Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Biogeochemical and community ecology responses to the wetting of non-perennial streams

Abstract

Transitions between dry and wet hydrologic states are the defining characteristic of non-perennial rivers and streams, which constitute the majority of the global river network. Although past work has focused on stream drying characteristics, there has been less focus on how hydrology, ecology and biogeochemistry respond and interact during stream wetting. Wetting mechanisms are highly variable and can range from dramatic floods and debris flows to gradual saturation by upwelling groundwater. This variation in wetting affects ecological and biogeochemical functions, including nutrient processing, sediment transport and the assembly of biotic communities. Here we synthesize evidence describing the hydrological mechanisms underpinning different types of wetting regimes, the associated biogeochemical and organismal responses, and the potential scientific and management implications for downstream ecosystems. This combined multidisciplinary understanding of wetting dynamics in non-perennial streams will be key to predicting and managing for the effects of climate change on non-perennial ecosystems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Example hydrographs showing distinct wetting mechanisms from four non-perennial streams and potential driving mechanisms for each end-member wetting regime type.
Fig. 2: Conceptual figure of the wetting regimes continuum showing end-member behaviours.
Fig. 3: Idealized biogeochemical responses for wetting regimes continuum end-members.
Fig. 4: Idealized time series of the hydrologic state and invertebrate taxonomic richness for wetting regimes continuum end-members.

Similar content being viewed by others

References

  1. Busch, M. H. et al. What’s in a name? Patterns, trends and suggestions for defining non-perennial rivers and streams. Water 12, 1980 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Messager, M. L. et al. Global prevalence of non-perennial rivers and streams. Nature 594, 391–397 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Shanafield, M., Bourke, S. A., Zimmer, M. A. & Costigan, K. H. An overview of the hydrology of non-perennial rivers and streams. WIREs Water 8, e1504 (2021).

    Article  Google Scholar 

  4. Buffagni, A. The lentic and lotic characteristics of habitats determine the distribution of benthic macroinvertebrates in Mediterranean rivers. Freshwater Biol. 66, 13–34 (2021).

    Article  Google Scholar 

  5. Gómez-Gener, L. et al. Towards an improved understanding of biogeochemical processes across surface-groundwater interactions in intermittent rivers and ephemeral streams. Earth Sci. Rev. 220, 103724 (2021).

    Article  Google Scholar 

  6. Stubbington, R. et al. Ecosystem services of temporary streams differ between wet and dry phases in regions with contrasting climates and economies. People Nat. 2, 660–677 (2020).

    Article  Google Scholar 

  7. Jaeger, K. L. & Olden, J. D. Electrical resistance sensor arrays as a means to quantify longitudinal connectivity of rivers. River Res. Appl. 28, 1843–1852 (2012).

    Article  Google Scholar 

  8. Zipper, S., Popescu, I., Compare, K., Zhang, C. & Seybold, E. C. Alternative stable states and hydrological regime shifts in a large intermittent river. Environ. Res. Lett. 17, 074005 (2022).

    Article  Google Scholar 

  9. Poff, N. L. et al. The natural flow regime. BioScience 47, 769–784 (1997).

    Article  Google Scholar 

  10. Costigan, K. H., Jaeger, K. L., Goss, C. W., Fritz, K. M. & Goebel, P. C. Understanding controls on flow permanence in intermittent rivers to aid ecological research: integrating meteorology, geology and land cover. Ecohydrology 9, 1141–1153 (2016).

    Article  Google Scholar 

  11. Datry, T., Pella, H., Leigh, C., Bonada, N. & Hugueny, B. A landscape approach to advance intermittent river ecology. Freshwater Biol. 61, 1200–1213 (2016).

    Article  Google Scholar 

  12. Price, A. N., Jones, C. N., Hammond, J. C., Zimmer, M. A. & Zipper, S. C. The drying regimes of non-perennial rivers and streams. Geophys. Res. Lett. 48, e2021GL093298 (2021).

    Article  Google Scholar 

  13. Arce, M. I. et al. A conceptual framework for understanding the biogeochemistry of dry riverbeds through the lens of soil science. Earth Sci. Rev. 188, 441–453 (2019).

    Article  CAS  Google Scholar 

  14. Foulquier, A., Artigas, J., Pesce, S. & Datry, T. Drying responses of microbial litter decomposition and associated fungal and bacterial communities are not affected by emersion frequency. Freshwater Sci. 34, 1233–1244 (2015).

    Article  Google Scholar 

  15. Perkin, J. S. et al. Groundwater declines are linked to changes in Great Plains stream fish assemblages. Proc. Natl Acad. Sci. USA 114, 7373–7378 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Acuña, V. et al. Why should we care about temporary waterways? Science 343, 1080–1081 (2014).

    Article  PubMed  Google Scholar 

  17. Corti, R. & Datry, T. Invertebrates and sestonic matter in an advancing wetted front travelling down a dry river bed (Albarine, France). Freshwater Sci. 31, 1187–1201 (2012).

    Article  Google Scholar 

  18. Doering, M., Uehlinger, U., Rotach, A., Schlaepfer, D. R. & Tockner, K. Ecosystem expansion and contraction dynamics along a large Alpine alluvial corridor (Tagliamento River, Northeast Italy). Earth Surf. Process. Landforms 32, 1693–1704 (2007).

    Article  CAS  Google Scholar 

  19. Datry, T. et al. A global analysis of terrestrial plant litter dynamics in non-perennial waterways. Nat. Geosci. 11, 497–503 (2018).

    Article  CAS  Google Scholar 

  20. von Schiller, D. et al. Sediment respiration pulses in intermittent rivers and ephemeral streams. Global Biogeochem. Cycles 33, 1251–1263 (2019).

    Article  Google Scholar 

  21. Goulsbra, C., Evans, M. & Lindsay, J. Temporary streams in a peatland catchment: pattern, timing and controls on stream network expansion and contraction. Earth Surf. Process. Landforms 39, 790–803 (2014).

    Article  Google Scholar 

  22. Peirce, S. E. & Lindsay, J. B. Characterizing ephemeral streams in a southern Ontario watershed using electrical resistance sensors. Hydrol. Process. 29, 103–111 (2015).

    Article  Google Scholar 

  23. Gutierrez-Jurado, K. Y., Partington, D. & Shanafield, M. Taking theory to the field: streamflow generation mechanisms in an intermittent Mediterranean catchment. Hydrol. Earth Syst. Sci. 25, 4299–4317 (2021).

    Article  Google Scholar 

  24. Gutiérrez-Jurado, K. Y., Partington, D., Batelaan, O., Cook, P. & Shanafield, M. What triggers streamflow for intermittent rivers and ephemeral streams in low-gradient catchments in Mediterranean climates. Water Resour. Res. 55, 9926–9946 (2019).

    Article  Google Scholar 

  25. Noorduijn, S. L. et al. Estimating seepage flux from ephemeral stream channels using surface water and groundwater level data. Water Resour. Res. 50, 1474–1489 (2014).

    Article  Google Scholar 

  26. Zimmer, M. A. & McGlynn, B. L. Ephemeral and intermittent runoff generation processes in a low relief, highly weathered catchment. Water Resour. Res. 53, 7055–7077 (2017).

    Article  Google Scholar 

  27. Durighetto, N. & Botter, G. On the relation between active network length and catchment discharge. Geophys. Res. Lett. 49, e2022GL099500 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Godsey, S. E. & Kirchner, J. W. Dynamic, discontinuous stream networks: hydrologically driven variations in active drainage density, flowing channels and stream order. Hydrol. Process. 28, 5791–5803 (2014).

    Article  Google Scholar 

  29. Prancevic, J. P. & Kirchner, J. W. Topographic controls on the extension and retraction of flowing streams. Geophys. Res. Lett. 46, 2084–2092 (2019).

    Article  Google Scholar 

  30. Warix, S. R., Godsey, S. E., Lohse, K. A. & Hale, R. L. Influence of groundwater and topography on stream drying in semi-arid headwater streams. Hydrol. Process. 35, e14185 (2021).

    Article  Google Scholar 

  31. Ward, A. S., Schmadel, N. M. & Wondzell, S. M. Simulation of dynamic expansion, contraction and connectivity in a mountain stream network. Adv. Water Res. 114, 64–82 (2018).

    Article  Google Scholar 

  32. Huntington, J. L. & Niswonger, R. G. Role of surface-water and groundwater interactions on projected summertime streamflow in snow dominated regions: an integrated modeling approach. Water Resour. Res. https://doi.org/10.1029/2012WR012319 (2012).

  33. Duncan, J. M., Band, L. E., Groffman, P. M. & Bernhardt, E. S. Mechanisms driving the seasonality of catchment scale nitrate export: evidence for riparian ecohydrologic controls. Water Resour. Res. 51, 3982–3997 (2015).

    Article  Google Scholar 

  34. Cuthbert, M. O. et al. Global patterns and dynamics of climate–groundwater interactions. Nat. Clim. Change 9, 137–141 (2019).

    Article  Google Scholar 

  35. Day, D. G. Drainage density changes during rainfall. Earth Surf. Process. 3, 319–326 (1978).

    Article  Google Scholar 

  36. Graham, C. B., Barnard, H. R., Kavanagh, K. L. & McNamara, J. P. Catchment scale controls the temporal connection of transpiration and diel fluctuations in streamflow. Hydrol. Process. 27, 2541–2556 (2013).

    Article  Google Scholar 

  37. Goodrich, D. C., Kepner, W. G., Levick, L. R. & Wigington, P. J. Jr. Southwestern intermittent and ephemeral stream connectivity. JAWRA 54, 400–422 (2018).

    Google Scholar 

  38. Mosley, M. P. Streamflow generation in a forested watershed, New Zealand. Water Resour. Res. 15, 795–806 (1979).

    Article  Google Scholar 

  39. Li, D., Wrzesien, M. L., Durand, M., Adam, J. & Lettenmaier, D. P. How much runoff originates as snow in the western United States, and how will that change in the future? Geophys. Res. Lett. 44, 6163–6172 (2017).

    Article  Google Scholar 

  40. Villeneuve, S., Cook, P. G., Shanafield, M., Wood, C. & White, N. Groundwater recharge via infiltration through an ephemeral riverbed, central Australia. J. Arid Environ. 117, 47–58 (2015).

    Article  Google Scholar 

  41. Rodríguez-Burgueño, J. E., Shanafield, M. & Ramírez-Hernández, J. Comparison of infiltration rates in the dry riverbed of the Colorado River Delta during environmental flows. Ecol. Eng. 106, 675–682 (2017).

    Article  Google Scholar 

  42. Archdeacon, T. P. & Reale, J. K. No quarter: lack of refuge during flow intermittency results in catastrophic mortality of an imperiled minnow. Freshwater Biol. 65, 2108–2123 (2020).

    Article  Google Scholar 

  43. McKnight, D. M. et al. Dry valley streams in Antarctica: ecosystems waiting for water. BioScience 49, 985–995 (1999).

    Article  Google Scholar 

  44. Fazekas, H. M., McDowell, W. H., Shanley, J. B. & Wymore, A. S. Climate variability drives watersheds along a transporter-transformer continuum. Geophys. Res. Lett. 48, e2021GL094050 (2021).

    Article  Google Scholar 

  45. Raymond, P. A., Saiers, J. E. & Sobczak, W. V. Hydrological and biogeochemical controls on watershed dissolved organic matter transport: pulse-shunt concept. Ecology 97, 5–16 (2016).

    Article  PubMed  Google Scholar 

  46. Drummond, J. D., Bernal, S., von Schiller, D. & Martí, E. Linking in-stream nutrient uptake to hydrologic retention in two headwater streams. Freshwater Sci. 35, 1176–1188 (2016).

    Article  Google Scholar 

  47. Oldham, C. E., Farrow, D. E. & Peiffer, S. A generalized Damköhler number for classifying material processing in hydrological systems. Hydrol. Earth Syst. Sci. 17, 1133–1148 (2013).

    Article  Google Scholar 

  48. Gallo, E. L., Lohse, K. A., Ferlin, C. M., Meixner, T. & Brooks, P. D. Physical and biological controls on trace gas fluxes in semi-arid urban ephemeral waterways. Biogeochemistry 121, 189–207 (2014).

    Article  CAS  Google Scholar 

  49. Brandt, T. et al. Automated in situ oxygen profiling at aquatic–terrestrial interfaces. Environ. Sci. Technol. 51, 9970–9978 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. del Campo, R., Corti, R. & Singer, G. Flow intermittence alters carbon processing in rivers through chemical diversification of leaf litter. Limnol. Oceanogr. Lett. 6, 232–242 (2021).

    Article  Google Scholar 

  51. Coulson, L. E. et al. Small rain events during drought alter sediment dissolved organic carbon leaching and respiration in intermittent stream sediments. Biogeochemistry 159, 159–178 (2022).

    Article  CAS  Google Scholar 

  52. Ruffing, C. M. et al. Prairie stream metabolism recovery varies based on antecedent hydrology across a stream network after a bank-full flood. Limnol. Oceanogr. 67, 1986–1999 (2022).

    Article  CAS  Google Scholar 

  53. Sengupta, A. et al. Disturbance triggers non-linear microbe-environment feedbacks. Biogeosciences 18, 4773–4789 (2021).

    Article  CAS  Google Scholar 

  54. Murdock, J. N., Gido, K. B., Dodds, W. K., Bertrand, K. N. & Whiles, M. R. Consumer return chronology alters recovery trajectory of stream ecosystem structure and function following drought. Ecology 91, 1048–1062 (2010).

    Article  PubMed  Google Scholar 

  55. Burrows, R. M., Laudon, H., McKie, B. G. & Sponseller, R. A. Seasonal resource limitation of heterotrophic biofilms in boreal streams. Limnol. Oceanogr. 62, 164–176 (2017).

    Article  Google Scholar 

  56. Cross, W. F., Hood, J. M., Benstead, J. P., Huryn, A. D. & Nelson, D. Interactions between temperature and nutrients across levels of ecological organization. Global Change Biol. 21, 1025–1040 (2015).

    Article  Google Scholar 

  57. Shen, Y., Chapelle, F. H., Strom, E. W. & Benner, R. Origins and bioavailability of dissolved organic matter in groundwater. Biogeochemistry 122, 61–78 (2015).

    Article  CAS  Google Scholar 

  58. DelVecchia, A. G. et al. Reconceptualizing the hyporheic zone for nonperennial rivers and streams. Freshwater Sci. 41, 167–182 (2022).

    Article  Google Scholar 

  59. Meisner, J. D., Rosenfeld, J. S. & Regier, H. A. The role of groundwater in the impact of climate warming on stream salmonines. Fisheries 13, 2–8 (1988).

    Article  Google Scholar 

  60. Sabater, S., Timoner, X., Borrego, C. & Acuña, V. Stream biofilm responses to flow intermittency: from cells to ecosystems. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2016.00014 (2016).

  61. Stegen, J. C. et al. Groundwater–surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover. Nat. Commun. 7, 11237 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Stubbington, R. et al. The response of perennial and temporary headwater stream invertebrate communities to hydrological extremes. Hydrobiologia 630, 299–312 (2009).

    Article  Google Scholar 

  63. Naiman, R. J. et al. in Ecosystem Function in Heterogeneous Landscapes (eds Lovett, G. M. et al.) 279–309 (Springer, 2005); https://doi.org/10.1007/0-387-24091-8_14

  64. Paillex, A., Siebers, A. R., Ebi, C., Mesman, J. & Robinson, C. T. High stream intermittency in an alpine fluvial network: Val Roseg, Switzerland. Limnol. Oceanogr. 65, 557–568 (2020).

    Article  Google Scholar 

  65. Singley, J. G., Gooseff, M. N., McKnight, D. M. & Hinckley, E. S. The role of hyporheic connectivity in determining nitrogen availability: insights from an intermittent antarctic stream. J. Geophys. Res. Biogeosci. 126, e2021JG006309 (2021).

    Article  CAS  Google Scholar 

  66. Singley, J. G., Salvatore, M. R., Gooseff, M. N., McKnight, D. M. & Hinckley, E.-L. S. Differentiating physical and biological storage of N along an intermittent Antarctic stream corridor. Freshwater Sci. 42, 229–246 (2023).

    Article  Google Scholar 

  67. Brunke, M. & Gonser, T. The ecological significance of exchange processes between rivers and groundwater. Freshwater Biol. 37, 1–33 (1997).

    Article  Google Scholar 

  68. Zarnetske, J. P., Haggerty, R., Wondzell, S. M. & Baker, M. A. Dynamics of nitrate production and removal as a function of residence time in the hyporheic zone. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2010JG001356 (2011).

  69. Caruso, A., Boano, F., Ridolfi, L., Chopp, D. L. & Packman, A. Biofilm-induced bioclogging produces sharp interfaces in hyporheic flow, redox conditions and microbial community structure. Geophys. Res. Lett. 44, 4917–4925 (2017).

    Article  Google Scholar 

  70. Boulton, A. J., Datry, T., Kasahara, T., Mutz, M. & Stanford, J. A. Ecology and management of the hyporheic zone: stream-groundwater interactions of running waters and their floodplains. J. North Am. Benthol. Soc. 29, 26–40 (2010).

    Article  Google Scholar 

  71. Marshall, J. C. et al. Go with the flow: the movement behaviour of fish from isolated waterhole refugia during connecting flow events in an intermittent dryland river. Freshwater Biol. 61, 1242–1258 (2016).

    Article  Google Scholar 

  72. Vander Vorste, R., Malard, F. & Datry, T. Is drift the primary process promoting the resilience of river invertebrate communities? A manipulative field experiment in an intermittent alluvial river. Freshwater Biol. 61, 1276–1292 (2016).

    Article  Google Scholar 

  73. Fournier, R. J., de Mendoza, G., Sarremejane, R. & Ruhi, A. Isolation controls reestablishment mechanisms and post-drying community structure in an intermittent stream. Ecology 104, e3911 (2023).

    Article  PubMed  Google Scholar 

  74. Sarremejane, R. et al. Drought effects on invertebrate metapopulation dynamics and quasi-extinction risk in an intermittent river network. Global Change Biol. 27, 4024–4039 (2021).

    Article  CAS  Google Scholar 

  75. Bogan, M. T. et al. in Intermittent Rivers and Ephemeral Streams (eds Datry, T. et al.) 349–376 (Academic Press, 2017); https://doi.org/10.1016/B978-0-12-803835-2.00013-9

  76. Bonada, N., Rieradevall, M. & Prat, N. Macroinvertebrate community structure and biological traits related to flow permanence in a Mediterranean river network. Hydrobiologia 589, 91–106 (2007).

    Article  Google Scholar 

  77. Lytle, D. A. & Poff, N. L. Adaptation to natural flow regimes. Trends Ecol. Evol. 19, 94–100 (2004).

    Article  PubMed  Google Scholar 

  78. Sarremejane, R. et al. Local and regional drivers influence how aquatic community diversity, resistance and resilience vary in response to drying. Oikos 129, 1877–1890 (2020).

    Article  Google Scholar 

  79. Hooley-Underwood, Z. E., Stevens, S. B., Salinas, N. R. & Thompson, K. G. An intermittent stream supports extensive spawning of large-river native fishes. Trans. Am. Fish. Society 148, 426–441 (2019).

    Article  Google Scholar 

  80. Bogan, M. T. Hurry up and wait: life cycle and distribution of an intermittent stream specialist (Mesocapnia arizonensis). Freshwater Sci. 36, 805–815 (2017).

    Article  Google Scholar 

  81. Merritt, D. M. & Wohl, E. E. Processes governing hydrochory along rivers: hydraulics, hydrology and dispersal phenology. Ecol. Appl. 12, 1071–1087 (2002).

    Article  Google Scholar 

  82. Stromberg, J. C., Richter, B. D., Patten, D. T. & Wolden, L. G. Response of a Sonoran riparian forest to a 10-year return flood. Great Basin Nat. 53, 118–130 (1993).

    Google Scholar 

  83. Crabot, J. et al. A global perspective on the functional responses of stream communities to flow intermittence. Ecography 44, 1511–1523 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Stubbington, R. & Datry, T. The macroinvertebrate seedbank promotes community persistence in temporary rivers across climate zones. Freshwater Biol. 58, 1202–1220 (2013).

    Article  Google Scholar 

  85. Steward, A. L., Datry, T. & Langhans, S. D. The terrestrial and semi-aquatic invertebrates of intermittent rivers and ephemeral streams. Biol. Rev. 97, 1408–1425 (2022).

    Article  PubMed  Google Scholar 

  86. Mims, M. C., Phillipsen, I. C., Lytle, D. A., Kirk, E. E. H. & Olden, J. D. Ecological strategies predict associations between aquatic and genetic connectivity for dryland amphibians. Ecology 96, 1371–1382 (2015).

    Article  PubMed  Google Scholar 

  87. Dole-Olivier, M.-J., Marmonier, P. & Beffy, J.-L. Response of invertebrates to lotic disturbance: is the hyporheic zone a patchy refugium? Freshwater Biol. 37, 257–276 (1997).

    Article  Google Scholar 

  88. Fritz, K. M. & Dodds, W. K. Macroinvertebrate assemblage structure across a tallgrass prairie stream landscape. Archiv Hydrobiol 154, 79–102 (2002).

    Article  Google Scholar 

  89. Bogan, M. T. & Boersma, K. S. Aerial dispersal of aquatic invertebrates along and away from arid-land streams. Freshwater Sci. 31, 1131–1144 (2012).

    Article  Google Scholar 

  90. Moon, H. P. Observations on a small portion of a drying chalk stream. Proc. Zool. Soc. Lond. 126, 327–334 (1956).

    Article  Google Scholar 

  91. Schwalm, C. R. et al. Global patterns of drought recovery. Nature 548, 202–205 (2017).

    Article  CAS  PubMed  Google Scholar 

  92. Dewson, Z. S., James, A. B. W. & Death, R. G. Invertebrate community responses to experimentally reduced discharge in small streams of different water quality. J. North Am. Benthol. Soc. 26, 754–766 (2007).

    Article  Google Scholar 

  93. Lytle, D. A., Olden, J. D. & McMullen, L. E. Drought-escape behaviors of aquatic insects may be adaptations to highly variable flow regimes characteristic of desert rivers. The Southwstern Naturalist 53, 399–402 (2008).

    Article  Google Scholar 

  94. Hajdukiewicz, H., Wyżga, B., Mikuś, P., Zawiejska, J. & Radecki-Pawlik, A. Impact of a large flood on mountain river habitats, channel morphology and valley infrastructure. Geomorphology 272, 55–67 (2016).

    Article  Google Scholar 

  95. Chalise, D. R., Sankarasubramanian, A., Olden, J. D. & Ruhi, A. Spectral signatures of flow regime alteration by dams across the United States. Earth’s Future 11, e2022EF003078 (2023).

    Article  Google Scholar 

  96. Kennedy, T. A. et al. Flow management for hydropower extirpates aquatic insects, undermining river food webs. BioScience 66, 561–575 (2016).

    Article  Google Scholar 

  97. Olsen, D. A. & Townsend, C. R. Flood effects on invertebrates, sediments and particulate organic matter in the hyporheic zone of a gravel-bed stream. Freshwater Biol. 50, 839–853 (2005).

    Article  Google Scholar 

  98. Hladyz, S., Watkins, S. C., Whitworth, K. L. & Baldwin, D. S. Flows and hypoxic blackwater events in managed ephemeral river channels. J. Hydrol. 401, 117–125 (2011).

    Article  CAS  Google Scholar 

  99. Muehlbauer, J. Macroinvertebrate community responses to a dewatering disturbance gradient in a restored stream. Hydrol. Earth Syst. Sci. 15, 1771–1783 (2011).

    Article  Google Scholar 

  100. Larson, E. I., Poff, N. L., Atkinson, C. L. & Flecker, A. S. Extreme flooding decreases stream consumer autochthony by increasing detrital resource availability. Freshwater Biol. 63, 1483–1497 (2018).

    Article  CAS  Google Scholar 

  101. Power, M. E., Dietrich, W. E. & Finlay, J. C. Dams and downstream aquatic biodiversity: potential food web consequences of hydrologic and geomorphic change. Environ. Manag. 20, 887–895 (1996).

    Article  CAS  Google Scholar 

  102. Zimmer, M. A., Burgin, A. J., Kaiser, K. & Hosen, J. The unknown biogeochemical impacts of drying rivers and streams. Nat. Commun. 13, 7213 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Zipper, S. C. et al. Pervasive changes in stream intermittency across the United States. Environ. Res. Lett. 16, 084033 (2021).

    Article  Google Scholar 

  104. Beven, K. J. & Chappell, N. A. Perceptual perplexity and parameter parsimony. WIREs Water 8, e1530 (2021).

    Article  Google Scholar 

  105. Judd, M., Boese, M., Horne, A. C. & Bond, N. R. Perceptions of climate change adaptation barriers in environmental water management. Ecol. Soc. 28, 21 (2023).

    Article  Google Scholar 

  106. Datry, T. et al. Causes, responses and implications of anthropogenic versus natural flow intermittence in river networks. BioScience 73, 9–22 (2022).

    Article  Google Scholar 

  107. Swain, D. L., Langenbrunner, B., Neelin, J. D. & Hall, A. Increasing precipitation volatility in twenty-first-century California. Nat. Clim. Change 8, 427–433 (2018).

    Article  Google Scholar 

  108. Zimmer, M. A. et al. Zero or not? Causes and consequences of zero-flow stream gage readings. WIREs Water 7, e1436 (2020).

    Article  Google Scholar 

  109. Ward, A. S., Wondzell, S. M., Schmadel, N. M. & Herzog, S. P. Climate change causes river network contraction and disconnection in the H.J. Andrews Experimental Forest, Oregon, USA. Front. Water https://doi.org/10.3389/frwa.2020.00007 (2020).

  110. Doyle, M. W. & Ensign, S. H. Alternative reference frames in river system science. BioScience 59, 499–510 (2009).

    Article  Google Scholar 

  111. Noto, S. et al. Low-cost stage-camera system for continuous water-level monitoring in ephemeral streams. Hydrol. Sci. J. 67, 1439–1448 (2022).

    Article  Google Scholar 

  112. Allen, D. C. et al. Citizen scientists document long-term streamflow declines in intermittent rivers of the desert southwest, USA. Freshwater Sci. 38, 244–256 (2019).

    Article  Google Scholar 

  113. Hou, J., van Dijk, A. I. J. M., Renzullo, L. J., Vertessy, R. A. & Mueller, N. Hydromorphological attributes for all Australian river reaches derived from Landsat dynamic inundation remote sensing. Earth Syst. Sci. Data 11, 1003–1015 (2019).

    Article  Google Scholar 

  114. Wang, Z. & Vivoni, E. R. Detecting streamflow in dryland rivers using CubeSats. Geophys. Res. Lett. 49, e2022GL098729 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Messager, M. L. et al. A metasystem approach to designing environmental flows. BioScience 73, 643–662 (2023).

    Article  Google Scholar 

  116. Blackman, R. C. et al. Unlocking our understanding of intermittent rivers and ephemeral streams with genomic tools. Front. Ecol. Environ. 19, 574–583 (2021).

    Article  Google Scholar 

  117. Goldman, A. E., Emani, S. R., Pérez-Angel, L. C., Rodríguez-Ramos, J. A. & Stegen, J. C. Integrated, Coordinated, Open and Networked (ICON) science to advance the geosciences: introduction and synthesis of a special collection of commentary articles. Earth Space Sci. 9, e2021EA002099 (2022).

    Article  Google Scholar 

  118. Hatley, C. M. et al. Intermittent streamflow generation in a merokarst headwater catchment. Environ. Sci. Adv. 2, 115–131 (2023).

    Article  Google Scholar 

  119. Lapides, D. A., Hahm, W. J., Rempe, D. M., Dietrich, W. E. & Dralle, D. N. Controls on stream water age in a saturation overland flow-dominated catchment. Water Resour. Res. 58, e2021WR031665 (2022).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived the scientific ideas and concepts presented in this Perspective as part of the NSF funded Dry Rivers Research Coordination Network and associated workshops in January 2022, October 2022 and October 2023. Additionally, all authors participated in the editing of the final draft and input on reviewer comments. A.N.P., M.A.Z., A.B. and M.S. wrote the abstract. A.N.P., M.A.Z., A.B., M.H.B., T.D., S.Z. and M.S. wrote and edited the Introduction. A.N.P., M.A.Z., A.B., E.C.S., M.S., S.E.G. and S.Y. conceived and wrote the section ‘Wetting regimes in non-perennial rivers and streams’. A.N.P., M.A.Z., A.B., E.C.S., A.J.B., M.H.B., W.K.D., T.D., A.D., J.C.S., A.S.W., K.E.K., A.S.W. and A.M.P. conceived and wrote the section ‘Biogeochemical responses to stream wetting’. A.N.P., M.H.B., W.K.D., T.D., J.S.R., C.A.K., A.W., D.A.L., M.H.B., J.D.T., J.D.O., M.C.M. and R.S. conceived and wrote the section ‘Community ecology responses to stream wetting’. A.N.P., M.A.Z., A.B., E.C.S., G.H.A, D.A., A.J.B. and M.L.M. conceived and wrote the section ‘Scientific community needs and next steps’. M.A.Z., A.J.B., M.H.B. and W.K.D. conceived and wrote the conclusion. A.N.P., A.B., S.Z. and J.C.H. conceptualized and composed Fig. 1. A.N.P., A.N.M.-P., S.E.G. and J.C.S. conceptualized Fig. 2. A.N.P., A.B., E.C.S., W.K.D. and K.E.K. conceptualized and composed Fig. 3. R.H.W., C.A.K., M.B., K.B. and E.C.S. conceptualized and composed Fig. 4. A.N.P., M.A.Z., A.B., S.E.G., W.K.D., J.C.S. and R.S. helped in the review and final writing process.

Corresponding author

Correspondence to Adam Nicholas Price.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Price, A.N., Zimmer, M.A., Bergstrom, A. et al. Biogeochemical and community ecology responses to the wetting of non-perennial streams. Nat Water 2, 815–826 (2024). https://doi.org/10.1038/s44221-024-00298-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44221-024-00298-3

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology