Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Siderophores as a selective regulator for enhancing anaerobic ammonium oxidation bacteria

Abstract

The limited iron uptake efficiency of anaerobic ammonium oxidation (anammox) bacteria has garnered accumulating concerns, as iron plays an important role in anammox bacteria metabolism. Siderophores are a prevalent strategy for iron acquisition among many bacteria, and recent evidence has suggested the potential role of siderophore-Fe3+ as bioavailable iron sources to anammox bacteria. Nonetheless, what target siderophore anammox bacteria can use and how they use it remain poorly understood. Here we shed fresh light on siderophore selectively promoting iron uptake and regulating the metabolic activity of anammox bacteria. Batch experiments and long-term operations demonstrated that siderophores catechin (CAT) and N-hydroxyethyl ethylenediamine triacetic acid (HEDTA) increased the iron uptake efficiency of anammox consortia up to 50%–65% and triggered the cofactors synthesis for key enzymes assembly, thereby selectively enhancing the anammox activity (≥350 mg N per gram of volatile suspended solids per day) and nitrogen removal efficiency (≥85%). Integrated with multi-omics approaches, we revealed versatile iron uptake pathways within anammox bacteria genera: Candidatus Brocadia acquired CAT-Fe3+ and HEDTA-Fe3+ via outer membrane receptors FitA/TbpA and FecA, respectively, whereas Candidatus Jettenia initially reduced CAT-Fe3+ using NfnB enzyme before uptake via the FeoABC system. This work reveals a pivotal role of siderophores in selectively enhancing anammox bacteria by optimizing their iron uptake and utilization and uncovers the involved molecular mechanisms, which opens promising avenues to optimize the anammox process with siderophore regulation for more efficient and sustainable wastewater treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Short-term effect of exogenous siderophores on anammox systems.
Fig. 2: Long-term operation performance of the anammox systems with different iron additions.
Fig. 3: Iron content and morphology of anammox sludge in the anammox systems.
Fig. 4: Characterization of anammox sludge morphology in the anammox systems at day 60.
Fig. 5: Functional genus and nitrogen metabolic level of anammox bacteria.
Fig. 6: Metagenomic and metatranscriptomic information related to iron metabolism in the anammox systems.
Fig. 7: Proposed mechanisms of iron uptake and nitrogen transformation of anammox bacteria mediated by siderophores.

Similar content being viewed by others

Data availability

The data generated in this study are included within the article and its Supplementary Information. Raw sequencing data have been archived in NCBI Sequence Read Archive under the accession number PRJNA1222017. Source data are provided with this paper.

References

  1. Kartal, B., Kuenen, J. G. & Van Loosdrecht, M. C. M. Sewage treatment with anammox. Science 328, 702–703 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Andrews, S. C., Robinson, A. K. & Rodríguez-Quiñones, F. Bacterial iron homeostasis. FEMS Microbiol. Rev. 27, 215–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Kartal, B. & Keltjens, J. T. Anammox biochemistry: a tale of heme c proteins. Trends Biochem. Sci 41, 998–1011 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Ferousi, C. et al. Iron assimilation and utilization in anaerobic ammonium oxidizing bacteria. Curr. Opin. Chem. Biol. 37, 129–136 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Peng, M. W. et al. Insight into the structure and metabolic function of iron-rich nanoparticles in anammox bacteria. Sci. Total Environ. 806, 150879 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Kappler, A. et al. An evolving view on biogeochemical cycling of iron. Nat. Rev. Microbiol. 19, 360–374 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, L. & Okabe, S. Ecological niche differentiation among anammox bacteria. Water Res. 171, 115468 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Cao, M. et al. Spatial IMA1 regulation restricts root iron acquisition on MAMP perception. Nature 625, 750–759 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Santus, W. et al. Mycobiota and diet-derived fungal xenosiderophores promote Salmonella gastrointestinal colonization. Nat. Microbiol. 7, 2025–2038 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Endicott, N. P., Rivera, G. S. M., Yang, J. & Wencewicz, T. A. Emergence of ferrichelatase activity in a siderophore-binding protein supports an iron shuttle in bacteria. ACS Central Science 6, 493–506 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gu, S. H. et al. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Nat. Microbiol. 5, 1002–1010 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moynie, L. et al. The complex of ferric-enterobactin with its transporter from Pseudomonas aeruginosa suggests a two-site model. Nat. Commun. 10, 3673 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Arnold, F. M. et al. The ABC exporter IrtAB imports and reduces mycobacterial siderophores. Nature 580, 413–417 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhu, W. H. et al. Xenosiderophore utilization promotes Bacteroides thetaiotaomicron resilience during colitis. Cell Host Microbe 27, 376–388.e8 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dong, Z. Y. et al. Directed regulation of anammox communities based on exogenous siderophores for highly efficient nitrogen removal. Water Res. 243, 120394 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Kramer, J., Oezkaya, O. & Kuemmerli, R. Bacterial siderophores in community and host interactions. Nat. Rev. Microbiol. 18, 152–163 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Manck, L. E. et al. Petrobactin, a siderophore produced by Alteromonas, mediates community iron acquisition in the global ocean. ISME J. 16, 358–369 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Liu, X. H. et al. Draft genome sequence of a “Candidatus Brocadia” bacterium enriched from activated sludge collected in a tropical climate. Genome Announce. 6, e00406–18 (2018).

    Article  Google Scholar 

  19. Zheng, R. et al. Siderophore-mediated cooperation in anammox consortia. Environ. Sci. Technol. 59, 4003–4013 (2025).

    Article  CAS  PubMed  Google Scholar 

  20. Dai, B. et al. Enhancement and mechanisms of iron-assisted anammox process. Sci. Total Environ. 858, 159931 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Wang, H. et al. Function of Fe(III)-minerals in the enhancement of anammox performance exploiting integrated network and metagenomics analyses. Water Res. 210, 117998 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Kang, D. et al. Color characterization of anammox granular sludge: chromogenic substance, microbial succession and state indication. Sci. Total Environ. 642, 1320–1327 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Ye, J. H. et al. Diversity and dynamic response of anaerobic ammonia oxidation granular sludge. J. Environ. Sci. 152, 262–275 (2025).

    Article  CAS  Google Scholar 

  24. Jiang, Y. S. et al. Novel insight into the inhibitory effects and mechanisms of Fe(II)-mediated multi-metabolism in anaerobic ammonium oxidation (anammox). Water Res. 242, 120291 (2023).

    Article  CAS  PubMed  Google Scholar 

  25. Wang, H. et al. Metagenomics insight into the long-term effect of ferrous ions on the mainstream anammox system. Environ. Res. 238, 117243 (2023).

    Article  CAS  PubMed  Google Scholar 

  26. Lu, P. et al. Molecular mechanism of Fe3+ binding inhibition to Vibrio metschnikovii ferric ion-binding protein, FbpA, by rosmarinic acid and its hydrolysate, danshensu. Protein Sci. 33, e4881 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Klebba, P. E. et al. Iron acquisition systems of gram-negative bacterial pathogens define TonB-dependent pathways to novel antibiotics. Chem. Rev. 121, 5193–5239 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chicano, T. M. et al. Structural and functional characterization of the intracellular filament-forming nitrite oxidoreductase multiprotein complex. Nat. Microbiol. 6, 1129–1139 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Swayambhu, G., Bruno, M., Gulick, A. M. & Pfeifer, B. A. Siderophore natural products as pharmaceutical agents. Curr. Opin. Biotechnol. 69, 242–251 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Kang, D. et al. Deciphering correlation between chromaticity and activity of anammox sludge. Water Res. 185, 116184 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Yang, T. H. et al. Specificity and mechanism of TonB-dependent ferric catecholate uptake by Fiu. Front. Microbiol. 15, 1355253 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sexton, D. J. & Schuster, M. Nutrient limitation determines the fitness of cheaters in bacterial siderophore cooperation. Nat. Commun. 8, 230 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liu, L. L., Wang, W., Wu, S. H. & Gao, H. C. Recent advances in the siderophore biology of Shewanella. Front. Microbiol. 13, 823758 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Leventhal, G. E., Ackermann, M. & Schiessl, K. T. Why microbes secrete molecules to modify their environment: the case of iron-chelating siderophores. J. R. Soc. Interface 16, 20180674 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wilson, B. R., Bogdan, A. R., Miyazawa, M., Hashimoto, K. & Tsuji, Y. Siderophores in iron metabolism: from mechanism to therapy potential. Trends Mol. Med. 22, 1077–1090 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mayneris-Perxachs, J., Maria Moreno-Navarrete, J. & Manuel Fernandez-Real, J. The role of iron in host-microbiota crosstalk and its effects on systemic glucose metabolism. Nat. Rev. Endocrinol. 18, 683–698 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Biswakarma, J. et al. Linking isotope exchange with Fe(II)-catalyzed dissolution of iron(hydr)oxides in the presence of the bacterial siderophore Desferrioxamine-B. Environ. Sci. Technol. 54, 768–777 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. van Bergeijk, D. A. et al. The ubiquitous catechol moiety elicits siderophore and angucycline production in Streptomyces. Comm. Chem. 5, 14 (2022).

    Article  CAS  Google Scholar 

  39. Agrawal, S. et al. Time to act-assessing variations in qPCR analyses in biological nitrogen removal with examples from partial nitritation/anammox systems. Water Res. 190, 116604 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Fund for Distinguished Young Scholars (52225001).

Author information

Authors and Affiliations

Contributions

Y.W. conceived and led the project. J. Liu conceived and conducted the experiment, developed the figures and wrote the paper. H.W. analysed the microbial and statistical data and assisted with writing the paper. J. Li and M.Z. assisted with the analysis of the experimental data. Y.W., H.W. and J. Liu commented upon and revised the manuscript. All authors discussed and interpreted the results and contributed to the manuscript.

Corresponding authors

Correspondence to Han Wang or Yayi Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 Long-term operational strategies of anammox reactors
Extended Data Table 2 The relative content of elements in anammox sludge at day 60 according to EDS analysis

Supplementary information

Supplementary Information

Supplementary Texts 1–7, Figs. 1–7 and Tables 1–5.

Reporting Summary

Source data

Source Data Figs. 1–3, 5 and 6

Statistical source data for Figs. 1–3, 5 and 6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Li, J., Wang, H. et al. Siderophores as a selective regulator for enhancing anaerobic ammonium oxidation bacteria. Nat Water 3, 806–817 (2025). https://doi.org/10.1038/s44221-025-00459-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44221-025-00459-y

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research