Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Curvature-induced ion docking effect in capacitive deionization

Abstract

Traditional capacitive deionization (CDI) materials usually exhibit low salt adsorption capacities due to the limitations in optimizing their specific surface area and chemical composition. Here we introduced the curvature parameter as a new variable for designing high-performance CDI electrodes. On the basis of a comprehensive surface curvature/electric field model, we found that smaller surface curvature radii may result in higher-concentration ion distributions. As a typical experimental example, bicontinuous mesoporous polypyrrole with saddle-shaped high-curvature surfaces demonstrated an enhanced ion docking effect, which provided high salt adsorption capacity values of 262.7 mg g−1 at 1.2 V and 312.5 mg g−1 at 100 mA g−1, along with an ultra-long cycling life of over 2,000 cycles. This CDI performance surpassed those of all previously reported CDI electrodes. This study provides a new design paradigm based on curvature structural engineering for next-generation CDI materials and demonstrates a promising approach for developing large-scale and sustainable high-performance CDI devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual design and characterization of BM-PPy-based CDI materials with a curvature gradient.
Fig. 2: Effect of the surface curvature on the ion adsorption performance.
Fig. 3: Mechanistic analysis of ion docking.
Fig. 4: Performance evaluation of the CDI systems.
Fig. 5: Performance evaluation of the scale-up electrode size.

Similar content being viewed by others

Data availability

All relevant data that support the results of this study are presented in the main text and Supplementary Information. Source data are provided with this paper.

References

  1. He, C. et al. Future global urban water scarcity and potential solutions. Nat. Commun. 12, 4667 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Ou, R. et al. A sunlight-responsive metal–organic framework system for sustainable water desalination. Nat. Sustain. 3, 1052–1058 (2020).

    Article  Google Scholar 

  3. Chen, H. et al. Ultrahigh-water-flux desalination on graphdiyne membranes. Nat. Water 1, 800–807 (2023).

    Article  Google Scholar 

  4. Chen, Y., Yang, S., Wang, Z. & Elimelech, M. Transforming membrane distillation to a membraneless fabric distillation for desalination. Nat. Water 2, 52–61 (2024).

    Article  Google Scholar 

  5. Cao, J., Wang, Y., Wang, L., Yu, F. & Ma, J. Na3V2(PO4)3@C as Faradaic electrodes in capacitive deionization for high-performance desalination. Nano Lett. 19, 823–828 (2019).

    Article  PubMed  CAS  Google Scholar 

  6. Srimuk, P., Su, X., Yoon, J., Aurbach, D. & Presser, V. Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements. Nat. Rev. Mater. 5, 517–538 (2020).

    Article  CAS  Google Scholar 

  7. Liu, T. et al. Exceptional capacitive deionization rate and capacity by block copolymer–based porous carbon fibers. Sci. Adv. 6, eaaz0906 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Gamaethiralalage, J. et al. Recent advances in ion selectivity with capacitive deionization. Energy Environ. Sci. 14, 1095–1120 (2021).

    Article  CAS  Google Scholar 

  9. Zuo, K. et al. Electrified water treatment: fundamentals and roles of electrode materials. Nat. Rev. Mater. 8, 472–490 (2023).

    Article  Google Scholar 

  10. Chen, F. et al. Dual-ions electrochemical deionization: a desalination generator. Energy Environ. Sci. 10, 2081–2089 (2017).

    Article  CAS  Google Scholar 

  11. Wei, W. et al. Electrochemical driven phase segregation enabled dual-ion removal battery deionization electrode. Nano Lett. 21, 4830–4837 (2021).

    Article  PubMed  CAS  Google Scholar 

  12. Ma, J., Zhou, R. & Yu, F. Hotspots and future trends of capacitive deionization technology: a bibliometric review. Desalination 571, 117107 (2023).

    Article  Google Scholar 

  13. Liu, Y. et al. Recent advances in faradic electrochemical deionization: system architectures versus electrode materials. ACS Nano 15, 13924–13942 (2021).

    Article  PubMed  CAS  Google Scholar 

  14. Li, W., Liu, J. & Zhao, D. Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 1, 16023 (2016).

    Article  CAS  Google Scholar 

  15. Yang, H. Y. et al. Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification. Nat. Commun. 4, 2220 (2013).

    Article  PubMed  Google Scholar 

  16. Wang, S. et al. Membrane-free hybrid capacitive deionization system based on redox reaction for high-efficiency NaCl removal. Environ. Sci. Technol. 53, 6292–6301 (2019).

    Article  PubMed  CAS  Google Scholar 

  17. Zhang, X. et al. Three-dimensional titanium mesh-based flow electrode capacitive deionization for salt separation and enrichment in high salinity water. Water Res. 251, 121147 (2024).

    Article  PubMed  CAS  Google Scholar 

  18. Suss, M. E. et al. Water desalination via capacitive deionization: what is it and what can we expect from it? Energy Environ. Sci. 8, 2296–2319 (2015).

    Article  CAS  Google Scholar 

  19. Porada, S. et al. Capacitive deionization using biomass‐based microporous salt‐templated heteroatom‐doped carbons. ChemSusChem 8, 1867–1874 (2015).

    Article  PubMed  CAS  Google Scholar 

  20. Li, Q. et al. Two‐dimensional MXene‐polymer heterostructure with ordered in‐plane mesochannels for high‐performance capacitive deionization. Angew. Chem. Int. Ed. 60, 26528–26534 (2021).

    Article  CAS  Google Scholar 

  21. Bao, W. et al. Porous cryo-dried MXene for efficient capacitive deionization. Joule 2, 778–787 (2018).

    Article  CAS  Google Scholar 

  22. Shi, M. et al. High-yield green synthesis of N-doped hierarchical porous carbon by nitrate-mediated organic salt activation strategy for capacitive deionization: universality and commerciality. Chem. Eng. J. 471, 144465 (2023).

    Article  CAS  Google Scholar 

  23. Cao, R. et al. Improving capacitive deionization performance by using O2 plasma modified carbon black. Chem. Eng. J. 451, 138530 (2023).

    Article  CAS  Google Scholar 

  24. Wang, S. et al. Freestanding Ti3C2Tx MXene/Prussian blue analogues films with superior ion uptake for efficient capacitive deionization by a dual pseudocapacitance effect. ACS Nano 16, 1239–1249 (2021).

    Article  PubMed  Google Scholar 

  25. Liu, Y. et al. Review on carbon-based composite materials for capacitive deionization. RSC Adv. 5, 15205–15225 (2015).

    Article  CAS  Google Scholar 

  26. Xu, X., Pan, L., Liu, Y., Lu, T. & Sun, Z. Enhanced capacitive deionization performance of graphene by nitrogen doping. J. Colloid Interface Sci. 445, 143–150 (2015).

    Article  PubMed  CAS  Google Scholar 

  27. Li, Y. et al. Nitrogen-doped hollow mesoporous carbon spheres for efficient water desalination by capacitive deionization. ACS Sustain. Chem. Eng. 5, 6635–6644 (2017).

    Article  CAS  Google Scholar 

  28. Zang, X. et al. An ion-accumulating effect in a hollow carbon bowl electrode: understanding the structure-enhanced volumetric desalination capacity and ion transport kinetics in capacitive deionization. J. Mater. Chem. A 10, 9988–9996 (2022).

    Article  CAS  Google Scholar 

  29. Tang, Y. et al. Design of uniform hollow carbon nanoarchitectures: different capacitive deionization between the hollow shell thickness and cavity size. Adv. Sci. 10, 2206960 (2023).

    Article  CAS  Google Scholar 

  30. Wang, H. et al. Design of graphene-coated hollow mesoporous carbon spheres as high performance electrodes for capacitive deionization. J. Mater. Chem. A 2, 4739–4750 (2014).

    Article  CAS  Google Scholar 

  31. Luo, Z.-Y. et al. Docked ions: vertical-aligned tubular arrays for highly efficient capacitive deionization. Desalination 540, 115985 (2022).

    Article  CAS  Google Scholar 

  32. Liu, X. et al. Unlocking enhanced capacitive deionization of NaTi2(PO4)3/Carbon materials by the yolk–shell design. J. Am. Chem. Soc. 145, 9242–9253 (2023).

    Article  PubMed  CAS  Google Scholar 

  33. Su, J. et al. Strain enhances the activity of molecular electrocatalysts via carbon nanotube supports. Nat. Catal. 6, 818–828 (2023).

    Article  CAS  Google Scholar 

  34. Liu, M. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016).

    Article  PubMed  CAS  Google Scholar 

  35. Gao, F. Y. et al. High‐curvature transition‐metal chalcogenide nanostructures with a pronounced proximity effect enable fast and selective CO2 electroreduction. Angew. Chem. Int. Ed. 132, 8706–8712 (2020).

    Article  Google Scholar 

  36. Yao, J. et al. Alkynes electrooxidation to α, α-dichloroketones in seawater with natural chlorine participation via competitive reaction inhibition and tip-enhanced reagent concentration. ACS Cent. Sci. 10, 155–162 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chen, Q.-X. et al. Microchemical engineering in a 3D ordered channel enhances electrocatalysis. J. Am. Chem. Soc. 143, 12600–12608 (2021).

    Article  PubMed  CAS  Google Scholar 

  38. Zi, X. et al. Breaking K+ concentration limit on Cu nanoneedles for acidic electrocatalytic CO2 reduction to multi‐carbon products. Angew. Chem. Int. Ed. 62, e202309351 (2023).

    Article  CAS  Google Scholar 

  39. Xiang, L. et al. Block copolymer self‐assembly directed synthesis of porous materials with ordered bicontinuous structures and their potential applications. Adv. Mater. 35, 2207684 (2023).

    Article  CAS  Google Scholar 

  40. Han, L. & Che, S. An overview of materials with triply periodic minimal surfaces and related geometry: from biological structures to self‐assembled systems. Adv. Mater. 30, 1705708 (2018).

    Article  Google Scholar 

  41. Tamm, J., Alumaa, A., Hallik, A. & Sammelselg, V. Electrochemical properties of cation sensitive polypyrrole films. J. Electroanal. Chem. 448, 25–31 (1998).

    Article  CAS  Google Scholar 

  42. Shimidzu, T., Ohtani, A. & Honda, K. Charge-controllable poly pyrrole/poly electrolyte composite membranes: part III. Electrochemical deionization system constructed by anion-exchangeable and cation-exchangeable polypyrrole electrodes. J. Electroanal. Chem. 251, 323–337 (1988).

    Article  CAS  Google Scholar 

  43. Klinowski, J., Mackay, A. L. & Terrones, H. Curved surfaces in chemical structure. Philos. Trans. R. Soc. A 354, 1975–1987 (1996).

    Article  CAS  Google Scholar 

  44. Von Schnering, H. G. & Nesper, R. Nodal surfaces of Fourier series: fundamental invariants of structured matter. Z. Phys. B: Condens. Matter 83, 407–412 (1991).

    Article  Google Scholar 

  45. Assenza, S. & Mezzenga, R. Curvature and bottlenecks control molecular transport in inverse bicontinuous cubic phases. J. Chem. Phys. 148, 054902 (2018).

    Article  PubMed  Google Scholar 

  46. Kim, K. et al. Asymmetric redox‐polymer interfaces for electrochemical reactive separations: synergistic capture and conversion of arsenic. Adv. Mater. 32, 1906877 (2020).

    Article  CAS  Google Scholar 

  47. Xiang, L. et al. Porous polymer cubosomes with ordered single primitive bicontinuous architecture and their sodium–iodine batteries. J. Am. Chem. Soc. 144, 15497–15508 (2022).

    Article  PubMed  CAS  Google Scholar 

  48. Xiang, L. et al. Ultrahigh‐rate Na/Cl2 batteries through improved electron and ion transport by heteroatom‐doped bicontinuous‐structured carbon. Angew. Chem. Int. Ed. 62, e202312001 (2023).

    Article  CAS  Google Scholar 

  49. Chen, G. F. et al. A porous perchlorate‐doped polypyrrole nanocoating on nickel nanotube arrays for stable wide‐potential‐window supercapacitors. Adv. Mater. 28, 7680–7687 (2016).

    Article  PubMed  CAS  Google Scholar 

  50. Le, T.-H., Kim, Y. & Yoon, H. Electrical and electrochemical properties of conducting polymers. Polymers 9, 150 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lin, D. et al. Prototypical study of double-layered cathodes for aqueous rechargeable static Zn–I2 batteries. Nano Lett. 21, 4129–4135 (2021).

    Article  PubMed  CAS  Google Scholar 

  52. Miao, L. et al. Pseudocapacitive deionization with polypyrrole grafted CMC carbon aerogel electrodes. Sep. Purif. Technol. 296, 121441 (2022).

    Article  CAS  Google Scholar 

  53. Kong, H., Yang, M., Miao, Y. & Zhao, X. Polypyrrole as a novel chloride‐storage electrode for seawater desalination. Energy Technol. 7, 1900835 (2019).

    Article  CAS  Google Scholar 

  54. Ma, J. et al. Flow-electrode capacitive deionization (FCDI) scale-up using a membrane stack configuration. Water Res. 168, 115186 (2020).

    Article  PubMed  CAS  Google Scholar 

  55. Zhang, X., Zhang, J., Song, W. & Liu, Z. Controllable synthesis of conducting polypyrrole nanostructures. J. Phys. Chem. B 110, 1158–1165 (2006).

    Article  PubMed  CAS  Google Scholar 

  56. Guo, J. et al. Graphene–carbon 2D heterostructures with hierarchically-porous P, N-doped layered architecture for capacitive deionization. Chem. Sci. 12, 10334–10340 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Li, H. et al. Nanoarchitectonics of ultrafine molybdenum carbide nanocrystals into three-dimensional nitrogen-doped carbon framework for capacitive deionization. Chem. Sci. 15, 11540–11549 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Li, J. et al. Enhanced redox kinetics of prussian blue analogues for superior electrochemical deionization performance. Chem. Sci. 15, 11814–11824 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Wu, W. et al. Graphene oxide-BiOCl nanoparticle composites as catalysts for oxidation of volatile organic compounds in nonthermal plasmas. ACS Appl. Nano Mater. 3, 9363–9374 (2020).

    Article  CAS  Google Scholar 

  60. Li, H., Lu, T., Pan, L., Zhang, Y. & Sun, Z. Electrosorption behavior of graphene in NaCl solutions. J. Mater. Chem. 19, 6773–6779 (2009).

    Article  CAS  Google Scholar 

  61. Yang, B. et al. Accelerating CO2 electroreduction to multicarbon products via synergistic electric–thermal field on copper nanoneedles. J. Am. Chem. Soc. 144, 3039–3049 (2022).

    Article  PubMed  CAS  Google Scholar 

  62. Pang, A. L., Arsad, A. & Ahmadipour, M. Synthesis and factor affecting on the conductivity of polypyrrole: a short review. Polym. Adv. Technol. 32, 1428–1454 (2021).

    Article  CAS  Google Scholar 

  63. Stogryn, A. Equations for calculating the dielectric constant of saline water (correspondence). IEEE Trans. Microw. Theory Tech. 19, 733–736 (1971).

    Article  Google Scholar 

  64. Saafan, S. A., El‐Nimr, M. K. & El‐Ghazzawy, E. H. Study of dielectric properties of polypyrrole prepared using two different oxidizing agents. J. Appl. Polym. Sci. 99, 3370–3379 (2006).

    Article  CAS  Google Scholar 

  65. Liu, P. et al. Tip‐enhanced electric field: a new mechanism promoting mass transfer in oxygen evolution reactions. Adv. Mater. 33, 2007377 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22225501, 52421006, 52073173 and 51909066), Shanghai Municipal Science and Technology Major Project, the Open Fund of Shanghai Jiao Tong University, Shaoxing Institute of New Energy and Molecular Engineering (JDSX2022025), the UQ-Yonsei International Research Project, the ARC Laureate Fellowship (FL230100095) and the JST-ERATO Yamauchi Materials Space-Tectonics Project (grant number: JPMJER2003). F. Tian and the time-resolved USAXS Beamline BL10U1 at the SSRF are acknowledged for SAXS measurements.

Author information

Authors and Affiliations

Authors

Contributions

Y.M., Y.Y. and X.X. conceived and designed the project. L.X. performed the material preparation and characterization. X.X. conducted the device preparation and electrochemical characterization. Y.L. executed the finite element numerical calculations. L.X., X.X., H.Z., R.X., C.L. and F.X. analysed the data. All the authors contributed to the writing of the manuscript. Y.M., Y.Y. and X.X. supervised the project.

Corresponding authors

Correspondence to Xingtao Xu, Yusuke Yamauchi or Yiyong Mai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Xinliang Feng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–22, Tables 1 and 2 and references.

Reporting Summary

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, L., Xu, X., Liu, Y. et al. Curvature-induced ion docking effect in capacitive deionization. Nat Water 2, 1195–1206 (2024). https://doi.org/10.1038/s44221-024-00340-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44221-024-00340-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing