Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dialysis opens a new pathway for high-salinity organic wastewater treatment

Abstract

High-salinity organic wastewaters pose a major challenge for conventional wastewater treatment processes. Here we propose dialysis as an innovative solution to overcome this challenge. Dialysis uses an ultrafiltration (UF) membrane that allows the passage of salts while rejecting the organic substances, operating in a bilateral countercurrent flow mode without the application of hydraulic pressure. Using bench-scale experiments and a model for salt and water transport in leaky membranes, we demonstrate that dialysis can effectively desalinate high-salinity organic wastewaters without diluting the wastewater stream. By comparing the salt/organic selectivity of dialysis and UF using the same membrane, we show that dialysis can effectively fractionate salts and organic substances in high-salinity organic wastewaters. Additionally, we find that, unlike UF, dialysis is almost unaffected by membrane fouling, highlighting its excellent fouling resistance. We conclude by proposing potential high-salinity organic wastewater treatment schemes based on dialysis, paving the way for more sustainable and effective management of challenging wastewaters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Membrane-based technologies for high-salinity organic wastewater treatment.
Fig. 2: Effectiveness of dialysis in high-salinity organic wastewater desalination.
Fig. 3: Effectiveness of dialysis in salt/organic fractionation.
Fig. 4: Fouling resistance of dialysis in high-salinity organic wastewater treatment.
Fig. 5: Potential high-salinity organic wastewater treatment schemes based on dialysis.

Similar content being viewed by others

Data availability

Source data are provided with this paper. Source data for figures are also available publicly via Figshare at https://doi.org/10.6084/m9.figshare.26309704 (ref. 59).

References

  1. Lefebvre, O. & Moletta, R. Treatment of organic pollution in industrial saline wastewater: a literature review. Water Res. 40, 3671–3682 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Warner, N. R., Christie, C. A., Jackson, R. B. & Vengosh, A. Impacts of shale gas wastewater disposal on water quality in western pennsylvania. Environ. Sci. Technol. 47, 11849–11857 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Guo, N., Wang, Y., Tong, T. & Wang, S. The fate of antibiotic resistance genes and their potential hosts during bio-electrochemical treatment of high-salinity pharmaceutical wastewater. Water Res. 133, 79–86 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Xie, W. et al. Shale gas wastewater characterization: comprehensive detection, evaluation of valuable metals, and environmental risks of heavy metals and radionuclides. Water Res. 220, 118703 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. De Vrieze, J., Coma, M., Debeuckelaere, M., Van der Meeren, P. & Rabaey, K. High salinity in molasses wastewaters shifts anaerobic digestion to carboxylate production. Water Res. 98, 293–301 (2016).

    Article  PubMed  Google Scholar 

  7. Zhang, W. et al. Impact of chloride ions on UV/H2O2 and UV/persulfate advanced oxidation processes. Environ. Sci. Technol. 52, 7380–7389 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Cao, T. N.-D. et al. An overview of deploying membrane bioreactors in saline wastewater treatment from perspectives of microbial and treatment performance. Bioresour. Technol. 363, 127831 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, X. et al. Simultaneous purification of salt and condensate by collaborated evaporation-peroxodisulfate treatment of high salinity organic wastewater. Sep. Purif. Technol. 347, 127703 (2024).

    Article  CAS  Google Scholar 

  10. Liu, J. & Wang, J. Experimental study on the mechanism and efficiency of a closed-cycle low-temperature evaporation system for treating high salt and high organic matter wastewater. J. Water Process. Eng. 58, 104926 (2024).

    Article  Google Scholar 

  11. Zhang, X. Selective separation membranes for fractionating organics and salts for industrial wastewater treatment: design strategies and process assessment. J. Membr. Sci. 643, 120052 (2022).

    Article  CAS  Google Scholar 

  12. Goh, P. S., Wong, K. C. & Ismail, A. F. Membrane technology: a versatile tool for saline wastewater treatment and resource recovery. Desalination 521, 115377 (2022).

    Article  CAS  Google Scholar 

  13. Lin, J. et al. Fractionation of direct dyes and salts in aqueous solution using loose nanofiltration membranes. J. Membr. Sci. 477, 183–193 (2015).

    Article  CAS  Google Scholar 

  14. Jiang, M. et al. Conventional ultrafiltration as effective strategy for dye/salt fractionation in textile wastewater treatment. Environ. Sci. Technol. 52, 10698–10708 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Li, M. et al. Fractionation and concentration of high-salinity textile wastewater using an ultra-permeable sulfonated thin-film composite. Environ. Sci. Technol. 51, 9252–9260 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Jiang, M. et al. Effective dye purification using tight ceramic ultrafiltration membrane. J. Membr. Sci. 566, 151–160 (2018).

    Article  CAS  Google Scholar 

  17. Luo, X. et al. Energy-efficient trehalose-based polyester nanofiltration membranes for zero-discharge textile wastewater treatment. J. Hazard. Mater. 465, 133059 (2024).

    Article  CAS  PubMed  Google Scholar 

  18. Zhao, R. et al. Recycling the high-salinity textile wastewater by quercetin-based nanofiltration membranes with minimal water and energy consumption. Environ. Sci. Technol. 56, 17998–18007 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Cai, W. et al. New insights into membrane fouling formation during ultrafiltration of organic wastewater with high salinity. J. Membr. Sci. 635, 119446 (2021).

    Article  CAS  Google Scholar 

  20. Arooj, A., Yin, J., Li, K., Li, M. & Zhang, X. Pressure-driven membranes for advanced treatment of textile wastewater: dye/salt fractionation, concentration, and cleaning strategies. Desalination 581, 117596 (2024).

    Article  CAS  Google Scholar 

  21. Tu, S.-C., Ravindran, V. & Pirbazari, M. A pore diffusion transport model for forecasting the performance of membrane processes. J. Membr. Sci. 265, 29–50 (2005).

    Article  CAS  Google Scholar 

  22. Dai, F. et al. Antifouling polyphenylene sulfone tight-ultrafiltration membrane by co-depositing dopamine and zwitterionic polymer for efficient dye/salt separation. Sep. Purif. Technol. 345, 127403 (2024).

    Article  CAS  Google Scholar 

  23. Han, G., Feng, Y., Chung, T.-S., Weber, M. & Maletzko, C. Phase inversion directly induced tight ultrafiltration (UF) hollow fiber membranes for effective removal of textile dyes. Environ. Sci. Technol. 51, 14254–14261 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Himmelfarb, J., Vanholder, R., Mehrotra, R. & Tonelli, M. The current and future landscape of dialysis. Nat. Rev. Nephrol. 16, 573–585 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pastan, S. & Bailey, J. Dialysis therapy. New Engl. J. Med. 338, 1428–1437 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Kerr, P. G. & Huang, L. Review: membranes for haemodialysis. Nephrology 15, 381–385 (2010).

    PubMed  Google Scholar 

  27. BagaRao, S. & Ghista, D. N. in Biomedical Engineering of Pancreatic, Pulmonary, and Renal Systems, and Applications to Medicine (ed. Ghista, D.) 625–646 (Academic Press, 2023).

  28. Yehl, C. J. & Zydney, A. L. High performance countercurrent membrane purification for protein separations. J. Membr. Sci. 633, 119396 (2021).

    Article  CAS  Google Scholar 

  29. Yehl, C. J. & Zydney, A. L. Analysis of tradeoffs between purification factor and yield for high-performance countercurrent membrane purification for protein separations. Biotechnol. Prog. 38, e3221 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Mohammadzadehmarandi, A., Determan, A., Krumm, C., McIntosh, L. D. & Zydney, A. L. High-performance countercurrent membrane purification for host cell protein removal from monoclonal antibody products. Biotechnol. Bioeng. 120, 3585–3591 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Misra, M. Basic mechanisms governing solute and fluid transport in hemodialysis. Hemodial. Int. 12, S25–S28 (2008).

    Article  PubMed  Google Scholar 

  32. Wang, R., Zhang, J., Tang, C. Y. & Lin, S. Understanding selectivity in solute–solute separation: definitions, measurements, and comparability. Environ. Sci. Technol. 56, 2605–2616 (2022).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, L. et al. Water transport in reverse osmosis membranes is governed by pore flow, not a solution-diffusion mechanism. Sci. Adv. 9, eadf8488 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rasouli, M. Basic concepts and practical equations on osmolality: biochemical approach. Clin. Biochem. 49, 936–941 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Zhao, Y. et al. Differentiating solutes with precise nanofiltration for next generation environmental separations: a review. Environ. Sci. Technol. 55, 1359–1376 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Johnson, D., Hashaikeh, R. & Hilal, N. in Osmosis Engineering (eds Hilal, N. et al.) 1–15 (Elsevier, 2021).

  37. Wang, L. et al. Salt and water transport in reverse osmosis membranes: beyond the solution-diffusion model. Environ. Sci. Technol. 55, 16665–16675 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Shen, L., Li, P. & Zhang, T. Green and feasible fabrication of loose nanofiltration membrane with high efficiency for fractionation of dye/NaCl mixture by taking advantage of membrane fouling. J. Appl. Polym. Sci. 136, 47438 (2019).

    Article  Google Scholar 

  39. Shao, J., Hou, J. & Song, H. Comparison of humic acid rejection and flux decline during filtration with negatively charged and uncharged ultrafiltration membranes. Water Res. 45, 473–482 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Chang, S., Waite, T. D., Schäfer, A. I. & Fane, A. G. Adsorption of trace steroid estrogens to hydrophobic hollow fibre membranes. Desalination 146, 381–386 (2002).

    Article  CAS  Google Scholar 

  41. Bellona, C., Drewes, J. E., Xu, P. & Amy, G. Factors affecting the rejection of organic solutes during NF/RO treatment—a literature review. Water Res. 38, 2795–2809 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Coates, E. Aggregation of dyes in aqueous solutions. J. Soc. Dye. Colour. 85, 355–368 (1969).

    Article  CAS  Google Scholar 

  43. Chen, Z., Lohr, A., Saha-Möller, C. R. & Würthner, F. Self-assembled π-stacks of functional dyes in solution: structural and thermodynamic features. Chem. Soc. Rev. 38, 564–584 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Lu, X. et al. Relating selectivity and separation performance of lamellar two-dimensional molybdenum disulfide (MoS2) membranes to nanosheet stacking behavior. Environ. Sci. Technol. 54, 9640–9651 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Ahmad, N. N. R., Ang, W. L., Leo, C. P., Mohammad, A. W. & Hilal, N. Current advances in membrane technologies for saline wastewater treatment: a comprehensive review. Desalination 517, 115170 (2021).

    Article  CAS  Google Scholar 

  46. Horseman, T. et al. Wetting, scaling, and fouling in membrane distillation: state-of-the-art insights on fundamental mechanisms and mitigation strategies. ACS EST Eng. 1, 117–140 (2021).

    Article  CAS  Google Scholar 

  47. Peter-Varbanets, M., Margot, J., Traber, J. & Pronk, W. Mechanisms of membrane fouling during ultra-low pressure ultrafiltration. J. Membr. Sci. 377, 42–53 (2011).

    Article  CAS  Google Scholar 

  48. Kimura, K. & Kume, K. Irreversible fouling in hollow-fiber PVDF MF/UF membranes filtering surface water: effects of precoagulation and identification of the foulant. J. Membr. Sci. 602, 117975 (2020).

    Article  Google Scholar 

  49. Song, L. & Elimelech, M. Particle deposition onto a permeable surface in laminar flow. J. Colloid Interface Sci. 173, 165–180 (1995).

    Article  CAS  Google Scholar 

  50. Virtanen, T. et al. Analysis of membrane fouling by Brunauer–Emmett–Teller nitrogen adsorption/desorption technique. Sci. Rep. 10, 3427 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rudolph-Schöpping, G., Schagerlöf, H., Jönsson, A.-S. & Lipnizki, F. Comparison of membrane fouling during ultrafiltration with adsorption studied by quartz crystal microbalance with dissipation monitoring (QCM-D). J. Membr. Sci. 672, 121313 (2023).

    Article  Google Scholar 

  52. Xie, M., Lee, J., Nghiem, L. D. & Elimelech, M. Role of pressure in organic fouling in forward osmosis and reverse osmosis. J. Membr. Sci. 493, 748–754 (2015).

    Article  CAS  Google Scholar 

  53. Straub, A. P., Lin, S. & Elimelech, M. Module-scale analysis of pressure retarded osmosis: performance limitations and implications for full-scale operation. Environ. Sci. Technol. 48, 12435–12444 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Cheng, H.-H., Narindri, B., Chu, H. & Whang, L.-M. Recent advancement on biological technologies and strategies for resource recovery from swine wastewater. Bioresour. Technol. 303, 122861 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. She, Q., Wang, R., Fane, A. G. & Tang, C. Y. Membrane fouling in osmotically driven membrane processes: a review. J. Membr. Sci. 499, 201–233 (2016).

    Article  CAS  Google Scholar 

  56. Tong, T. & Elimelech, M. The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions. Environ. Sci. Technol. 50, 6846–6855 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, C. et al. Designing a next generation solar crystallizer for real seawater brine treatment with zero liquid discharge. Nat. Commun. 12, 998 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zhou, Z. et al. Precise sub-angstrom ion separation using conjugated microporous polymer membranes. ACS Nano 15, 11970–11980 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Chen, Y. Dialysis opens a new pathway for high-salinity organic wastewater treatment. Figshare https://doi.org/10.6084/m9.figshare.26309704 (2024).

  60. Chen, Y., Kim, S. & Cohen, Y. Tuning the hydraulic permeability and molecular weight cutoff (MWCO) of surface nano-structured ultrafiltration membranes. J. Membr. Sci. 629, 119180 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the financial support from the Basic Science Center Project of the National Natural Science Foundation of China (52388101).

Author information

Authors and Affiliations

Authors

Contributions

Y.C. and Z.W. designed the experiment and wrote the initial draft. Longchao W. performed the experiments. Y.C. and Li W. conducted model development and data fitting. M.d.C. and X.Z. assisted in interpreting the results and revised the manuscript. Z.W. and M.E. conceived the idea, supervised the research and revised the manuscript. All authors participated in the discussion.

Corresponding authors

Correspondence to Menachem Elimelech or Zhangxin Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text 1–6, Tables 1 and 2 and Figs. 1–14.

Supplementary Data 1

Data for Supplementary Figs. 2–6, 9–11 and 14.

Source data

Source Data Fig. 2

Data for Fig. 2.

Source Data Fig. 3

Data for Fig. 3.

Source Data Fig. 4

Data for Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wang, L., del Cerro, M. et al. Dialysis opens a new pathway for high-salinity organic wastewater treatment. Nat Water 3, 49–58 (2025). https://doi.org/10.1038/s44221-024-00368-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44221-024-00368-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing