Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dual-substrate synergistic catalysis for highly efficient water purification

Abstract

Non-radical oxidation of pollutants by direct electron transfer has gained heightened interest in water purification for its higher selectivity and efficiency and lower tendency for byproduct formation than traditional advanced oxidation processes. Engineering of catalysts for efficient activation of two substrates (that is, pollutant and oxidant) is essential to trigger the direct electron transfer reactions but is often hindered by the distinct properties of the co-present substrates. We investigated the individual interaction between the catalyst and each substrate and proposed a dual-substrate synergistic catalysis strategy to achieve separate optimization of each substrate activation process. Experimental and theoretical analyses reveal a strong synergistic effect between the two catalysts that preferentially activate the substrates and have smaller resistance for interfacial electron transfer, thus drastically improving the decontamination efficiency. The dual-substrate synergistic catalysis system offers a conceptual advancement in achieving green and efficient water purification by substrate-specific activation, facilitating flexible design and mechanistic exploration of complex heterogeneous catalytic processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Construction, performance and reaction products of the DSSC system.
Fig. 2: Origin and mechanism of the synergistic catalysis.
Fig. 3: DFT calculations of the adsorption and activation of substrates in the DSSC system.
Fig. 4: Schematic illustration of the DSSC system.
Fig. 5: Evaluation of the DSSC system for practical applications.

Similar content being viewed by others

Data availability

The data for this study are available within the article and its Supplementary Information. Source data are provided with this paper.

References

  1. Gligorovski, S. et al. Environmental implications of hydroxyl radicals (•OH). Chem. Rev. 115, 13051–13092 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Hodges, B. C. et al. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nat. Nanotechnol. 13, 642–650 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Yang, X. et al. Multiple roles of dissolved organic matter in advanced oxidation processes. Environ. Sci. Technol. 56, 11111–11131 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Yang, Z. et al. Toward selective oxidation of contaminants in aqueous systems. Environ. Sci. Technol. 55, 14494–14514 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Ghanbari, F. & Moradi, M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: review. Chem. Eng. J. 310, 41–62 (2017).

    Article  CAS  Google Scholar 

  6. von Gunten, U. Oxidation processes in water treatment: are we on track? Environ. Sci. Technol. 52, 5062–5075 (2018).

    Article  Google Scholar 

  7. Zhu, L. et al. Designing 3D-MoS2 sponge as excellent cocatalysts in advanced oxidation processes for pollutant control. Angew. Chem. Int. Ed. 59, 13968–13976 (2020).

    Article  CAS  Google Scholar 

  8. Krasner, S. W. et al. Formation, precursors, control, and occurrence of nitrosamines in drinking water: a review. Water Res. 47, 4433–4450 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Sgroi, M. et al. N-nitrosodimethylamine (NDMA) and its precursors in water and wastewater: a review on formation and removal. Chemosphere 191, 685–703 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Farré, M. J. et al. Assessment of degradation byproducts and NDMA formation potential during UV and UV/H2O2 treatment of doxylamine in the presence of monochloramine. Environ. Sci. Technol. 46, 12904–12912 (2012).

    Article  PubMed  Google Scholar 

  11. Zhang, T. et al. Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation. Environ. Sci. Technol. 48, 5868–5875 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Dou, J. et al. Neglected but efficient electron utilization driven by biochar-coactivated phenols and peroxydisulfate: polyphenol accumulation rather than mineralization. Environ. Sci. Technol. 57, 5703–5713 (2023).

    Article  CAS  PubMed  Google Scholar 

  13. Ren, W. et al. Origins of electron-transfer regime in persulfate-based nonradical oxidation processes. Environ. Sci. Technol. 56, 78–97 (2021).

    Article  PubMed  Google Scholar 

  14. Yao, C. et al. Insights into the mechanism of non-radical activation of persulfate via activated carbon for the degradation of p-chloroaniline. Chem. Eng. J. 362, 262–268 (2019).

    Article  CAS  Google Scholar 

  15. Guan, C. et al. Transformation of iodide by carbon nanotube activated peroxydisulfate and formation of iodoorganic compounds in the presence of natural organic matter. Environ. Sci. Technol. 51, 479–487 (2016).

    Article  PubMed  Google Scholar 

  16. Hu, P. et al. Selective degradation of organic pollutants using an efficient metal-free catalyst derived from carbonized polypyrrole via peroxymonosulfate activation. Environ. Sci. Technol. 51, 11288–11296 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Duan, X. et al. Nonradical reactions in environmental remediation processes: uncertainty and challenges. Appl. Catal. B 224, 973–982 (2018).

    Article  CAS  Google Scholar 

  18. Peng, Y. et al. Thermodynamic and kinetic behaviors of persulfate-based electron-transfer regime in carbocatalysis. Environ. Sci. Technol. 57, 19012–19022 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Yu, Z. et al. Decoupled oxidation process enabled by atomically dispersed copper electrodes for in-situ chemical water treatment. Nat. Commun. 15, 1186 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang, Y.-J. et al. Simultaneous nanocatalytic surface activation of pollutants and oxidants for highly efficient water decontamination. Nat. Commun. 13, 3005 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang, K. Z. & Zhang, H. Direct electron-transfer-based peroxymonosulfate activation by iron-doped manganese oxide (δ-MnO2) and the development of galvanic oxidation processes (GOPs). Environ. Sci. Technol. 53, 12610–12620 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, X. et al. Selective removal of organic pollutants in groundwater and surface water by persulfate-assisted advanced oxidation: the role of electron-donating capacity. Environ. Sci. Technol. 57, 13710–13720 (2023).

    Article  CAS  PubMed  Google Scholar 

  23. Huang, K. Z. & Zhang, H. Galvanic oxidation processes (GOPs): an effective direct electron transfer approach for organic contaminant oxidation. Sci. Total Environ. 743, 140828–140837 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Lee, J. et al. Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks. Environ. Sci. Technol. 54, 3064–3081 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Yun, E. T. et al. Identifying the nonradical mechanism in the peroxymonosulfate activation process: singlet oxygenation versus mediated electron transfer. Environ. Sci. Technol. 52, 7032–7042 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Si, Y. et al. Reusing sulfur-poisoned palladium waste as a highly active, nonradical Fenton-like catalyst for selective degradation of phenolic pollutants. Environ. Sci. Technol. 56, 564–574 (2021).

    Article  PubMed  Google Scholar 

  27. Huang, G. X. et al. Degradation of bisphenol a by peroxymonosulfate catalytically activated with Mn1.8Fe1.2O4 nanospheres: synergism between Mn and Fe. Environ. Sci. Technol. 51, 12611–12618 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Choueiri, R. M. et al. Surface patterning of nanoparticles with polymer patches. Nature 538, 79–83 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Itta, A. K. et al. Fabrication and characterization of PPO/PVP blend carbon molecular sieve membranes for H2/N2 and H2/CH4 separation. J. Membr. Sci. 372, 387–395 (2011).

    Article  CAS  Google Scholar 

  30. Gupta, S. et al. Mechanistic studies for the polymerization of 2,6-dimethylphenol to poly (2,6-dimethyl-1,4-phenylene ether): LC-MS analyses showing rearrangement and redistribution products. Appl. Catal. A 319, 163–170 (2007).

    Article  CAS  Google Scholar 

  31. Maeno, Z. et al. Selective C–C coupling reaction of dimethylphenol to tetramethyldiphenoquinone using molecular oxygen catalyzed by Cu complexes immobilized in nanospaces of structurally-ordered materials. Molecules 20, 3089–3106 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Maeno, Z. et al. Regioselective oxidative coupling of 2,6-dimethylphenol to tetramethyldiphenoquinone using polyamine dendrimer-encapsulated Cu catalysts. RSC Adv. 3, 9662–9665 (2013).

    Article  CAS  Google Scholar 

  33. Zhao, Y. et al. The effect of ligand molecular weight on copper salt catalyzed oxidative coupling polymerization of 2,6-dimethylphenol. J. Appl. Polym. Sci. 117, 3473–3481 (2010).

    Article  CAS  Google Scholar 

  34. Samec, Z. et al. Reduction of peroxodisulfate on gold(111) covered by surface oxides: inhibition and coupling between two oxide reduction processes. J. Electroanal. Chem. 499, 129–135 (2001).

    Article  CAS  Google Scholar 

  35. Ren, W. et al. Activation of peroxydisulfate on carbon nanotubes: electron-transfer mechanism. Environ. Sci. Technol. 53, 14595–14603 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Yang, Q. et al. Unzipping carbon nanotubes to nanoribbons for revealing the mechanism of nonradical oxidation by carbocatalysis. Appl. Catal. B 276, 119146–119155 (2020).

    Article  CAS  Google Scholar 

  37. Elgrishi, N. et al. A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95, 197–206 (2017).

    Article  Google Scholar 

  38. Qi, Y. et al. Insights into the activity of nickel boride/nickel heterostructures for efficient methanol electrooxidation. Nat. Commun. 13, 4602 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhou, P. et al. Heterogeneous-interface-enhanced adsorption of organic and hydroxyl for biomass electrooxidation. Adv. Mater. 34, 2204089–2204097 (2022).

    Article  CAS  Google Scholar 

  40. Wang, H.-Y. et al. In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4. J. Am. Chem. Soc. 138, 36–39 (2015).

    Article  PubMed  Google Scholar 

  41. Xiao, Z. et al. Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction. J. Am. Chem. Soc. 142, 12087–12095 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Park, K. et al. Mitigation strategies of hydrogen sulphide emission in sewer networks—a review. Int. Biodeterior. Biodegrad. 95, 251–261 (2014).

    Article  CAS  Google Scholar 

  43. Liu, L. L. et al. Edge electronic vacancy on ultrathin carbon nitride nanosheets anchoring O2 to boost H2O2 photoproduction. Appl. Catal. B 302, 120845–120854 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51821006 (H.-Q.Y.)), 52293443 (G.-X.H.), 52192684 (H.-Q.Y.), 52027815 (H.-Q.Y.) and 22376191 (G.-X.H.)). The DFT calculations in this work were conducted on the supercomputing system in the Supercomputing Center of the University of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Contributions

G.-X.H. and H.-Q.Y. came up with the original idea; L.-J.S. and G.-X.H. designed and conducted the experiments; L.-J.S. performed the DFT calculations; J.-J.C. provided guidance on the DFT calculations; Z.-H.W., Y.-J.Z., W.-W.L., H.-Q.Y., Y.D. and M.E. helped the data interpretations; L.-J.S., G.-X.H., Y.D. and M.E. wrote the paper; all authors commented on the paper.

Corresponding authors

Correspondence to Gui-Xiang Huang, Han-Qing Yu or Menachem Elimelech.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Shun Mao, Liang Wu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods 1–4, Figs. 1–25, Tables 1–12 and references.

Reporting Summary

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, LJ., Huang, GX., Wang, ZH. et al. Dual-substrate synergistic catalysis for highly efficient water purification. Nat Water 3, 345–353 (2025). https://doi.org/10.1038/s44221-025-00400-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44221-025-00400-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing