Abstract
Transitions between dry and wet hydrologic states are the defining characteristic of non-perennial rivers and streams, which constitute the majority of the global river network. Although past work has focused on stream drying characteristics, there has been less focus on how hydrology, ecology and biogeochemistry respond and interact during stream wetting. Wetting mechanisms are highly variable and can range from dramatic floods and debris flows to gradual saturation by upwelling groundwater. This variation in wetting affects ecological and biogeochemical functions, including nutrient processing, sediment transport and the assembly of biotic communities. Here we synthesize evidence describing the hydrological mechanisms underpinning different types of wetting regimes, the associated biogeochemical and organismal responses, and the potential scientific and management implications for downstream ecosystems. This combined multidisciplinary understanding of wetting dynamics in non-perennial streams will be key to predicting and managing for the effects of climate change on non-perennial ecosystems.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Busch, M. H. et al. What’s in a name? Patterns, trends and suggestions for defining non-perennial rivers and streams. Water 12, 1980 (2020).
Messager, M. L. et al. Global prevalence of non-perennial rivers and streams. Nature 594, 391–397 (2021).
Shanafield, M., Bourke, S. A., Zimmer, M. A. & Costigan, K. H. An overview of the hydrology of non-perennial rivers and streams. WIREs Water 8, e1504 (2021).
Buffagni, A. The lentic and lotic characteristics of habitats determine the distribution of benthic macroinvertebrates in Mediterranean rivers. Freshwater Biol. 66, 13–34 (2021).
Gómez-Gener, L. et al. Towards an improved understanding of biogeochemical processes across surface-groundwater interactions in intermittent rivers and ephemeral streams. Earth Sci. Rev. 220, 103724 (2021).
Stubbington, R. et al. Ecosystem services of temporary streams differ between wet and dry phases in regions with contrasting climates and economies. People Nat. 2, 660–677 (2020).
Jaeger, K. L. & Olden, J. D. Electrical resistance sensor arrays as a means to quantify longitudinal connectivity of rivers. River Res. Appl. 28, 1843–1852 (2012).
Zipper, S., Popescu, I., Compare, K., Zhang, C. & Seybold, E. C. Alternative stable states and hydrological regime shifts in a large intermittent river. Environ. Res. Lett. 17, 074005 (2022).
Poff, N. L. et al. The natural flow regime. BioScience 47, 769–784 (1997).
Costigan, K. H., Jaeger, K. L., Goss, C. W., Fritz, K. M. & Goebel, P. C. Understanding controls on flow permanence in intermittent rivers to aid ecological research: integrating meteorology, geology and land cover. Ecohydrology 9, 1141–1153 (2016).
Datry, T., Pella, H., Leigh, C., Bonada, N. & Hugueny, B. A landscape approach to advance intermittent river ecology. Freshwater Biol. 61, 1200–1213 (2016).
Price, A. N., Jones, C. N., Hammond, J. C., Zimmer, M. A. & Zipper, S. C. The drying regimes of non-perennial rivers and streams. Geophys. Res. Lett. 48, e2021GL093298 (2021).
Arce, M. I. et al. A conceptual framework for understanding the biogeochemistry of dry riverbeds through the lens of soil science. Earth Sci. Rev. 188, 441–453 (2019).
Foulquier, A., Artigas, J., Pesce, S. & Datry, T. Drying responses of microbial litter decomposition and associated fungal and bacterial communities are not affected by emersion frequency. Freshwater Sci. 34, 1233–1244 (2015).
Perkin, J. S. et al. Groundwater declines are linked to changes in Great Plains stream fish assemblages. Proc. Natl Acad. Sci. USA 114, 7373–7378 (2017).
Acuña, V. et al. Why should we care about temporary waterways? Science 343, 1080–1081 (2014).
Corti, R. & Datry, T. Invertebrates and sestonic matter in an advancing wetted front travelling down a dry river bed (Albarine, France). Freshwater Sci. 31, 1187–1201 (2012).
Doering, M., Uehlinger, U., Rotach, A., Schlaepfer, D. R. & Tockner, K. Ecosystem expansion and contraction dynamics along a large Alpine alluvial corridor (Tagliamento River, Northeast Italy). Earth Surf. Process. Landforms 32, 1693–1704 (2007).
Datry, T. et al. A global analysis of terrestrial plant litter dynamics in non-perennial waterways. Nat. Geosci. 11, 497–503 (2018).
von Schiller, D. et al. Sediment respiration pulses in intermittent rivers and ephemeral streams. Global Biogeochem. Cycles 33, 1251–1263 (2019).
Goulsbra, C., Evans, M. & Lindsay, J. Temporary streams in a peatland catchment: pattern, timing and controls on stream network expansion and contraction. Earth Surf. Process. Landforms 39, 790–803 (2014).
Peirce, S. E. & Lindsay, J. B. Characterizing ephemeral streams in a southern Ontario watershed using electrical resistance sensors. Hydrol. Process. 29, 103–111 (2015).
Gutierrez-Jurado, K. Y., Partington, D. & Shanafield, M. Taking theory to the field: streamflow generation mechanisms in an intermittent Mediterranean catchment. Hydrol. Earth Syst. Sci. 25, 4299–4317 (2021).
Gutiérrez-Jurado, K. Y., Partington, D., Batelaan, O., Cook, P. & Shanafield, M. What triggers streamflow for intermittent rivers and ephemeral streams in low-gradient catchments in Mediterranean climates. Water Resour. Res. 55, 9926–9946 (2019).
Noorduijn, S. L. et al. Estimating seepage flux from ephemeral stream channels using surface water and groundwater level data. Water Resour. Res. 50, 1474–1489 (2014).
Zimmer, M. A. & McGlynn, B. L. Ephemeral and intermittent runoff generation processes in a low relief, highly weathered catchment. Water Resour. Res. 53, 7055–7077 (2017).
Durighetto, N. & Botter, G. On the relation between active network length and catchment discharge. Geophys. Res. Lett. 49, e2022GL099500 (2022).
Godsey, S. E. & Kirchner, J. W. Dynamic, discontinuous stream networks: hydrologically driven variations in active drainage density, flowing channels and stream order. Hydrol. Process. 28, 5791–5803 (2014).
Prancevic, J. P. & Kirchner, J. W. Topographic controls on the extension and retraction of flowing streams. Geophys. Res. Lett. 46, 2084–2092 (2019).
Warix, S. R., Godsey, S. E., Lohse, K. A. & Hale, R. L. Influence of groundwater and topography on stream drying in semi-arid headwater streams. Hydrol. Process. 35, e14185 (2021).
Ward, A. S., Schmadel, N. M. & Wondzell, S. M. Simulation of dynamic expansion, contraction and connectivity in a mountain stream network. Adv. Water Res. 114, 64–82 (2018).
Huntington, J. L. & Niswonger, R. G. Role of surface-water and groundwater interactions on projected summertime streamflow in snow dominated regions: an integrated modeling approach. Water Resour. Res. https://doi.org/10.1029/2012WR012319 (2012).
Duncan, J. M., Band, L. E., Groffman, P. M. & Bernhardt, E. S. Mechanisms driving the seasonality of catchment scale nitrate export: evidence for riparian ecohydrologic controls. Water Resour. Res. 51, 3982–3997 (2015).
Cuthbert, M. O. et al. Global patterns and dynamics of climate–groundwater interactions. Nat. Clim. Change 9, 137–141 (2019).
Day, D. G. Drainage density changes during rainfall. Earth Surf. Process. 3, 319–326 (1978).
Graham, C. B., Barnard, H. R., Kavanagh, K. L. & McNamara, J. P. Catchment scale controls the temporal connection of transpiration and diel fluctuations in streamflow. Hydrol. Process. 27, 2541–2556 (2013).
Goodrich, D. C., Kepner, W. G., Levick, L. R. & Wigington, P. J. Jr. Southwestern intermittent and ephemeral stream connectivity. JAWRA 54, 400–422 (2018).
Mosley, M. P. Streamflow generation in a forested watershed, New Zealand. Water Resour. Res. 15, 795–806 (1979).
Li, D., Wrzesien, M. L., Durand, M., Adam, J. & Lettenmaier, D. P. How much runoff originates as snow in the western United States, and how will that change in the future? Geophys. Res. Lett. 44, 6163–6172 (2017).
Villeneuve, S., Cook, P. G., Shanafield, M., Wood, C. & White, N. Groundwater recharge via infiltration through an ephemeral riverbed, central Australia. J. Arid Environ. 117, 47–58 (2015).
Rodríguez-Burgueño, J. E., Shanafield, M. & Ramírez-Hernández, J. Comparison of infiltration rates in the dry riverbed of the Colorado River Delta during environmental flows. Ecol. Eng. 106, 675–682 (2017).
Archdeacon, T. P. & Reale, J. K. No quarter: lack of refuge during flow intermittency results in catastrophic mortality of an imperiled minnow. Freshwater Biol. 65, 2108–2123 (2020).
McKnight, D. M. et al. Dry valley streams in Antarctica: ecosystems waiting for water. BioScience 49, 985–995 (1999).
Fazekas, H. M., McDowell, W. H., Shanley, J. B. & Wymore, A. S. Climate variability drives watersheds along a transporter-transformer continuum. Geophys. Res. Lett. 48, e2021GL094050 (2021).
Raymond, P. A., Saiers, J. E. & Sobczak, W. V. Hydrological and biogeochemical controls on watershed dissolved organic matter transport: pulse-shunt concept. Ecology 97, 5–16 (2016).
Drummond, J. D., Bernal, S., von Schiller, D. & Martí, E. Linking in-stream nutrient uptake to hydrologic retention in two headwater streams. Freshwater Sci. 35, 1176–1188 (2016).
Oldham, C. E., Farrow, D. E. & Peiffer, S. A generalized Damköhler number for classifying material processing in hydrological systems. Hydrol. Earth Syst. Sci. 17, 1133–1148 (2013).
Gallo, E. L., Lohse, K. A., Ferlin, C. M., Meixner, T. & Brooks, P. D. Physical and biological controls on trace gas fluxes in semi-arid urban ephemeral waterways. Biogeochemistry 121, 189–207 (2014).
Brandt, T. et al. Automated in situ oxygen profiling at aquatic–terrestrial interfaces. Environ. Sci. Technol. 51, 9970–9978 (2017).
del Campo, R., Corti, R. & Singer, G. Flow intermittence alters carbon processing in rivers through chemical diversification of leaf litter. Limnol. Oceanogr. Lett. 6, 232–242 (2021).
Coulson, L. E. et al. Small rain events during drought alter sediment dissolved organic carbon leaching and respiration in intermittent stream sediments. Biogeochemistry 159, 159–178 (2022).
Ruffing, C. M. et al. Prairie stream metabolism recovery varies based on antecedent hydrology across a stream network after a bank-full flood. Limnol. Oceanogr. 67, 1986–1999 (2022).
Sengupta, A. et al. Disturbance triggers non-linear microbe-environment feedbacks. Biogeosciences 18, 4773–4789 (2021).
Murdock, J. N., Gido, K. B., Dodds, W. K., Bertrand, K. N. & Whiles, M. R. Consumer return chronology alters recovery trajectory of stream ecosystem structure and function following drought. Ecology 91, 1048–1062 (2010).
Burrows, R. M., Laudon, H., McKie, B. G. & Sponseller, R. A. Seasonal resource limitation of heterotrophic biofilms in boreal streams. Limnol. Oceanogr. 62, 164–176 (2017).
Cross, W. F., Hood, J. M., Benstead, J. P., Huryn, A. D. & Nelson, D. Interactions between temperature and nutrients across levels of ecological organization. Global Change Biol. 21, 1025–1040 (2015).
Shen, Y., Chapelle, F. H., Strom, E. W. & Benner, R. Origins and bioavailability of dissolved organic matter in groundwater. Biogeochemistry 122, 61–78 (2015).
DelVecchia, A. G. et al. Reconceptualizing the hyporheic zone for nonperennial rivers and streams. Freshwater Sci. 41, 167–182 (2022).
Meisner, J. D., Rosenfeld, J. S. & Regier, H. A. The role of groundwater in the impact of climate warming on stream salmonines. Fisheries 13, 2–8 (1988).
Sabater, S., Timoner, X., Borrego, C. & Acuña, V. Stream biofilm responses to flow intermittency: from cells to ecosystems. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2016.00014 (2016).
Stegen, J. C. et al. Groundwater–surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover. Nat. Commun. 7, 11237 (2016).
Stubbington, R. et al. The response of perennial and temporary headwater stream invertebrate communities to hydrological extremes. Hydrobiologia 630, 299–312 (2009).
Naiman, R. J. et al. in Ecosystem Function in Heterogeneous Landscapes (eds Lovett, G. M. et al.) 279–309 (Springer, 2005); https://doi.org/10.1007/0-387-24091-8_14
Paillex, A., Siebers, A. R., Ebi, C., Mesman, J. & Robinson, C. T. High stream intermittency in an alpine fluvial network: Val Roseg, Switzerland. Limnol. Oceanogr. 65, 557–568 (2020).
Singley, J. G., Gooseff, M. N., McKnight, D. M. & Hinckley, E. S. The role of hyporheic connectivity in determining nitrogen availability: insights from an intermittent antarctic stream. J. Geophys. Res. Biogeosci. 126, e2021JG006309 (2021).
Singley, J. G., Salvatore, M. R., Gooseff, M. N., McKnight, D. M. & Hinckley, E.-L. S. Differentiating physical and biological storage of N along an intermittent Antarctic stream corridor. Freshwater Sci. 42, 229–246 (2023).
Brunke, M. & Gonser, T. The ecological significance of exchange processes between rivers and groundwater. Freshwater Biol. 37, 1–33 (1997).
Zarnetske, J. P., Haggerty, R., Wondzell, S. M. & Baker, M. A. Dynamics of nitrate production and removal as a function of residence time in the hyporheic zone. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2010JG001356 (2011).
Caruso, A., Boano, F., Ridolfi, L., Chopp, D. L. & Packman, A. Biofilm-induced bioclogging produces sharp interfaces in hyporheic flow, redox conditions and microbial community structure. Geophys. Res. Lett. 44, 4917–4925 (2017).
Boulton, A. J., Datry, T., Kasahara, T., Mutz, M. & Stanford, J. A. Ecology and management of the hyporheic zone: stream-groundwater interactions of running waters and their floodplains. J. North Am. Benthol. Soc. 29, 26–40 (2010).
Marshall, J. C. et al. Go with the flow: the movement behaviour of fish from isolated waterhole refugia during connecting flow events in an intermittent dryland river. Freshwater Biol. 61, 1242–1258 (2016).
Vander Vorste, R., Malard, F. & Datry, T. Is drift the primary process promoting the resilience of river invertebrate communities? A manipulative field experiment in an intermittent alluvial river. Freshwater Biol. 61, 1276–1292 (2016).
Fournier, R. J., de Mendoza, G., Sarremejane, R. & Ruhi, A. Isolation controls reestablishment mechanisms and post-drying community structure in an intermittent stream. Ecology 104, e3911 (2023).
Sarremejane, R. et al. Drought effects on invertebrate metapopulation dynamics and quasi-extinction risk in an intermittent river network. Global Change Biol. 27, 4024–4039 (2021).
Bogan, M. T. et al. in Intermittent Rivers and Ephemeral Streams (eds Datry, T. et al.) 349–376 (Academic Press, 2017); https://doi.org/10.1016/B978-0-12-803835-2.00013-9
Bonada, N., Rieradevall, M. & Prat, N. Macroinvertebrate community structure and biological traits related to flow permanence in a Mediterranean river network. Hydrobiologia 589, 91–106 (2007).
Lytle, D. A. & Poff, N. L. Adaptation to natural flow regimes. Trends Ecol. Evol. 19, 94–100 (2004).
Sarremejane, R. et al. Local and regional drivers influence how aquatic community diversity, resistance and resilience vary in response to drying. Oikos 129, 1877–1890 (2020).
Hooley-Underwood, Z. E., Stevens, S. B., Salinas, N. R. & Thompson, K. G. An intermittent stream supports extensive spawning of large-river native fishes. Trans. Am. Fish. Society 148, 426–441 (2019).
Bogan, M. T. Hurry up and wait: life cycle and distribution of an intermittent stream specialist (Mesocapnia arizonensis). Freshwater Sci. 36, 805–815 (2017).
Merritt, D. M. & Wohl, E. E. Processes governing hydrochory along rivers: hydraulics, hydrology and dispersal phenology. Ecol. Appl. 12, 1071–1087 (2002).
Stromberg, J. C., Richter, B. D., Patten, D. T. & Wolden, L. G. Response of a Sonoran riparian forest to a 10-year return flood. Great Basin Nat. 53, 118–130 (1993).
Crabot, J. et al. A global perspective on the functional responses of stream communities to flow intermittence. Ecography 44, 1511–1523 (2021).
Stubbington, R. & Datry, T. The macroinvertebrate seedbank promotes community persistence in temporary rivers across climate zones. Freshwater Biol. 58, 1202–1220 (2013).
Steward, A. L., Datry, T. & Langhans, S. D. The terrestrial and semi-aquatic invertebrates of intermittent rivers and ephemeral streams. Biol. Rev. 97, 1408–1425 (2022).
Mims, M. C., Phillipsen, I. C., Lytle, D. A., Kirk, E. E. H. & Olden, J. D. Ecological strategies predict associations between aquatic and genetic connectivity for dryland amphibians. Ecology 96, 1371–1382 (2015).
Dole-Olivier, M.-J., Marmonier, P. & Beffy, J.-L. Response of invertebrates to lotic disturbance: is the hyporheic zone a patchy refugium? Freshwater Biol. 37, 257–276 (1997).
Fritz, K. M. & Dodds, W. K. Macroinvertebrate assemblage structure across a tallgrass prairie stream landscape. Archiv Hydrobiol 154, 79–102 (2002).
Bogan, M. T. & Boersma, K. S. Aerial dispersal of aquatic invertebrates along and away from arid-land streams. Freshwater Sci. 31, 1131–1144 (2012).
Moon, H. P. Observations on a small portion of a drying chalk stream. Proc. Zool. Soc. Lond. 126, 327–334 (1956).
Schwalm, C. R. et al. Global patterns of drought recovery. Nature 548, 202–205 (2017).
Dewson, Z. S., James, A. B. W. & Death, R. G. Invertebrate community responses to experimentally reduced discharge in small streams of different water quality. J. North Am. Benthol. Soc. 26, 754–766 (2007).
Lytle, D. A., Olden, J. D. & McMullen, L. E. Drought-escape behaviors of aquatic insects may be adaptations to highly variable flow regimes characteristic of desert rivers. The Southwstern Naturalist 53, 399–402 (2008).
Hajdukiewicz, H., Wyżga, B., Mikuś, P., Zawiejska, J. & Radecki-Pawlik, A. Impact of a large flood on mountain river habitats, channel morphology and valley infrastructure. Geomorphology 272, 55–67 (2016).
Chalise, D. R., Sankarasubramanian, A., Olden, J. D. & Ruhi, A. Spectral signatures of flow regime alteration by dams across the United States. Earth’s Future 11, e2022EF003078 (2023).
Kennedy, T. A. et al. Flow management for hydropower extirpates aquatic insects, undermining river food webs. BioScience 66, 561–575 (2016).
Olsen, D. A. & Townsend, C. R. Flood effects on invertebrates, sediments and particulate organic matter in the hyporheic zone of a gravel-bed stream. Freshwater Biol. 50, 839–853 (2005).
Hladyz, S., Watkins, S. C., Whitworth, K. L. & Baldwin, D. S. Flows and hypoxic blackwater events in managed ephemeral river channels. J. Hydrol. 401, 117–125 (2011).
Muehlbauer, J. Macroinvertebrate community responses to a dewatering disturbance gradient in a restored stream. Hydrol. Earth Syst. Sci. 15, 1771–1783 (2011).
Larson, E. I., Poff, N. L., Atkinson, C. L. & Flecker, A. S. Extreme flooding decreases stream consumer autochthony by increasing detrital resource availability. Freshwater Biol. 63, 1483–1497 (2018).
Power, M. E., Dietrich, W. E. & Finlay, J. C. Dams and downstream aquatic biodiversity: potential food web consequences of hydrologic and geomorphic change. Environ. Manag. 20, 887–895 (1996).
Zimmer, M. A., Burgin, A. J., Kaiser, K. & Hosen, J. The unknown biogeochemical impacts of drying rivers and streams. Nat. Commun. 13, 7213 (2022).
Zipper, S. C. et al. Pervasive changes in stream intermittency across the United States. Environ. Res. Lett. 16, 084033 (2021).
Beven, K. J. & Chappell, N. A. Perceptual perplexity and parameter parsimony. WIREs Water 8, e1530 (2021).
Judd, M., Boese, M., Horne, A. C. & Bond, N. R. Perceptions of climate change adaptation barriers in environmental water management. Ecol. Soc. 28, 21 (2023).
Datry, T. et al. Causes, responses and implications of anthropogenic versus natural flow intermittence in river networks. BioScience 73, 9–22 (2022).
Swain, D. L., Langenbrunner, B., Neelin, J. D. & Hall, A. Increasing precipitation volatility in twenty-first-century California. Nat. Clim. Change 8, 427–433 (2018).
Zimmer, M. A. et al. Zero or not? Causes and consequences of zero-flow stream gage readings. WIREs Water 7, e1436 (2020).
Ward, A. S., Wondzell, S. M., Schmadel, N. M. & Herzog, S. P. Climate change causes river network contraction and disconnection in the H.J. Andrews Experimental Forest, Oregon, USA. Front. Water https://doi.org/10.3389/frwa.2020.00007 (2020).
Doyle, M. W. & Ensign, S. H. Alternative reference frames in river system science. BioScience 59, 499–510 (2009).
Noto, S. et al. Low-cost stage-camera system for continuous water-level monitoring in ephemeral streams. Hydrol. Sci. J. 67, 1439–1448 (2022).
Allen, D. C. et al. Citizen scientists document long-term streamflow declines in intermittent rivers of the desert southwest, USA. Freshwater Sci. 38, 244–256 (2019).
Hou, J., van Dijk, A. I. J. M., Renzullo, L. J., Vertessy, R. A. & Mueller, N. Hydromorphological attributes for all Australian river reaches derived from Landsat dynamic inundation remote sensing. Earth Syst. Sci. Data 11, 1003–1015 (2019).
Wang, Z. & Vivoni, E. R. Detecting streamflow in dryland rivers using CubeSats. Geophys. Res. Lett. 49, e2022GL098729 (2022).
Messager, M. L. et al. A metasystem approach to designing environmental flows. BioScience 73, 643–662 (2023).
Blackman, R. C. et al. Unlocking our understanding of intermittent rivers and ephemeral streams with genomic tools. Front. Ecol. Environ. 19, 574–583 (2021).
Goldman, A. E., Emani, S. R., Pérez-Angel, L. C., Rodríguez-Ramos, J. A. & Stegen, J. C. Integrated, Coordinated, Open and Networked (ICON) science to advance the geosciences: introduction and synthesis of a special collection of commentary articles. Earth Space Sci. 9, e2021EA002099 (2022).
Hatley, C. M. et al. Intermittent streamflow generation in a merokarst headwater catchment. Environ. Sci. Adv. 2, 115–131 (2023).
Lapides, D. A., Hahm, W. J., Rempe, D. M., Dietrich, W. E. & Dralle, D. N. Controls on stream water age in a saturation overland flow-dominated catchment. Water Resour. Res. 58, e2021WR031665 (2022).
Author information
Authors and Affiliations
Contributions
All authors conceived the scientific ideas and concepts presented in this Perspective as part of the NSF funded Dry Rivers Research Coordination Network and associated workshops in January 2022, October 2022 and October 2023. Additionally, all authors participated in the editing of the final draft and input on reviewer comments. A.N.P., M.A.Z., A.B. and M.S. wrote the abstract. A.N.P., M.A.Z., A.B., M.H.B., T.D., S.Z. and M.S. wrote and edited the Introduction. A.N.P., M.A.Z., A.B., E.C.S., M.S., S.E.G. and S.Y. conceived and wrote the section ‘Wetting regimes in non-perennial rivers and streams’. A.N.P., M.A.Z., A.B., E.C.S., A.J.B., M.H.B., W.K.D., T.D., A.D., J.C.S., A.S.W., K.E.K., A.S.W. and A.M.P. conceived and wrote the section ‘Biogeochemical responses to stream wetting’. A.N.P., M.H.B., W.K.D., T.D., J.S.R., C.A.K., A.W., D.A.L., M.H.B., J.D.T., J.D.O., M.C.M. and R.S. conceived and wrote the section ‘Community ecology responses to stream wetting’. A.N.P., M.A.Z., A.B., E.C.S., G.H.A, D.A., A.J.B. and M.L.M. conceived and wrote the section ‘Scientific community needs and next steps’. M.A.Z., A.J.B., M.H.B. and W.K.D. conceived and wrote the conclusion. A.N.P., A.B., S.Z. and J.C.H. conceptualized and composed Fig. 1. A.N.P., A.N.M.-P., S.E.G. and J.C.S. conceptualized Fig. 2. A.N.P., A.B., E.C.S., W.K.D. and K.E.K. conceptualized and composed Fig. 3. R.H.W., C.A.K., M.B., K.B. and E.C.S. conceptualized and composed Fig. 4. A.N.P., M.A.Z., A.B., S.E.G., W.K.D., J.C.S. and R.S. helped in the review and final writing process.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Water thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Price, A.N., Zimmer, M.A., Bergstrom, A. et al. Biogeochemical and community ecology responses to the wetting of non-perennial streams. Nat Water 2, 815–826 (2024). https://doi.org/10.1038/s44221-024-00298-3
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s44221-024-00298-3
This article is cited by
-
The ecological benefits of more room for rivers
Nature Water (2025)