Biophys. 35, 287–325 (2002).

    Article  PubMed  Google Scholar 

  12. Thulborn, K. R., Waterton, J. C., Matthews, P. M. & Radda, G. K. Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim. Biophys. Acta 714, 265–270 (1982).

    Article  PubMed  Google Scholar 

  13. Bobba-Alves, N., Juster, R. P. & Picard, M. The energetic cost of allostasis and allostatic load. Psychoneuroendocrinology 146, 105951 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Stein, A., Zhu, C., Du, F. & Ongur, D. Magnetic resonance spectroscopy studies of brain energy metabolism in schizophrenia: progression from prodrome to chronic psychosis. Curr. Psychiatry Rep. 25, 659–669 (2023).

    Article  PubMed  Google Scholar 

  15. Henkel, N. D. et al. Schizophrenia: a disorder of broken brain bioenergetics. Mol. Psychiatry 27, 2393–2404 (2022).

    Article  PubMed  Google Scholar 

  16. Goyal, M. S. & Raichle, M. E. Glucose requirements of the developing human brain. J. Pediatr. Gastroenterol. Nutr. 66, S46–S49 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tomasi, D., Wang, G. J. & Volkow, N. D. Energetic cost of brain functional connectivity. Proc. Natl Acad. Sci. USA 110, 13642–13647 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang, G. et al. Glycolytic reprogramming in microglia: a potential therapeutic target for ischemic stroke. Cell. Signal. 124, 111466 (2024).

    Article  PubMed  Google Scholar 

  19. Goyal, M. S. et al. Spatiotemporal relationship between subthreshold amyloid accumulation and aerobic glycolysis in the human brain. Neurobiol. Aging 96, 165–175 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sturm, G. et al. OxPhos defects cause hypermetabolism and reduce lifespan in cells and in patients with mitochondrial diseases. Commun. Biol. 6, 22 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fitzgerald, P. B., Fountain, S. & Daskalakis, Z. J. A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clin. Neurophysiol. 117, 2584–2596 (2006).

    Article  PubMed  Google Scholar 

  22. Hertz, L. Intercellular metabolic compartmentation in the brain: past, present and future. Neurochem. Int. 45, 285–296 (2004).

    Article  PubMed  Google Scholar 

  23. Rothman, D. L., Behar, K. L., Hyder, F. & Shulman, R. G. In vivo NMR studies of the glutamate neurotransmitter flux and neuroenergetics: implications for brain function. Annu. Rev. Physiol. 65, 401–427 (2003).

    Article  PubMed  Google Scholar 

  24. Rae, C. D. et al. Brain energy metabolism: a roadmap for future research. J. Neurochem. 168, 910–954 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dienel, G. A. Brain glucose metabolism: integration of energetics with function. Physiol. Rev. 99, 949–1045 (2019).

    Article  PubMed  Google Scholar 

  26. Harris, J. J., Jolivet, R. & Attwell, D. Synaptic energy use and supply. Neuron 75, 762–777 (2012).

    Article  PubMed  Google Scholar 

  27. Raichle, M. E. The restless brain: how intrinsic activity organizes brain function. Phil. Trans. R. Soc. Lond. B 370, 20140172 (2015).

    Article  Google Scholar 

  28. Raichle, M. E. & Gusnard, D. A. Appraising the brain's energy budget. Proc. Natl Acad. Sci. USA 99, 10237–10239 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cho, Z. H. et al. Substructural hippocampal glucose metabolism observed on PET/MRI. J. Nucl. Med. 51, 1545–1548 (2010).

    Article  PubMed  Google Scholar 

  30. Shao, J. et al. Common and distinct changes of default mode and salience network in schizophrenia and major depression. Brain Imaging Behav. 12, 1708–1719 (2018).

    Article  PubMed  Google Scholar 

  31. Herculano-Houzel, S. & Rothman, D. L. From a demand-based to a supply-limited framework of brain metabolism. Front. Integr. Neurosci. 16, 818685 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  32. DiNuzzo, M. et al. Neurovascular coupling is optimized to compensate for the increase in proton production from nonoxidative glycolysis and glycogenolysis during brain activation and maintain homeostasis of pH, \(p_{{\mathrm{CO}}_2}\), and \(p_{{\mathrm{O}}_2}\). J. Neurochem. 168, 632–662 (2024).

    Article  PubMed  Google Scholar 

  33. Bouzat, P. & Oddo, M. Lactate and the injured brain: friend or foe? Curr. Opin. Crit. Care 20, 133–140 (2014).

    PubMed  Google Scholar 

  34. Trigo, D., Avelar, C., Fernandes, M., Sa, J. & da Cruz, E. S. O. Mitochondria, energy, and metabolism in neuronal health and disease. FEBS Lett. 596, 1095–1110 (2022).

    Article  PubMed  Google Scholar 

  35. Peters, A. The selfish brain: competition for energy resources. Am. J. Hum. Biol. 23, 29–34 (2011).

    Article  PubMed  Google Scholar 

  36. Wang, Z. et al. Specific metabolic rates of major organs and tissues across adulthood: evaluation by mechanistic model of resting energy expenditure. Am. J. Clin. Nutr. 92, 1369–1377 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Steullet, P. et al. Redox dysregulation, neuroinflammation, and NMDA receptor hypofunction: a "central hub" in schizophrenia pathophysiology? Schizophr. Res. 176, 41–51 (2016).

    Article  PubMed  Google Scholar 

  38. Turkheimer, F. E. et al. Corrigendum to: normalizing the abnormal: do antipsychotic drugs push the cortex into an unsustainable metabolic envelope? Schizophr. Bull. 48, 721 (2022).

    Article  PubMed  Google Scholar 

  39. Kim, Y. et al. Mitochondria, metabolism, and redox mechanisms in psychiatric disorders. Antioxid. Redox Signal. 31, 275–317 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Roberts, R. C. Mitochondrial dysfunction in schizophrenia: with a focus on postmortem studies. Mitochondrion 56, 91–101 (2021).

    Article  PubMed  Google Scholar 

  41. Sullivan, C. R., O'Donovan, S. M., McCullumsmith, R. E. & Ramsey, A. Defects in bioenergetic coupling in schizophrenia. Biol. Psychiatry 83, 739–750 (2018).

    Article  PubMed  Google Scholar 

  42. Bergman, O. & Ben-Shachar, D. Mitochondrial oxidative phosphorylation system (OXPHOS) deficits in schizophrenia: possible interactions with cellular processes. Can. J. Psychiatry 61, 457–469 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Trumpff, C. et al. Psychosocial experiences are associated with human brain mitochondrial biology. Proc. Natl Acad. Sci. USA 121, e2317673121 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Li, J. et al. Association of mitochondrial biogenesis with variable penetrance of schizophrenia. JAMA Psychiatry 78, 911–921 (2021).

    Article  PubMed  Google Scholar 

  45. Glausier, J. R., Enwright, J. F. 3rd & Lewis, D. A. Diagnosis- and cell type-specific mitochondrial functional pathway signatures in schizophrenia and bipolar disorder. Am. J. Psychiatry 177, 1140–1150 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Townsend, L. et al. Brain glucose metabolism in schizophrenia: a systematic review and meta-analysis of 18FDG-PET studies in schizophrenia. Psychol. Med. 53, 4880–4897 (2023).

    Article  PubMed  Google Scholar 

  47. Manosalva, C. et al. Role of lactate in inflammatory processes: friend or foe. Front. Immunol. 12, 808799 (2021).

    Article  PubMed  Google Scholar 

  48. Dwir, D. et al. Redox and immune signaling in schizophrenia: new therapeutic potential. Int. J. Neuropsychopharmacol. 26, 309–321 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Gimenez-Palomo, A. et al. The role of mitochondria in mood disorders: from physiology to pathophysiology and to treatment. Front. Psychiatry 12, 546801 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Abdallah, C. G. et al. Glutamate metabolism in major depressive disorder. Am. J. Psychiatry 171, 1320–1327 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yuksel, C. et al. Abnormal high-energy phosphate molecule metabolism during regional brain activation in patients with bipolar disorder. Mol. Psychiatry 20, 1079–1084 (2015).

    Article  PubMed  Google Scholar 

  52. Kong, D. et al. Ketogenic diet: a potential adjunctive treatment for substance use disorders. Front. Nutr. 10, 1191903 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mahapatra, G. et al. Blood-based bioenergetic profiling reveals differences in mitochondrial function associated with cognitive performance and Alzheimer's disease. Alzheimers Dement. 19, 1466–1478 (2023).

    Article  PubMed  Google Scholar 

  54. Goyal, M. S. et al. Brain aerobic glycolysis and resilience in Alzheimer disease. Proc. Natl Acad. Sci. USA 120, e2212256120 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gabuzyan, R., Lee, C. & Nygaard, H. B. Ketogenic approaches for the treatment of Alzheimer's disease. J. Alzheimers Dis. 101, S443–S453 (2024).

    Article  PubMed  Google Scholar 

  56. Ongur, D. & Paulus, M. P. Embracing complexity in psychiatry—from reductionistic to systems approaches. Lancet Psychiatry 12, 220–227 (2025).

    Article  PubMed  Google Scholar 

  57. Emmerzaal, T. L. et al. Effect of neuropsychiatric medications on mitochondrial function: for better or for worse. Neurosci. Biobehav. Rev. 127, 555–571 (2021).

    Article  PubMed  Google Scholar 

  58. Ryan, M. C., Collins, P. & Thakore, J. H. Impaired fasting glucose tolerance in first-episode, drug-naive patients with schizophrenia. Am. J. Psychiatry 160, 284–289 (2003).

    Article  PubMed  Google Scholar 

  59. Maudsley, H. An address on medical psychology. BMJ 2, 163–167 (1872).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kasanin, J. The blood sugar curve in mental disease: II. The schizophrenic (dementia praecox) groups. Arch. Neurol. Psychiatry 16, 414–419 (1926).

    Article  Google Scholar 

  61. Pillinger, T. et al. Impaired glucose homeostasis in first-episode schizophrenia: a systematic review and meta-analysis. JAMA Psychiatry 74, 261–269 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Milaneschi, Y., Lamers, F., Berk, M. & Penninx, B. Depression heterogeneity and its biological underpinnings: toward immunometabolic depression. Biol. Psychiatry 88, 369–380 (2020).

    Article  PubMed  Google Scholar 

  63. Rashidian, H. et al. Insulin resistance is associated with deficits in hedonic, self-reported cognitive, and psychosocial functional response to antidepressant treatment in individuals with major depressive disorder. J. Affect. Disord. 282, 448–453 (2021).

    Article  PubMed  Google Scholar 

  64. Gruber, J. et al. Impact of insulin and insulin resistance on brain dopamine signalling and reward processing—an underexplored mechanism in the pathophysiology of depression? Neurosci. Biobehav. Rev. 149, 105179 (2023).

    Article  PubMed  Google Scholar 

  65. Roy, T. & Lloyd, C. E. Epidemiology of depression and diabetes: a systematic review. J. Affect. Disord. 142, S8–S21 (2012).

    Article  PubMed  Google Scholar 

  66. Sarnyai, Z. & Palmer, C. M. Ketogenic therapy in serious mental illness: emerging evidence. Int. J. Neuropsychopharmacol. 23, 434–439 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Mujica-Parodi, L. R. & Strey, H. H. Making sense of computational psychiatry. Int. J. Neuropsychopharmacol. 23, 339–347 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  68. McEwen, B. S. Allostasis and the epigenetics of brain and body health over the life course: the brain on stress. JAMA Psychiatry 74, 551–552 (2017).

    Article  PubMed  Google Scholar 

  69. Castrillon, G. et al. An energy costly architecture of neuromodulators for human brain evolution and cognition. Sci. Adv. 9, eadi7632 (2023).

  70. Calkin, C. V. et al. Treating insulin resistance with metformin as a strategy to improve clinical outcomes in treatment-resistant bipolar depression (the TRIO-BD Study): a randomized, quadruple-masked, placebo-controlled clinical trial. J. Clin. Psychiatry 83, 21m14022 (2022).

    Article  PubMed  Google Scholar 

  71. Yammine, L. et al. Exenatide once weekly for smoking cessation: study protocol for a randomized clinical trial. Medicine 97, e9567 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ehrenreich, H. et al. Exploiting moderate hypoxia to benefit patients with brain disease: molecular mechanisms and translational research in progress. Neuroprotection 1, 9–19 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Falkai, P. et al. Aerobic exercise in severe mental illness: requirements from the perspective of sports medicine. Eur. Arch. Psychiatry Clin. Neurosci. 272, 643–677 (2022).

    Article  PubMed  Google Scholar 

  74. Zapata, R. C. et al. Antipsychotic-induced weight gain and metabolic effects show diurnal dependence and are reversible with time restricted feeding. Schizophrenia 8, 70 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kim, D. J. et al. Altered physical pain processing in different psychiatric conditions. Neurosci. Biobehav. Rev. 133, 104510 (2022).

    Article  PubMed  Google Scholar 

  76. Forester, B. P. et al. Coenzyme Q10 effects on creatine kinase activity and mood in geriatric bipolar depression. J. Geriatr. Psychiatry Neurol. 25, 43–50 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Yoshino, J., Baur, J. A. & Imai, S. I. NAD(+) intermediates: the biology and therapeutic potential of NMN and NR. Cell Metab. 27, 513–528 (2018).

    Article  PubMed  Google Scholar 

  78. Chouinard, V. A. et al. Intranasal insulin increases brain glutathione (GSH) and enhances antioxidant capacity in healthy participants, but not in those with early psychotic disorders. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 10, 286–294 (2025).

    PubMed  Google Scholar 

  79. Battini, V. et al. The potential effect of metformin on cognitive and other symptom dimensions in patients with schizophrenia and antipsychotic-induced weight gain: a systematic review, meta-analysis, and meta-regression. Front. Psychiatry 14, 1215807 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Murta, L., Seixas, D., Harada, L., Damiano, R. F. & Zanetti, M. Intermittent fasting as a potential therapeutic instrument for major depression disorder: a systematic review of clinical and preclinical studies. Int. J. Mol. Sci. 24, 15551 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Johnson, S. L. et al. A randomized controlled trial to compare the effects of time-restricted eating versus Mediterranean diet on symptoms and quality of life in bipolar disorder. BMC Psychiatry 24, 374 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lii, T. R. et al. Randomized trial of ketamine masked by surgical anesthesia in patients with depression. Nat. Ment. Health 1, 876–886 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Szigeti, B. & Heifets, B. D. Expectancy effects in psychedelic trials. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 9, 512–521 (2024).

    PubMed  Google Scholar 

  84. Manji, H. et al. Impaired mitochondrial function in psychiatric disorders. Nat. Rev. Neurosci. 13, 293–307 (2012).

    Article  PubMed  Google Scholar 

  85. Diez-Arroyo, C. et al. Effect of the ketogenic diet as a treatment for refractory epilepsy in children and adolescents: a systematic review of reviews. Nutr. Rev. 82, 487–502 (2024).

    Article  PubMed  Google Scholar 

  86. Longhitano, C. et al. The effects of ketogenic metabolic therapy on mental health and metabolic outcomes in schizophrenia and bipolar disorder: a randomized controlled clinical trial protocol. Front. Nutr. 11, 1444483 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Rasgon, N. L. & McEwen, B. S. Insulin resistance—a missing link no more. Mol. Psychiatry 21, 1648–1652 (2016).

    Article  PubMed  Google Scholar 

  88. Cuenod, M. et al. Caught in vicious circles: a perspective on dynamic feed-forward loops driving oxidative stress in schizophrenia. Mol. Psychiatry 27, 1886–1897 (2022).

    Article  PubMed  Google Scholar 

  89. Rasgon, N. L. et al. Rosiglitazone add-on in treatment of depressed patients with insulin resistance: a pilot study. ScientificWorldJournal 10, 321–328 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Nasca, C. et al. Insulin receptor substrate in brain-enriched exosomes in subjects with major depression: on the path of creation of biosignatures of central insulin resistance. Mol. Psychiatry 26, 5140–5149 (2021).

    Article  PubMed  Google Scholar 

  91. Saha, S., Chant, D. & McGrath, J. A systematic review of mortality in schizophrenia: is the differential mortality gap worsening over time? Arch. Gen. Psychiatry 64, 1123–1131 (2007).

    Article  PubMed  Google Scholar 

  92. Lkhagvasuren, B. et al. Pancreas–brain crosstalk. Front. Neuroanat. 15, 691777 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Trelle, S. Exploratory trials in mental health: anything to learn from other disciplines? Evid. Based Ment. Health 20, 21–24 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conception/design of the paper: A.C.A., L.F.B., A.B., D.B.-S., S.B., V.-A.C., K.D., S.E.T., H.E., P.F., J.F., Z.F., J.G.-J., J.R.G., M.S.G., M.H., S.H.-H., D.H., I.-T.K., M.M., R.N.M., R.M., Y.M., A.J.A.M., L.M.-P., D.Ö., M.P., D.P.-R., B.P., M.P., T.P., C.R., D.R., Z.S, J.S., R.U., A.C.V., M.W., C.W. Analysis/interpretation of evidence: A.C.A., L.F.B., A.B., D.B.-S., S.B., V.-A.C., K.D., S.E.T., H.E., P.F., J.F., Z.F., J.G.-J., J.R.G., M.S.G., M.H., S.H.-H., D.H., I.-T.K., M.M., R.N.M., R.M., Y.M., A.J.A.M., L.M.-P., D.Ö., M.P., D.P.-R., B.P., M.P., T.P., C.R., D.R., Z.S., J.S., R.U., A.C.V., M.W., C.W. Writing parts of the work/critical editing for important intellectual content: A.C.A., L.F.B., A.B., D.B.-S., S.B., V.-A.C., K.D., S.E.T., H.E., P.F., J.F., Z.F., J.G.-J., J.R.G., M.S.G., M.H., S.H.-H., D.H., I.-T.K., M.M., R.N.M., R.M., Y.M., A.J.A.M., L.M.-P., D.Ö., M.P., D.P.-R., B.P., M.P., T.P., C.R., D.R., Z.S., J.S., R.U., A.C.V., M.W., C.W.

Corresponding author

Correspondence to Dost Öngür.

Ethics declarations

Competing interests

M.H. has received consultation fees from Merck and Alkermes. Y.M. has received consulting fees from Noema Pharma AG. D.Ö. has received honoraria from Rapport Therapeutics. M.P. is receiving support from KetoSwiss for a project. R.M. conducts reviews for the schizophrenia grant program at Alkermes. Z.S. is the chief scientist at Ally Bio, a brain health supplement start-up. The other authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks Shebani Sethi, Kathleen Watson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreazza, A.C., Barros, L.F., Behnke, A. et al. Brain and body energy metabolism and potential for treatment of psychiatric disorders. Nat. Mental Health 3, 763–771 (2025). https://doi.org/10.1038/s44220-025-00422-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44220-025-00422-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing