Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Rewards, risks and responsible deployment of artificial intelligence in water systems

Abstract

Artificial intelligence (AI) is increasingly proposed to address deficiencies across water systems, which currently leave about 25% of the global population without clean water, about 50% without sanitation services and about 30% without hygiene facilities. AI is poised to enhance supply insights, catchment management and emergency response, improve treatment plant and distribution network design, operation and maintenance, and advance service availability, demand management and water justice. However, proliferation of this nascent technology could trigger serious and unexpected problems, including system-wide compromise owing to design errors, malfunction and cyberattacks as well as exposures to cascading socio-ecological, water–energy–food nexus and coupled critical infrastructure failures. In response, we make three recommendations for safe and responsible deployment of AI across potable water supply and sewage disposal systems: address gaps in foundational infrastructure and digital literacy; establish institutional, software and hardware mechanisms for trustworthy AI; and prioritize applications based on our proposed systematic benefit and risk assessment framework.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Example benefits of AI for solving problems across water systems.
Fig. 2: Example risks of AI across water systems that may lead to progress traps.

Similar content being viewed by others

References

  1. Hosseiny, S. H., Bozorg-Haddad, O. & Bocchiola, D. in Economical, Political, and Social Issues in Water Resources (Ed. Bozorg-Haddad, O.) 189–216 (Elsevier, 2021).

  2. Schreiber, K. J. & Rojas, J. L. The Puquios of Nasca. Lat. Am. Antiq. 6, 229–254 (1995).

    Article  Google Scholar 

  3. Coningham, R. & Young, R. The Archaeology of South Asia: From the Indus to Asoka, c.6500 BCE–200 CE 101–278 (Cambridge Univ. Press, 2015).

  4. Wright, R. A Short History of Progress (House of Anansi, 2004).

  5. Price, M. Origins of ancient Rome’s famed pipe plumbing system revealed in soil samples. Science (28 August 2017).

  6. Bierkens, M. F. P. & Wada, Y. Non-renewable groundwater use and groundwater depletion: a review. Environ. Res. Lett. 14, 063002 (2019).

    Article  Google Scholar 

  7. Gordon, L., Dunlop, M. & Foran, B. Land cover change and water vapour flows: learning from Australia. Phil. Trans. R. Soc. Lond. B. Biol. Sci. B 29, 358 (2003).

    Google Scholar 

  8. Liu, W., Iordan, C. M., Cherubini, F., Hu, X. & Fu, D. Environmental impacts assessment of wastewater treatment and sludge disposal systems under two sewage discharge standards: a case study in Kunshan, China. J. Clean. Prod. 287, 125046 (2021).

    Article  CAS  Google Scholar 

  9. Elsaid, K. et al. Environmental impact of desalination technologies: a review. Sci. Total Environ. 748, 141528 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. da Silva, G. C. X. et al. Environmental impacts of dam reservoir filling in the East Amazon. Front. Water https://doi.org/10.3389/frwa.2020.00011 (2020).

  11. UN-Water Summary Progress Update 2021: SDG 6—Water and Sanitation for All (United Nations, 2021).

  12. IPCC Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H.-O. et al.) (Cambridge Univ. Press, 2022).

  13. Russell, S. J. & Norvig, P. Artificial Intelligence: A Modern Approach (Prentice Hall, 2020).

  14. Rozos, E. Machine learning, urban water resources management and operating policy. Resources 8, 173 (2019).

    Article  Google Scholar 

  15. The Sustainable Development Goals Report 2022 (United Nations, 2022).

  16. Yamazaki, D. & Trigg, M. A. The dynamics of Earth’s surface water. Nature 540, 348–349 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Kadow, C., Hall, D. M. & Ulbrich, U. Artificial intelligence reconstructs missing climate information. Nat. Geosci. 13, 408–413 (2020).

    Article  CAS  Google Scholar 

  18. Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Larson, A. A clearer view of Earth’s water cycle via neural networks and satellite data. Nat. Rev. Earth Environ. 3, 361 (2022).

    Article  CAS  Google Scholar 

  20. Koppa, A., Rains, D., Hulsman, P., Poyatos, R. & Miralles, D. G. A deep learning-based hybrid model of global terrestrial evaporation. Nat. Commun. 13, 1912 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Espeholt, L. et al. Deep learning for twelve hour precipitation forecasts. Nat. Commun. 13, 5145 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Muste, M., Kim, D. & Kim, K. A flood-crest forecast prototype for river floods using only in-stream measurements. Commun. Earth Environ. 3, 78 (2022).

    Article  Google Scholar 

  23. Vereecken, H. et al. Soil hydrology in the Earth system. Nat. Rev. Earth Environ. 3, 573–587 (2022).

    Article  Google Scholar 

  24. Shen, L. Q., Amatulli, G., Sethi, T., Raymond, P. & Domisch, S. Estimating nitrogen and phosphorus concentrations in streams and rivers, within a machine learning framework. Sci. Data 7, 161 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Podgorski, J. & Berg, M. Global analysis and prediction of fluoride in groundwater. Nat. Commun. 13, 4232 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sharafati, A., Asadollah, S. B. H. S. & Neshat, A. A new artificial intelligence strategy for predicting the groundwater level over the Rafsanjan aquifer in Iran. J. Hydrol. 591, 125468 (2020).

    Article  Google Scholar 

  27. Zaniolo, M., Giuliani, M., Sinclair, S., Burlando, P. & Castelletti, A. When timing matters—misdesigned dam filling impacts hydropower sustainability. Nat. Commun. 12, 3056 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chakkaravarthy, G. V. & Lavanya, R. in Integrating AI in IoT Analytics on the Cloud for Healthcare Applications (ed. Jeya Mala, D.) 57–66 (IGI Global, 2022).

  29. Mozo, A. et al. Chlorophyll soft-sensor based on machine learning models for algal bloom predictions. Sci Rep. 12, 13529 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Massarelli, C., Campanale, C. & Uricchio, V. F. in IoT Applications Computing (eds Singh, I. et al.) Ch. 10 (IntechOpen, 2021).

  31. Zarei, M. et al. Machine-learning algorithms for forecast-informed reservoir operation (FIRO) to reduce flood damages. Sci. Rep. 11, 24295 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Riga, R. Brisbane 2011 flood victims win $440 million in class action partial settlement over operation of Wivenhoe Dam. ABC News https://web.archive.org/web/20130127022836/http://www.australiangeographic.com.au/journal/the-worst-floods-in-australian-history.htm (2021).

  33. Oksen, P. & Favre, L. Innovative Technology in the Water, Sanitation and Hygiene (WASH) Sector (WIPO, 2020); https://www.wipo.int/edocs/pubdocs/en/wipo_pub_gc_20_1.pdf

  34. Fankhauser, K. et al. Estimating groundwater use and demand in arid Kenya through assimilation of satellite data and in-situ sensors with machine learning toward drought early action. Sci. Total Environ. 831, 154453 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Bauer, P. et al. The digital revolution of Earth-system science. Nat. Comput. Sci. 1, 104–113 (2021).

    Article  Google Scholar 

  36. Irrgang, C. et al. Towards neural Earth system modelling by integrating artificial intelligence in Earth system science. Nat. Mach. Intell. 3, 667–674 (2021).

    Article  Google Scholar 

  37. Hess, P., Drüke, M., Petri, S., Strnad, F. M. & Boers, N. Physically constrained generative adversarial networks for improving precipitation fields from Earth system models. Nat. Mach. Intell. 4, 828–839 (2022).

    Article  Google Scholar 

  38. Fecht, S. Using artificial intelligence to locate risky dams. Columbia Climate School News https://news.climate.columbia.edu/2018/08/23/artificial-intelligence-find-risky-dams/ (2018).

  39. van Vliet, M. T. H. et al. Global water scarcity including surface water quality and expansions of clean water technologies. Environ. Res. Lett. 16, 24020 (2021).

    Article  Google Scholar 

  40. Hosseiny, H., Nazari, F., Smith, V. & Nataraj, C. A framework for modeling flood depth using a hybrid of hydraulics and machine learning. Sci. Rep. 10, 8222 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Perera, D., Smakhtin, V., Williams, S., North, T. & Curry, A. Ageing Water Storage Infrastructure: An Emerging Global Risk (UNU-INWEH, 2021); https://inweh.unu.edu/wp-content/uploads/2021/01/Ageing-Water-Storage-Infrastructure-An-Emerging-Global-Risk_web-version.pdf

  42. Maleki, R. et al. Materials discovery of ion-selective membranes using artificial intelligence. Commun. Chem. 5, 132 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Seo, D. H. et al. Anti-fouling graphene-based membranes for effective water desalination. Nat. Commun. 9, 683 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kim, H. et al. Adsorption-based atmospheric water harvesting device for arid climates. Nat. Commun. 9, 1191 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Pham Vu Hong, S. & Nguyen Thanh, V. Application of artificial intelligence algorithm to optimize the design of water distribution system. Int. J. Constr. Manage. https://doi.org/10.1080/15623599.2022.2101593 (2022).

  46. Tzachor, A., Sabri, S., Richards, C. E., Acuto, M. & Rajabifard, A. Potential and limitiations of digital twins to achieve the Sustainable Development Goals. Nat. Sustain. 5, 822–829 (2022).

  47. Wong, T. H. F., Rogers, B. C. & Brown, R. R. Transforming cities through water-sensitive principles and practices. One Earth 3, 436–447 (2020).

    Article  Google Scholar 

  48. Li, L., Rong, S., Wang, R. & Yu, S. Recent advances in artificial intelligence and machine learning for nonlinear relationship analysis and process control in drinking water treatment: a review. Chem. Eng. J. 405, 126673 (2021).

    Article  CAS  Google Scholar 

  49. Nguyen, X. C. et al. in Current Developments in Biotechnology and Bioengineering: Advances in Biological Wastewater Treatment Systems (eds Bui, X.-T. et al.) 587–608 (Elsevier, 2022).

  50. Sakiewicz, P., Piotrowski, K., Ober, J. & Karwot, J. Innovative artificial neural network approach for integrated biogas—wastewater treatment system modelling: effect of plant operating parameters on process intensification. Renew. Sustain. Energy Rev. 124, 109784 (2020).

    Article  CAS  Google Scholar 

  51. Rani, A., Snyder, S. W., Kim, H., Lei, Z. & Pan, S.-Y. Pathways to a net-zero-carbon water sector through energy-extracting wastewater technologies. npj Clean Water 5, 49 (2022).

    Article  CAS  Google Scholar 

  52. How AI is taking SCADA systems to the next level. Veolia https://blog.veolianorthamerica.com/how-ai-taking-scada-systems-to-next-level (2022).

  53. Increasing water pump efficiency using artificial intelligence. Melbourne Water https://www.melbournewater.com.au/water-data-and-education/news/research-and-innovation/increasing-water-pump-efficiency-using (2021).

  54. Balla, K. M., Bendtsen, J. D., Schou, C., Kallesøe, C. S. & Ocampo-Martinez, C. A learning-based approach towards the data-driven predictive control of combined wastewater networks—an experimental study. Water Res. 221, 118782 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Machine learning can help protect urban water. Here’s how. World Economic Forum https://www.weforum.org/agenda/2022/04/how-to-prevent-urban-water-stress-through-machine-learning/ (2022).

  56. Vanijjirattikhan, R. et al. AI-based acoustic leak detection in water distribution systems. Results Eng. 15, 100557 (2022).

    Article  Google Scholar 

  57. Dawood, T., Elwakil, E., Novoa, H. M. & Delgado, J. F. G. Artificial intelligence for the modeling of water pipes deterioration mechanisms. Autom. Constr. 120, 103398 (2020).

    Article  Google Scholar 

  58. Zhou, B., Lau, V. & Wang, X. Machine-learning-based leakage-event identification for smart water supply systems. IEEE Internet Things J. 7, 2277–2292 (2020).

    Article  Google Scholar 

  59. Fu, G., Jin, Y., Sun, S., Yuan, Z. & Butler, D. The role of deep learning in urban water management: a critical review. Water Res. 223, 118973 (2022).

    Article  CAS  PubMed  Google Scholar 

  60. Harnessing the Fourth Industrial Revolution for Water (World Economic Forum, 2018).

  61. Stańczyk, J., Kajewska-Szkudlarek, J., Lipiński, P. & Rychlikowski, P. Improving short-term water demand forecasting using evolutionary algorithms. Sci. Rep. 12, 13522 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Food and Agriculture Organization. Annual freshwater withdrawals, agriculture (% of total freshwater withdrawal). World Bank Data https://data.worldbank.org/indicator/ER.H2O.FWAG.ZS (2018).

  63. Tzachor, A., Richards, C. E. & Jeen, S. Transforming agrifood production systems and supply chains with digital twins. npj Sci. Food 6, 47 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Dehghanisanij, H., Emami, H., Emami, S. & Rezaverdinejad, V. A hybrid machine learning approach for estimating the water-use efficiency and yield in agriculture. Sci. Rep. 12, 6728 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bauer, A. et al. Combining computer vision and deep learning to enable ultra-scale aerial phenotyping and precision agriculture: a case study of lettuce production. Hortic. Res. 6, 70 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  66. García, L., Rodríguez, J. D., Wijnen, M. & Pakulski, I. Earth Observation for Water Resources Management: Current Use and Future Opportunities for the Water Sector (World Bank, 2016).

  67. Cominola, A. et al. Long-term water conservation is fostered by smart meter-based feedback and digital user engagement. npj Clean Water 4, 29 (2021).

    Article  Google Scholar 

  68. Harnessing Artificial Intelligence for the Earth (World Economic Forum, 2018).

  69. Bedell, E., Harmon, O., Fankhauser, K., Shivers, Z. & Thomas, E. A continuous, in-situ, near-time fluorescence sensor coupled with a machine learning model for detection of fecal contamination risk in drinking water: design, characterization and field validation. Water Res. 220, 118644 (2022).

    Article  CAS  PubMed  Google Scholar 

  70. Andres, L., Boateng, K., Borja-Vega, C. & Thomas, E. A review of in-situ and remote sensing technologies to monitor water and sanitation interventions. Water https://doi.org/10.3390/w10060756 (2018).

  71. Swan, A., Cooper, N., Gamble, W. & Pritchard, M. Using smart pumps to help deliver universal access to safe and affordable drinking water. Proc. Inst. Civ. Eng. Eng. Sustain. 171, 277–285 (2017).

    Google Scholar 

  72. Aiken, E., Bellue, S., Karlan, D., Udry, C. & Blumenstock, J. E. Machine learning and phone data can improve targeting of humanitarian aid. Nature 603, 864–870 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pandey, R. et al. A machine learning application for raising WASH awareness in the times of COVID-19 pandemic. Sci. Rep. 12, 810 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. De Santi, M. et al. Modelling point-of-consumption residual chlorine in humanitarian response: can cost-sensitive learning improve probabilistic forecasts? PLoS Water 1, e0000040 (2022).

    Article  Google Scholar 

  75. Progress on Household Drinking Water, Sanitation and Hygiene 2000–2020: Five Years Into the SDGs (World Health Organization and United Nations Children’s Fund, 2021).

  76. Guenat, S. et al. Meeting sustainable development goals via robotics and autonomous systems. Nat. Commun. 13, 3559 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Slow pace of innovation continues to frustrate supply chain. British Water https://www.britishwater.co.uk/news/602860/Slow-pace-of-innovation-continues-to-frustrate-supply-chain-.htm (2022).

  78. Without universal AI literacy, AI will fail us. World Economic Forum https://www.weforum.org/agenda/2022/03/without-universal-ai-literacy-ai-will-fail-us/ (2022).

  79. Brundage, M. et al. The malicious use of artificial intelligence: forecasting, prevention, and mitigation. Apollo https://doi.org/10.17863/CAM.22520 (2018)

  80. Tzachor, A., Devare, M., King, B., Avin, S. & Ó hÉigeartaigh, S. Responsible artificial intelligence in agriculture requires systemic understanding of risks and externalities. Nat. Mach. Intell. 4, 104–109 (2022).

    Article  Google Scholar 

  81. Amodei, D. et al. Concrete problems in AI safety. Preprint at https://doi.org/10.48550/arXiv.1606.06565 (2016).

  82. Trávníček, P., Junga, P., Kotek, L. & Vítěz, T. Analysis of accidents at municipal wastewater treatment plants in Europe. J. Loss Prev. Process Ind. 74, 104634 (2022).

    Article  Google Scholar 

  83. Doorn, N. Artificial intelligence in the water domain: opportunities for responsible use. Sci. Total Environ. 755, 142561 (2021).

    Article  CAS  PubMed  Google Scholar 

  84. Rulli, M. C., Saviori, A. & D’Odorico, P. Global land and water grabbing. Proc. Natl Acad. Sci. USA 110, 892–897 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gallagher, R. UK water supplier hit by ‘extremely concerning’ cyberattack. Bloomberg. https://www.bloomberg.com/news/articles/2022-08-17/uk-water-supplier-hit-by-extremely-concerning-cyberattack (2022).

  86. Taddeo, M., McCutcheon, T. & Floridi, L. Trusting artificial intelligence in cybersecurity is a double-edged sword. Nat. Mach. Intell. 1, 557–560 (2019).

    Article  Google Scholar 

  87. Milne, S. How water shortages are brewing wars. BBC Future https://www.bbc.com/future/article/20210816-how-water-shortages-are-brewing-wars (2021).

  88. Omerspahic, M., Al-Jabri, H., Siddiqui, S. A. & Saadaoui, I. Characteristics of desalination brine and its impacts on marine chemistry and health, with emphasis on the Persian/Arabian Gulf: a review. Front. Mar. Sci. https://doi.org/10.3389/fmars.2022.845113 (2022).

  89. Zaidi, S. M. A. et al. Machine learning for energy–water nexus: challenges and opportunities. Big Earth Data 2, 228–267 (2018).

    Article  Google Scholar 

  90. Patterson, D. A. et al. Carbon emissions and large neural network training. Preprint at https://arxiv.org/abs/2104.10350 (2021).

  91. Kaack, L. H. et al. Aligning artificial intelligence with climate change mitigation. Nat. Clim. Change 12, 518–527 (2022).

    Article  Google Scholar 

  92. Alonso, C., Kothari, S. & Rehman, S. How Artificial Intelligence Could Widen the Gap between Rich and Poor Nations (International Monetary Fund, 2020).

  93. Sarni, W., White, C., Webb, R., Cross, K. & Glotzbach, R. Digital Water: Industry lEaders Chart the Transformation Journey (IWA, 2019); https://iwa-network.org/wp-content/uploads/2019/06/IWA_2019_Digital_Water_Report.pdf

  94. Barredo Arrieta, A. et al. Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020).

    Article  Google Scholar 

  95. Gunning, D. et al. XAI—explainable artificial intelligence. Sci. Robot. 4, eaay7120 (2019).

    Article  PubMed  Google Scholar 

  96. Ethics guidelines for trustworthy AI. European Commission https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai (2023).

  97. Avin, S. et al. Filling gaps in trustworthy development of AI. Science 374, 1327–1329 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Brundage, M. et al. Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable Claims (2020).

  99. AI Governance: A Holistic Approach to implement Ethics into AI (World Economic Forum, 2019).

  100. Davenport, T. H. & Ronanki, R. Artificial intelligence for the real world: don’t start with moon shots. Harvard Business Review https://www.hbsp.harvard.edu/product/R1801H-PDF-ENG (2018).

  101. Martineau, P. Toronto tapped artificial intelligence to warn swimmers. The experiment failed. The Information https://www.theinformation.com/articles/when-artificial-intelligence-isnt-smarter (2022).

Download references

Acknowledgements

This paper was made possible through the support of a grant from Templeton World Charity Foundation. The opinions expressed in this publication are those of the author(s) and do not necessarily reflect the views of Templeton World Charity Foundation. We thank K. Atanasova for assistance with production of Figs. 1 and 2.

Author information

Authors and Affiliations

Authors

Contributions

C.E.R., A.T., S.A. and R.F. jointly developed and contributed to the writing of this paper.

Corresponding authors

Correspondence to Catherine E. Richards or Asaf Tzachor.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Evan Thomas, Guangtao Fu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richards, C.E., Tzachor, A., Avin, S. et al. Rewards, risks and responsible deployment of artificial intelligence in water systems. Nat Water 1, 422–432 (2023). https://doi.org/10.1038/s44221-023-00069-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44221-023-00069-6

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene