Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Impacts of warming and nutrient enrichment on the fate and effects of nanoplastics in a freshwater food web

Abstract

Freshwater ecosystems face numerous pressures including climate-induced warming, eutrophication and contaminants such as nanoplastics (NPs), which have emerged as a major environmental concern. Despite evidence of harmful effects on freshwater biota, critical knowledge gaps persist regarding the fate and impacts of NP fate and impacts in natural aquatic systems. Here we conducted a 28-day mesocosm experiment in freshwater pond communities, investigating polystyrene NP fate and effects under ambient, warmed and nutrient-enriched conditions. Using palladium-doped polystyrene NPs for precise tracking, we observed NP presence in all ecological compartments, mainly accumulating in biofilms (~97%). NP accumulation was influenced by both nutrient enrichment and warming, with warming significantly increasing NP concentration in fish guts. NPs decreased macroinvertebrate abundance, attributed to the decline in benthic caddisfly larvae, which graze on the NP-rich biofilm. This research represents a important advancement in our understanding of plastic pollution impacts, revealing the complex interplay between NP pollution and global environmental change factors in freshwater ecosystems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the experimental design.
Fig. 2: Nanoplastic concentrations in seston and biofilms.
Fig. 3: Nanoplastic concentrations in backswimmers and caddisfly larvae after 28 days exposure under ambient, warmed and nutrient-enriched conditions.
Fig. 4: Nanoplastic concentrations in fish guts and bodies for males and females after 28 days exposure under ambient, warmed and nutrient-enriched conditions.
Fig. 5: Interaction plots for the biological response variables measured in our experiment recorded after 28 days comparing scenarios with and without nanoplastics under ambient, warmed and nutrient-enriched conditions.
Fig. 6: Interaction plot for caddisfly abundance.

Similar content being viewed by others

Data availability

Statistical source data can be accessed via figshare at https://doi.org/10.6084/m9.figshare.26067691 (ref. 68).

References

  1. Dudgeon, D. Multiple threats imperil freshwater biodiversity in the Anthropocene. Curr. Biol. 29, R960–R967 (2019).

    Article  PubMed  CAS  Google Scholar 

  2. Albert, J. S. et al. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 50, 85–94 (2021).

    Article  PubMed  Google Scholar 

  3. Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).

    Article  PubMed  Google Scholar 

  4. Carpenter, S. R., Stanley, E. H. & Vander Zanden, M. J. State of the world’s freshwater ecosystems: physical, chemical, and biological changes. Annu. Rev. Environ. Resour. 36, 75–99 (2011).

    Article  Google Scholar 

  5. Woodward, G., Perkins, D. M. & Brown, L. E. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Phil. Trans. R. Soc. B 365, 2093–2106 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mitrano, D. M., Wick, P. & Nowack, B. Placing nanoplastics in the context of global plastic pollution. Nat. Nanotechnol. 16, 491–500 (2021).

    Article  PubMed  CAS  Google Scholar 

  7. Ockenden, A., Tremblay, L. A., Dikareva, N. & Simon, K. S. Towards more ecologically relevant investigations of the impacts of microplastic pollution in freshwater ecosystems. Sci. Total Environ. 792, 148507 (2021).

    Article  PubMed  CAS  Google Scholar 

  8. Clark, N. J., Khan, F. R., Mitrano, D. M., Boyle, D. & Thompson, R. C. Demonstrating the translocation of nanoplastics across the fish intestine using palladium-doped polystyrene in a salmon gut-sac. Environ. Int. 159, 106994 (2022).

    Article  PubMed  CAS  Google Scholar 

  9. Koelmans, A. A. Proxies for nanoplastic. Nat. Nanotechnol. 14, 307–308 (2019).

    Article  PubMed  CAS  Google Scholar 

  10. Chae, Y., Kim, D., Kim, S. W. & An, Y.-J. Trophic transfer and individual impact of nano-sized polystyrene in a four-species freshwater food chain. Sci. Rep. 8, 284 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Liu, Z. et al. Polystyrene nanoplastic exposure induces immobilization, reproduction, and stress defense in the freshwater cladoceran Daphnia pulex. Chemosphere 215, 74–81 (2019).

    Article  PubMed  CAS  Google Scholar 

  12. Marchant, D. J., Martínez Rodríguez, A., Francelle, P., Jones, J. I. & Kratina, P. Contrasting the effects of microplastic types, concentrations and nutrient enrichment on freshwater communities and ecosystem functioning. Ecotoxicol. Environ. Saf. 255, 114834 (2023).

    Article  PubMed  CAS  Google Scholar 

  13. Martínez Rodríguez, A., Marchant, D. J., Francelle, P., Kratina, P. & Jones, J. I. Nutrient enrichment mediates the effect of biodegradable and conventional microplastics on macroinvertebrate communities. Environ. Pollut. 337, 122511 (2023).

    Article  PubMed  Google Scholar 

  14. Kumar, R. et al. Effect of physical characteristics and hydrodynamic conditions on transport and deposition of microplastics in riverine ecosystem. Water 13, 2710 (2021).

    Article  CAS  Google Scholar 

  15. Noyes, P. D. et al. The toxicology of climate change: environmental contaminants in a warming world. Environ. Int. 35, 971–986 (2009).

    Article  PubMed  CAS  Google Scholar 

  16. Dijkstra, J. A. et al. Experimental and natural warming elevates mercury concentrations in estuarine fish. PLoS ONE 8, e58401 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lyu, K., Cao, C., Li, D., Akbar, S. & Yang, Z. The thermal regime modifies the response of aquatic keystone species Daphnia to microplastics: evidence from population fitness, accumulation, histopathological analysis and candidate gene expression. Sci. Total Environ. 783, 147154 (2021).

    Article  PubMed  Google Scholar 

  18. Barneche, D. R. et al. Warming impairs trophic transfer efficiency in a long-term field experiment. Nature 592, 76–79 (2021).

    Article  PubMed  CAS  Google Scholar 

  19. Fryxell, D. C. & Palkovacs, E. P. Warming strengthens the ecological role of intraspecific variation in a predator. Copeia 105, 523–532 (2017).

    Article  Google Scholar 

  20. Greig, H. S. et al. Warming, eutrophication, and predator loss amplify subsidies between aquatic and terrestrial ecosystems. Glob. Change Biol. 18, 504–514 (2012).

    Article  Google Scholar 

  21. Bergmann, M. et al. High quantities of microplastic in Arctic deep-sea sediments from the HAUSGARTEN Observatory. Environ. Sci. Technol. 51, 11000–11010 (2017).

    Article  PubMed  CAS  Google Scholar 

  22. Holzer, M., Mitrano, D. M., Carles, L., Wagner, B. & Tlili, A. Important ecological processes are affected by the accumulation and trophic transfer of nanoplastics in a freshwater periphyton-grazer food chain. Environ. Sci. Nano 9, 2990–3003 (2022).

    Article  CAS  Google Scholar 

  23. Koelmans, A. Integrated modelling of eutrophication and organic contaminant fate & effects in aquatic ecosystems. A review. Water Res. 35, 3517–3536 (2001).

    Article  PubMed  CAS  Google Scholar 

  24. Mitrano, D. M. et al. Synthesis of metal-doped nanoplastics and their utility to investigate fate and behaviour in complex environmental systems. Nat. Nanotechnol. 14, 362–368 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. He, S. et al. Distribution, bioaccumulation, and trophic transfer of palladium-doped nanoplastics in a constructed freshwater ecosystem. Environ. Sci. Nano 9, 1353–1363 (2022).

    Article  CAS  Google Scholar 

  26. Abell, J. M., Özkundakci, D. & Hamilton, D. P. Nitrogen and phosphorus limitation of phytoplankton growth in New Zealand lakes: implications for eutrophication control. Ecosystems 13, 966–977 (2010).

    Article  CAS  Google Scholar 

  27. Materić, D. et al. Presence of nanoplastics in rural and remote surface waters. Environ. Res. Lett. 17, 054036 (2022).

    Article  Google Scholar 

  28. Materić, D. et al. Nanoplastics measurements in northern and southern polar ice. Environ. Res. 208, 112741 (2022).

    Article  PubMed  Google Scholar 

  29. Xu, Y., Ou, Q., Jiao, M., Liu, G. & Van Der Hoek, J. P. Identification and quantification of nanoplastics in surface water and groundwater by pyrolysis gas chromatography–mass spectrometry. Environ. Sci. Technol. 56, 4988–4997 (2022).

    Article  PubMed  CAS  Google Scholar 

  30. Sullivan, G. L. et al. Detection of trace sub-micron (nano) plastics in water samples using pyrolysis-gas chromatography time of flight mass spectrometry (PY-GCToF). Chemosphere 249, 126179 (2020).

    Article  PubMed  CAS  Google Scholar 

  31. Skei, J. et al. Eutrophication and contaminants in aquatic ecosystems. AMBIO 29, 184–194 (2000).

    Article  Google Scholar 

  32. Alimi, O. S., Farner Budarz, J., Hernandez, L. M. & Tufenkji, N. Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport. Environ. Sci. Technol. 52, 1704–1724 (2018).

    Article  PubMed  CAS  Google Scholar 

  33. Peng, L. & Wang, Y. Sediment organic carbon dominates the heteroaggregation of suspended sediment and nanoplastics in natural and surfactant-polluted aquatic environments. J. Hazard. Mater. 440, 129802 (2022).

    Article  PubMed  CAS  Google Scholar 

  34. Lowry, G. V. et al. Long-term transformation and fate of manufactured Ag nanoparticles in a simulated large scale freshwater emergent wetland. Environ. Sci. Technol. 46, 7027–7036 (2012).

    Article  PubMed  CAS  Google Scholar 

  35. Tella, M. et al. Chronic dosing of a simulated pond ecosystem in indoor aquatic mesocosms: fate and transport of CeO 2 nanoparticles. Environ. Sci. Nano 2, 653–663 (2015).

    Article  CAS  Google Scholar 

  36. Duchet, C. et al. Combined effects of climate warming and pharmaceuticals on a tri-trophic freshwater food web. Water Res. 250, 121053 (2024).

    Article  PubMed  CAS  Google Scholar 

  37. Scherer, C., Brennholt, N., Reifferscheid, G. & Wagner, M. Feeding type and development drive the ingestion of microplastics by freshwater invertebrates. Sci. Rep. 7, 17006 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Suren, A. M. & Lake, P. S. Edibility of fresh and decomposing macrophytes to three species of freshwater invertebrate herbivores. Hydrobiologia 178, 165–178 (1989).

    Article  Google Scholar 

  39. McNeish, R. E. et al. Microplastic in riverine fish is connected to species traits. Sci. Rep. 8, 11639 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Bertoli, M. et al. Microplastics accumulation in functional feeding guilds and functional habit groups of freshwater macrobenthic invertebrates: novel insights in a riverine ecosystem. Sci. Total Environ. 804, 150207 (2022).

    Article  PubMed  CAS  Google Scholar 

  41. Clark, N. J., Khan, F. R., Crowther, C., Mitrano, D. M. & Thompson, R. C. Uptake, distribution and elimination of palladium-doped polystyrene nanoplastics in rainbow trout (Oncorhynchus mykiss) following dietary exposure. Sci. Total Environ. 854, 158765 (2023).

    Article  PubMed  CAS  Google Scholar 

  42. Moffett, E. R., Fryxell, D. C., Palkovacs, E. P., Kinnison, M. T. & Simon, K. S. Local adaptation reduces the metabolic cost of environmental warming. Ecology 99, 2318–2326 (2018).

    Article  PubMed  Google Scholar 

  43. Hasan, J. et al. Increase in temperature increases ingestion and toxicity of polyamide microplastics in Nile tilapia. Chemosphere 327, 138502 (2023).

    Article  PubMed  CAS  Google Scholar 

  44. Fryxell, D. C., Arnett, H. A., Apgar, T. M., Kinnison, M. T. & Palkovacs, E. P. Sex ratio variation shapes the ecological effects of a globally introduced freshwater fish. Proc. R. Soc. B 282, 20151970 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Gewurtz, S. B., Bhavsar, S. P. & Fletcher, R. Influence of fish size and sex on mercury/PCB concentration: importance for fish consumption advisories. Environ. Int. 37, 425–434 (2011).

    Article  PubMed  CAS  Google Scholar 

  46. Dong, H. et al. Tissue-specific accumulation, depuration, and effects of perfluorooctanoic acid on fish: influences of aqueous pH and sex. Sci. Total Environ. 861, 160567 (2023).

    Article  PubMed  CAS  Google Scholar 

  47. Yvon-Durocher, G., Montoya, J. M., Trimmer, M. & Woodward, G. Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems: warming alters community size structure. Glob. Change Biol. 17, 1681–1694 (2011).

    Article  Google Scholar 

  48. Kratina, P., Greig, H. S., Thompson, P. L., Carvalho-Pereira, T. S. A. & Shurin, J. B. Warming modifies trophic cascades and eutrophication in experimental freshwater communities. Ecology 93, 1421–1430 (2012).

    Article  PubMed  Google Scholar 

  49. López-Rojo, N., Pérez, J., Alonso, A., Correa-Araneda, F. & Boyero, L. Microplastics have lethal and sublethal effects on stream invertebrates and affect stream ecosystem functioning. Environ. Pollut. 259, 113898 (2020).

    Article  PubMed  Google Scholar 

  50. Ockenden, A., Northcott, G. L., Tremblay, L. A. & Simon, K. S. Disentangling the influence of microplastics and their chemical additives on a model detritivore system. Environ. Pollut. 307, 119558 (2022).

    Article  PubMed  CAS  Google Scholar 

  51. Pyke, G. H. Plague minnow or mosquito fish? A review of the biology and impacts of introduced Gambusia species. Annu. Rev. Ecol. Evol. Syst. 39, 171–191 (2008).

    Article  Google Scholar 

  52. Wallace, J. B. & Webster, J. R. The role of macroinvertebrates in stream ecosystem function. Annu. Rev. Entomol. 41, 115–139 (1996).

    Article  PubMed  CAS  Google Scholar 

  53. Redondo-Hasselerharm, P. E., Gort, G., Peeters, E. T. H. M. & Koelmans, A. A. Nano- and microplastics affect the composition of freshwater benthic communities in the long term. Sci. Adv. 6, eaay4054 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Stanković, J. et al. Exposure to a microplastic mixture is altering the life traits and is causing deformities in the non-biting midge Chironomus riparius Meigen (1804). Environ. Pollut. 262, 114248 (2020).

    Article  PubMed  Google Scholar 

  55. Klasios, N., Kim, J. O. & Tseng, M. No effect of realistic concentrations of polyester microplastic fibers on freshwater zooplankton communities. Environ. Toxicol. Chem. 43, 418–428 (2024).

    Article  PubMed  CAS  Google Scholar 

  56. Chang, M. et al. Changes in characteristics and risk of freshwater microplastics under global warming. Water Res. 260, 121960 (2024).

    Article  PubMed  CAS  Google Scholar 

  57. del Real, A. E. P. et al. Assessing implications of nanoplastics exposure to plants with advanced nanometrology techniques. J. Hazard. Mater. 430, 128356 (2022).

    Article  PubMed  Google Scholar 

  58. Pulido-Reyes, G. et al. Nanoplastics removal during drinking water treatment: laboratory- and pilot-scale experiments and modeling. J. Hazard. Mater. 436, 129011 (2022).

    Article  PubMed  CAS  Google Scholar 

  59. Frehland, S., Kaegi, R., Hufenus, R. & Mitrano, D. M. Long-term assessment of nanoplastic particle and microplastic fiber flux through a pilot wastewater treatment plant using metal-doped plastics. Water Res. 182, 115860 (2020).

    Article  PubMed  CAS  Google Scholar 

  60. Turner, A. & Filella, M. Hazardous metal additives in plastics and their environmental impacts. Environ. Int. 156, 106622 (2021).

    Article  PubMed  CAS  Google Scholar 

  61. IPCC Climate Change 2014: Synthesis Report (eds Pachauri, R. K. & Meyer, L. A.) (Cambridge Univ. Press, 2014).

  62. Verburg, P., Hamill, K., Unwin, M. & Abell, J. Lake Water Quality in New Zealand 2010: Status and Trends NIWA Client Report: HAM2010-107 Hamilton (National Institute of Water & Atmospheric Research, 2010).

  63. Standard Methods for the Analysis of Water and Wastewater (APHA, 2000).

  64. Standard Operating Procedure for Zooplankton Analysis LG403, Revision 07 (EPA, 2016).

  65. Mack, H. R., Conroy, J. D., Blocksom, K. A., Stein, R. A. & Ludsin, S. A. A comparative analysis of zooplankton field collection and sample enumeration methods: zooplankton sampling and counting methods. Limnol. Oceanogr. Methods 10, 41–53 (2012).

    Article  Google Scholar 

  66. Von Schiller, D. S. Differential effects of preservation on the estimation of biomass of two common mayfly species. Arch. Hydrobiol. 164, 325–334 (2005).

    Article  Google Scholar 

  67. Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Article  Google Scholar 

  68. Ockenden, A., Mitrano, D. M., Kah, M., Tremblay, L. A. & Simon, K. S. Impacts of warming and nutrient enrichment on the fate and effects of nanoplastics in a freshwater food web. figshare https://doi.org/10.6084/m9.figshare.26067691 (2024).

Download references

Acknowledgements

Funding for this project came from the New Zealand Ministry of Business, Innovation and Employment Endeavour Programme (C03X1802) to K.S.S. and the Swiss National Science Foundation (PCEFP2 186856) to D.M.M. We are grateful to S. Morrow for technical assistance with the ICP-MS work and to L. Holding for assistance with field work.

Author information

Authors and Affiliations

Authors

Contributions

A.O. designed the study, collected and analysed the data and wrote the paper. D.M.M. provided the resources used in this study and edited the paper. M.K. edited the paper. L.A.T. edited the paper. K.S.S. designed the study, collected the data, acquired funding and edited the paper. All authors approved the final version of the paper.

Corresponding author

Correspondence to Αmy Ockenden.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Timothy Hoellein and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and Tables 1–4.

Source data

Source Data Fig. 2

Statistical source data for nanoplastic concentrations in seston and biofilms.

Source Data Fig. 3

Statistical source data for nanoplastic concentrations in backswimmers and caddisfly larvae.

Source Data Fig. 4

Statistical source data for nanoplastic concentrations in fish guts and bodies.

Source Data Fig. 5

Statistical source data for ecological effects on all biological response variables.

Source Data Fig. 6

Statistical source data for caddisfly abundance.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ockenden, Α., Mitrano, D.M., Kah, M. et al. Impacts of warming and nutrient enrichment on the fate and effects of nanoplastics in a freshwater food web. Nat Water 2, 1207–1217 (2024). https://doi.org/10.1038/s44221-024-00334-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44221-024-00334-2

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene