Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sustainable polyester thin films for membrane desalination developed through interfacial catalytic polymerization

Abstract

Reverse osmosis membranes are essential in wastewater treatment, water reuse and desalination, but conventional polyamide reverse osmosis membranes rely on toxic amine monomers such as m-phenylenediamine, posing notable health risks. Here we show that an interfacial catalytic polymerization strategy enables the development of sustainable polyester thin films for membrane desalination. This approach improves reaction kinetics and polymerization control, facilitating the efficient polymerization of nature-derived phenol and alcohol compounds as non-toxic, cost-effective and environmentally friendly alternatives to m-phenylenediamine. The interfacial catalyst enhances both monomer diffusion and polymerization, overcoming the limited reactivity of nature-derived monomers to produce homogeneous, dense polyester thin films. The resulting membranes exhibit excellent desalination performance (NaCl rejection 99.2%; flux 31.7 l m−2 h−1 at 15 bar), comparable to commercial BW30 membranes at both coupon and spiral-wound module scales, demonstrating their potential for practical membrane desalination. This work paves the way for further development of sustainable, nature-derived membrane materials for desalination technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Preparation and structural characterization of TA-based polyester membrane.
Fig. 2: Investigation of the ICP mechanism.
Fig. 3: Desalination performance and antifouling properties of TA-based polyester membranes.
Fig. 4: Preparation and performance of pilot-scale membranes and modules.

Similar content being viewed by others

Data availability

Data generated in this study are provided in the article and Supplementary Information. Source data are provided with this paper.

References

  1. Rosa, L., Chiarelli, D. D., Rulli, M. C., Dell’Angelo, J. & D’Odorico, P. Global agricultural economic water scarcity. Sci. Adv. 6, eaaz6031 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Flörke, M., Schneider, C. & McDonald, R. I. Water competition between cities and agriculture driven by climate change and urban growth. Nat. Sustain. 1, 51–58 (2018).

    Article  Google Scholar 

  3. McCutcheon, J. R. & Mauter, M. S. Fixing the desalination membrane pipeline. Science 380, 242–244 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Wang, L. et al. Water transport in reverse osmosis membranes is governed by pore flow, not a solution–diffusion mechanism. Sci. Adv. 9, eadf8488 (2013).

    Article  Google Scholar 

  6. Yao, Y. et al. High performance polyester reverse osmosis desalination membrane with chlorine resistance. Nat. Sustain. 4, 138–146 (2021).

    Article  Google Scholar 

  7. Liang, Y. et al. Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 Å precision separation. Nat. Commun. 11, 2015 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dai, R. et al. Nanovehicle-assisted monomer shuttling enables highly permeable and selective nanofiltration membranes for water purification. Nat. Water 1, 281–290 (2023).

    Article  CAS  Google Scholar 

  9. Geise, G. M. Why polyamide reverse-osmosis membranes work so well. Science 371, 31–32 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Lim, Y. J., Goh, K., Kurihara, M. & Wang, R. Seawater desalination by reverse osmosis: current development and future challenges in membrane fabrication—a review. J. Membr. Sci. 629, 119292 (2021).

    Article  CAS  Google Scholar 

  11. Jones, E., Qadir, M., van Vliet, M. T. H., Smakhtin, V. & Kang, S.-m The state of desalination and brine production: a global outlook. Sci. Total Environ. 657, 1343–1356 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Lu, X. L. & Elimelech, M. Fabrication of desalination membranes by interfacial polymerization: history, current efforts, and future directions. Chem. Soc. Rev. 50, 6290–6307 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017).

    Article  PubMed  Google Scholar 

  14. Poste, A. E., Grung, M. & Wright, R. F. Amines and amine-related compounds in surface waters: a review of sources, concentrations and aquatic toxicity. Sci. Total Environ. 481, 274–279 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Nikfar, S. & Mozaffari, S. in Encyclopedia of Toxicology (ed. Wexler, P.) 549–553 (Academic, 2024).

  16. Racz, P. I. et al. Application of Caenorhabditis elegans (nematode) and Danio rerio embryo (zebrafish) as model systems to screen for developmental and reproductive toxicity of piperazine compounds. Toxicol. In Vitro 44, 11–16 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Johnson, W. m-Phenylenediamine and m-phenylenediamine sulfate. Int. J. Toxicol. 36, 42S–43S (2017).

    Article  PubMed  Google Scholar 

  18. Yan, W., Shi, M., Dong, C., Liu, L. & Gao, C. Applications of tannic acid in membrane technologies: a review. Adv. Colloid Interface Sci. 284, 102267 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Nguyen-Thi, K.-S. et al. Leveraging tannic acid-ferric iron (TA/Fe3+) complexation in polyamide selective layer for synthesizing robust thin film composite reverse osmosis (TFC-RO) hollow fiber membranes for saline water treatment. Sep. Purif. Technol. 348, 127669 (2024).

    Article  CAS  Google Scholar 

  20. Zhao, R. et al. Recycling the high-salinity textile wastewater by quercetin-based nanofiltration membranes with minimal water and energy consumption. Environ. Sci. Technol. 56, 17998–18007 (2022).

    Article  CAS  PubMed  Google Scholar 

  21. Shah, A. A. et al. Preparation of highly permeable nanofiltration membranes with interfacially polymerized biomonomers. J. Membr. Sci. 627, 119209 (2021).

    Article  CAS  Google Scholar 

  22. Zheng, J. et al. Sugar-based membranes for nanofiltration. J. Membr. Sci. 619, 118786 (2021).

    Article  CAS  Google Scholar 

  23. Ben-Zvi, A., Syed, U. T., Ramon, G. Z. & Nunes, S. Alternative materials for interfacial polymerization: recent approaches for greener membranes. Green Chem. 26, 6237–6260 (2024).

    Article  CAS  Google Scholar 

  24. Abdellah, M. H. et al. A catechin/cellulose composite membrane for organic solvent nanofiltration. J. Membr. Sci. 567, 139–145 (2018).

    Article  CAS  Google Scholar 

  25. Abdellah, M. H. et al. Effective interfacially polymerized polyester solvent resistant nanofiltration membrane from bioderived materials. Adv. Sustain. Syst. 2, 1800043 (2018).

    Article  Google Scholar 

  26. Pérez-Manríquez, L., Neelakanda, P. & Peinemann, K.-V. Morin-based nanofiltration membranes for organic solvent separation processes. J. Membr. Sci. 554, 1–5 (2018).

    Article  Google Scholar 

  27. Bai, Y. X. et al. Microstructure optimization of bioderived polyester nanofilms for antibiotic desalination via nanofiltration. Sci. Adv. 9, eadg6134 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang, Y. et al. Composite nanofiltration membranes prepared by interfacial polymerization with natural material tannic acid and trimesoyl chloride. J. Membr. Sci. 429, 235–242 (2013).

    Article  CAS  Google Scholar 

  29. Villalobos, L. F., Huang, T. F. & Peinemann, K. V. Cyclodextrin films with fast solvent transport and shape-selective permeability. Adv. Mater. 29, 1606641 (2017).

    Article  Google Scholar 

  30. Liu, J. T., Hua, D., Zhang, Y., Japip, S. & Chung, T. S. Precise molecular sieving architectures with Janus pathways for both polar and nonpolar molecules. Adv. Mater. 30, 1705933 (2018).

    Article  Google Scholar 

  31. Xue, J. et al. Chlorine-resistant polyester thin film composite nanofiltration membranes prepared with β-cyclodextrin. J. Membr. Sci. 584, 282–289 (2019).

    Article  CAS  Google Scholar 

  32. Xue, J. et al. High-flux nanofiltration membranes prepared with β-cyclodextrin and graphene quantum dots. J. Membr. Sci. 612, 118465 (2020).

    Article  CAS  Google Scholar 

  33. Li, J. et al. Thin-film composite polyester nanofiltration membrane with high flux and efficient dye/salts separation fabricated from precise molecular sieving structure of β-cyclodextrin. Sep. Purif. Technol. 276, 119352 (2021).

    Article  CAS  Google Scholar 

  34. Jin, P. et al. Erythritol-based polyester loose nanofiltration membrane with fast water transport for efficient dye/salt separation. Chem. Eng. J. 406, 126796 (2021).

    Article  CAS  Google Scholar 

  35. Ding, J., Wu, H. & Wu, P. Development of nanofiltration membranes using mussel-inspired sulfonated dopamine for interfacial polymerization. J. Membr. Sci. 598, 117658 (2020).

    Article  CAS  Google Scholar 

  36. Xu, R. et al. Preparation and performance of a charge-mosaic nanofiltration membrane with novel salt concentration sensitivity for the separation of salts and dyes. J. Membr. Sci. 595, 117472 (2020).

    Article  Google Scholar 

  37. Zhan, S. et al. Green lignin-based polyester nanofiltration membranes with ethanol and chlorine resistance. J. Appl. Polym. Sci. 139, 51427 (2022).

    Article  CAS  Google Scholar 

  38. Zheng, J. et al. Separation of textile wastewater using a highly permeable resveratrol-based loose nanofiltration membrane with excellent anti-fouling performance. Chem. Eng. J. 434, 134705 (2022).

    Article  CAS  Google Scholar 

  39. Jensen, W. B. The Lewis acid–base definitions: a status report. Chem. Rev. 78, 1–22 (1978).

    Article  CAS  Google Scholar 

  40. Gu, J.-E. et al. Molecular layer-by-layer assembled thin-film composite membranes for water desalination. Adv. Mater. 25, 4778–4782 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Jiang, Z., Karan, S. & Livingston, A. G. Water transport through ultrathin polyamide nanofilms used for reverse osmosis. Adv. Mater. 30, 1705973 (2018).

    Article  Google Scholar 

  42. Liu, C. et al. Interfacial polymerization at the alkane/ionic liquid interface. Angew. Chem. Int. Ed. 60, 14636–14643 (2021).

    Article  CAS  Google Scholar 

  43. Pinheiro, M. et al. Characterization and comparison of pore landscapes in crystalline porous materials. J. Mol. Graphics Model. 44, 208–219 (2013).

    Article  CAS  Google Scholar 

  44. Willems, T. F., Rycroft, C. H., Kazi, M., Meza, J. C. & Haranczyk, M. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Microporous Mesoporous Mater. 149, 134–141 (2011).

    Article  Google Scholar 

  45. Ongari, D. et al. Accurate characterization of the pore volume in microporous crystalline materials. Langmuir 33, 14529–14538 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hafner, J. Ab-initiosimulations of materials using VASP: density-functional theory and beyond. J. Comput. Chem. 29, 2044–2078 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  48. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21988102 to J.J. and U23A20116 to W.F.) and the Key Development Project of Jiangsu Province (BE2022056 to J.J.).

Author information

Authors and Affiliations

Authors

Contributions

Y.Z., J.J. and L.J. designed the experiments. Y.L. and W.F. performed all the experiments and the theoretical analysis. Z.Y. and Y.W. contributed materials and analysis tools. Y.L., W.F., Y.Z. and J.J. contributed to writing the manuscript.

Corresponding authors

Correspondence to Yuzhang Zhu or Jian Jin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Huacheng Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, including Figs. 1–37, Tables 1–9 and references.

Source data

Source Data Fig. 1

Source files of pore size distributions from polyester networks obtained via molecular dynamics simulation.

Source Data Fig. 2

Source files for the investigation of the ICP mechanism.

Source Data Fig. 3

Source files detailing the performance of desalination and the antifouling properties of RO membranes.

Source Data Fig. 4

Source files regarding the performance of pilot-scale membranes and modules.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Fang, W., Yue, Z. et al. Sustainable polyester thin films for membrane desalination developed through interfacial catalytic polymerization. Nat Water 3, 430–438 (2025). https://doi.org/10.1038/s44221-025-00419-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44221-025-00419-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing