Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Design principles of catalytic reactive membranes for water treatment

Abstract

Reactive nanofiltration membranes integrate catalytic transformation with molecular separation to remove diverse aqueous contaminants. However, their development is hindered by an incomplete understanding of the interplay between solute mass transport and chemical reactions. Here we introduce key design principles by systematically evaluating their performance using a modelling approach. Efficient oxidant transport is essential for maximizing contaminant degradation. For membranes with surface-loaded catalysts, avoiding mass transport limitations ensures effective catalyst utilization, whereas for membranes with interior-loaded catalysts, optimizing oxidant partitioning enhances oxidant utilization efficiency. In addition, selective solute rejection reduces interference from natural organic matter, facilitating more selective contaminant transformation inside membrane pores. Consequently, contaminant transformation is dominated by surface-catalysed reactions at low permeate water fluxes, while interior-catalysed reactions dominate at high fluxes. However, rejecting both oxidants and contaminants does not enhance surface-catalysed treatment performance under an optimally designed scenario, highlighting the need for strategic design of membrane rejection. Beyond organic contaminant removal, nanofiltration membranes also minimize secondary contamination by rejecting the produced salts during the catalytic reactions. Furthermore, strategic selection of oxidant–catalyst pairs can enhance treatment performance by generating suitable reactive species. By establishing a theoretical framework for designing and optimizing reactive nanofiltration membranes, this study provides critical insights into the development of advanced water treatment technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NF-based reactive membranes and their perceived benefits.
Fig. 2: Performance of reactive membranes with catalysts loaded on the membrane surface.
Fig. 3: Performance of reactive membranes with catalysts loaded inside the active layer.
Fig. 4: Reactive membranes with catalysts distributed on both the surface and inside the membrane active layer.
Fig. 5: Selection of oxidants and catalysts for efficient contaminant transformation.

Similar content being viewed by others

Data availability

The source data for the figures are provided in Excel format (.xlsx) and are publicly available via Figshare at https://doi.org/10.6084/m9.figshare.29333090 (ref. 79).

Code availability

The code for the model described in the paper is available publicly via GitHub at https://github.com/yanghuaduan/Reactive_NF_membrane.

References

  1. Bakker, K. Water security: research challenges and opportunities. Science 337, 914–915 (2012).

    Article  PubMed  CAS  Google Scholar 

  2. Westall, F. & Brack, A. The importance of water for life. Space Sci. Rev. 214, 50 (2018).

    Article  Google Scholar 

  3. Lu, X. & Elimelech, M. Fabrication of desalination membranes by interfacial polymerization: history, current efforts, and future directions. Chem. Soc. Rev. 50, 6290–6307 (2021).

    Article  PubMed  CAS  Google Scholar 

  4. Wu, J., Cao, M., Tong, D., Finkelstein, Z. & Hoek, E. M. V. A critical review of point-of-use drinking water treatment in the United States. npj Clean Water 4, 40 (2021).

    Article  Google Scholar 

  5. Liu, W. et al. Pressure-driven membrane desalination. Nat. Rev. Methods Prim. 4, 10 (2024).

    Article  Google Scholar 

  6. Mauter, M. S. et al. The role of nanotechnology in tackling global water challenges. Nat. Sustain. 1, 166–175 (2018).

    Article  Google Scholar 

  7. Marron, E. L., Mitch, W. A., von Gunten, U. & Sedlak, D. L. A tale of two treatments: the multiple barrier approach to removing chemical contaminants during potable water reuse. Acc. Chem. Res. 52, 615–622 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Castaño Osorio, S., Biesheuvel, P. M., Spruijt, E., Dykstra, J. E. & van der Wal, A. Modeling micropollutant removal by nanofiltration and reverse osmosis membranes: considerations and challenges. Water Res. 225, 119130 (2022).

    Article  PubMed  Google Scholar 

  9. Alvarez, P. J. J., Chan, C. K., Elimelech, M., Halas, N. J. & Villagrán, D. Emerging opportunities for nanotechnology to enhance water security. Nat. Nanotechnol. 13, 634–641 (2018).

    Article  PubMed  CAS  Google Scholar 

  10. Miklos, D. B. et al. Evaluation of advanced oxidation processes for water and wastewater treatment—a critical review. Water Res. 139, 118–131 (2018).

    Article  PubMed  CAS  Google Scholar 

  11. Chen, F. et al. Embedding electronic perpetual motion into single-atom catalysts for persistent Fenton-like reactions. Proc. Natl Acad. Sci. USA 121, e2314396121 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Sedlak, D. et al. National Alliance for Water Innovation (NAWI) Master Technology Roadmap (National Renewable Energy Lab, 2021).

  13. Zhang, S., Hedtke, T., Zhou, X., Elimelech, M. & Kim, J.-H. Environmental applications of engineered materials with nanoconfinement. ACS EST Eng. 1, 706–724 (2021).

    Article  CAS  Google Scholar 

  14. Zhang, Y. et al. CoII–NC catalytic membrane for advanced oxidation and mineralization of organic pollutants. ACS EST Eng. 4, 2711–2720 (2024).

    Article  CAS  Google Scholar 

  15. Baker, R. W. Membrane Technology and Applications (Wiley, 2023).

  16. Ma, W. et al. Catalytic membrane with copper single-atom catalysts for effective hydrogen peroxide activation and pollutant destruction. Environ. Sci. Technol. 56, 8733–8745 (2022).

    Article  PubMed  CAS  Google Scholar 

  17. Wang, T., de Grooth, J. & de Vos, W. M. Effects of concentration polarization and membrane orientation on the treatment of Naproxen by sulfate radical-based advanced oxidation processes within nanofiltration membranes with a catalytic support. Ind. Eng. Chem. Res. 62, 7622–7634 (2023).

    Article  CAS  Google Scholar 

  18. Yang, Z., Qian, J., Yu, A. & Pan, B. Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement. Proc. Natl Acad. Sci. USA 116, 6659–6664 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Meng, Y. et al. Nanoconfinement steers nonradical pathway transition in single atom fenton-like catalysis for improving oxidant utilization. Nat. Commun. 15, 5314 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Zhang, S. et al. Membrane-confined iron oxychloride nanocatalysts for highly efficient heterogeneous Fenton water treatment. Environ. Sci. Technol. 55, 9266–9275 (2021).

    Article  PubMed  CAS  Google Scholar 

  21. Wu, X. et al. Single-atom cobalt incorporated in a 2D graphene oxide membrane for catalytic pollutant degradation. Environ. Sci. Technol. 56, 1341–1351 (2022).

    Article  PubMed  CAS  Google Scholar 

  22. Meng, C. et al. Angstrom-confined catalytic water purification within Co-TiOx laminar membrane nanochannels. Nat. Commun. 13, 4010 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Zheng, L. et al. Covalent organic framework membrane reactor for boosting catalytic performance. Nat. Commun. 15, 6837 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Zhang, Y. et al. Monolithic ceramic CoTiO3/TiO2 membrane balancing catalytic efficiency and durability in advanced oxidation processes. Environ. Sci. Technol. 59, 6863–6871 (2025).

    Article  PubMed  CAS  Google Scholar 

  25. Hedtke, T. et al. Copper single-atom catalyst on nanoconfined ceramic membranes for Fenton-like removal of organic contaminants. ACS EST Eng. 5, 1171–1179 (2025).

    Article  CAS  Google Scholar 

  26. Jiang, W. et al. Metal-free electrified membranes for contaminants oxidation: synergy effect between membrane rejection and nanoconfinement. Water Res. 248, 120862 (2024).

    Article  PubMed  CAS  Google Scholar 

  27. Heredia Deba, S. A., Wols, B. A., Yntema, D. R. & Lammertink, R. G. H. Transport and surface reaction model of a photocatalytic membrane during the radical filtration of methylene blue. Chem. Eng. Sci. 254, 117617 (2022).

    Article  CAS  Google Scholar 

  28. Wu, X. & Kim, J.-H. Outlook on single atom catalysts for persulfate-based advanced oxidation. ACS EST Eng. 2, 1776–1796 (2022).

    Article  CAS  Google Scholar 

  29. Duan, Y., Jiang, W. & Sedlak, D. L. Surface processes control the fate of reactive oxidants generated by electrochemical activation of hydrogen peroxide on stainless-steel electrodes. Environ. Sci. Technol. 57, 18680–18689 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Duan, Y. & Sedlak, D. L. Electrochemical hydrogen peroxide generation and activation using a dual-cathode flow-through treatment system: enhanced selectivity for contaminant removal by electrostatic repulsion. Environ. Sci. Technol. 58, 14042–14051 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Lead, J. R., Balnois, E., Hosse, M., Menghetti, R. & Wilkinson, K. J. Characterization of Norwegian natural organic matter: size, diffusion coefficients, and electrophoretic mobilities. Environ. Int. 25, 245–258 (1999).

    Article  CAS  Google Scholar 

  32. Zhang, Z. et al. Pilot-scale evaluation of oxidant speciation, 1,4-dioxane degradation and disinfection byproduct formation during UV/hydrogen peroxide, UV/free chlorine and UV/chloramines advanced oxidation process treatment for potable reuse. Water Res. 164, 114939 (2019).

    Article  PubMed  CAS  Google Scholar 

  33. Secondary drinking water standards: guidance for nuisance chemicals. United States Environmental Protection Agency https://www.epa.gov/sdwa/secondary-drinking-water-standards-guidance-nuisance-chemicals (2025).

  34. Deen, W. M. Hindered transport of large molecules in liquid-filled pores. AIChE J. 33, 1409–1425 (1987).

    Article  CAS  Google Scholar 

  35. Zhang, S. et al. Mechanism of heterogeneous Fenton reaction kinetics enhancement under nanoscale spatial confinement. Environ. Sci. Technol. 54, 10868–10875 (2020).

    Article  PubMed  CAS  Google Scholar 

  36. Takeuchi, K. et al. Salt rejection behavior of carbon nanotube-polyamide nanocomposite reverse osmosis membranes in several salt solutions. Desalination 443, 165–171 (2018).

    Article  CAS  Google Scholar 

  37. Henkens, W. C. M. & Smit, J. A. M. Salt rejection and flux in reverse osmosis with compactible membranes. Desalination 28, 65–85 (1979).

    Article  CAS  Google Scholar 

  38. Epsztein, R., DuChanois, R. M., Ritt, C. L., Noy, A. & Elimelech, M. Towards single-species selectivity of membranes with subnanometre pores. Nat. Nanotechnol. 15, 426–436 (2020).

    Article  PubMed  CAS  Google Scholar 

  39. Epsztein, R., Shaulsky, E., Dizge, N., Warsinger, D. M. & Elimelech, M. Role of ionic charge density in donnan exclusion of monovalent anions by nanofiltration. Environ. Sci. Technol. 52, 4108–4116 (2018).

    Article  PubMed  CAS  Google Scholar 

  40. Cheng, W. et al. Selective removal of divalent cations by polyelectrolyte multilayer nanofiltration membrane: role of polyelectrolyte charge, ion size, and ionic strength. J. Membr. Sci. 559, 98–106 (2018).

    Article  CAS  Google Scholar 

  41. Zhang, T., Zhu, H. & Croué, J.-P. Production of sulfate radical from peroxymonosulfate induced by a magnetically separable CuFe2O4 spinel in water: efficiency, stability, and mechanism. Environ. Sci. Technol. 47, 2784–2791 (2013).

    Article  PubMed  CAS  Google Scholar 

  42. Hu, J., Dong, H., Qu, J. & Qiang, Z. Enhanced degradation of iopamidol by peroxymonosulfate catalyzed by two pipe corrosion products (CuO and δ-MnO2). Water Res. 112, 1–8 (2017).

    Article  PubMed  CAS  Google Scholar 

  43. Hu, J. et al. Transformation of iopamidol and atrazine by peroxymonosulfate under catalysis of a composite iron corrosion product (Fe/Fe3O4): electron transfer, active species and reaction pathways. J. Hazard. Mater. 403, 123553 (2021).

    Article  PubMed  CAS  Google Scholar 

  44. Pham, A. L.-T., Lee, C., Doyle, F. M. & Sedlak, D. L. A silica-supported iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values. Environ. Sci. Technol. 43, 8930–8935 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Pham, A. L.-T., Doyle, F. M. & Sedlak, D. L. Kinetics and efficiency of H2O2 activation by iron-containing minerals and aquifer materials. Water Res. 46, 6454–6462 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Liu, H. et al. Oxidation of benzene by persulfate in the presence of Fe(III)- and Mn(IV)-containing oxides: stoichiometric efficiency and transformation products. Environ. Sci. Technol. 50, 890–898 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Yang, X. et al. Impact of peroxymonocarbonate on the transformation of organic contaminants during hydrogen peroxide in situ chemical oxidation. Environ. Sci. Technol. Lett. 6, 781–786 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Kearns, D. R. Physical and chemical properties of singlet molecular oxygen. Chem. Rev. 71, 395–427 (1971).

    Article  CAS  Google Scholar 

  49. Frimer, A. A. The reaction of singlet oxygen with olefins: the question of mechanism. Chem. Rev. 79, 359–387 (1979).

    Article  CAS  Google Scholar 

  50. Scully, F. E. & Hoigné, J. Rate constants for reactions of singlet oxygen with phenols and other compounds in water. Chemosphere 16, 681–694 (1987).

    Article  CAS  Google Scholar 

  51. Cheng, X., Guo, H., Zhang, Y., Wu, X. & Liu, Y. Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes. Water Res. 113, 80–88 (2017).

    Article  PubMed  CAS  Google Scholar 

  52. Liang, P. et al. An insight into metal organic framework derived N-doped graphene for the oxidative degradation of persistent contaminants: formation mechanism and generation of singlet oxygen from peroxymonosulfate. Environ. Sci. Nano 4, 315–324 (2017).

    Article  CAS  Google Scholar 

  53. Liang, P. et al. N-doped graphene from metal–organic frameworks for catalytic oxidation of p-hydroxylbenzoic acid: N-functionality and mechanism. ACS Sustain. Chem. Eng. 5, 2693–2701 (2017).

    Article  CAS  Google Scholar 

  54. Zhu, S., Li, X., Kang, J., Duan, X. & Wang, S. Persulfate activation on crystallographic manganese oxides: mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants. Environ. Sci. Technol. 53, 307–315 (2019).

    Article  PubMed  CAS  Google Scholar 

  55. Wang, Y., Cao, D., Liu, M. & Zhao, X. Insights into heterogeneous catalytic activation of peroxymonosulfate by Pd/g-C3N4: the role of superoxide radical and singlet oxygen. Catal. Commun. 102, 85–88 (2017).

    Article  CAS  Google Scholar 

  56. Tian, X. et al. A novel singlet oxygen involved peroxymonosulfate activation mechanism for degradation of ofloxacin and phenol in water. Chem. Commun. 53, 6589–6592 (2017).

    Article  CAS  Google Scholar 

  57. Gao, P. et al. Promoted peroxymonosulfate activation into singlet oxygen over perovskite for ofloxacin degradation by controlling the oxygen defect concentration. Chem. Eng. J. 359, 828–839 (2019).

    Article  CAS  Google Scholar 

  58. Heredia Deba, S. A., Wols, B. A., Yntema, D. R. & Lammertink, R. G. H. Advanced ceramics in radical filtration: TiO2 layer thickness effect on the photocatalytic membrane performance. J. Membr. Sci. 672, 121423 (2023).

    Article  CAS  Google Scholar 

  59. Bellardita, M., Camera-Roda, G., Loddo, V., Parrino, F. & Palmisano, L. Coupling of membrane and photocatalytic technologies for selective formation of high added value chemicals. Catal. Today 340, 128–144 (2020).

    Article  Google Scholar 

  60. Rolf, J. et al. Inorganic scaling in membrane desalination: models, mechanisms, and characterization methods. Environ. Sci. Technol. 56, 7484–7511 (2022).

    Article  PubMed  CAS  Google Scholar 

  61. Lee, J., von Gunten, U. & Kim, J.-H. Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks. Environ. Sci. Technol. 54, 3064–3081 (2020).

    Article  PubMed  CAS  Google Scholar 

  62. Xing, S., Li, W., Liu, B., Wu, Y. & Gao, Y. Removal of ciprofloxacin by persulfate activation with CuO: a pH-dependent mechanism. Chem. Eng. J. 382, 122837 (2020).

    Article  CAS  Google Scholar 

  63. Chen, C. et al. Membrane-catalysis integrated system for contaminants degradation and membrane fouling mitigation: a review. Sci. Total Environ. 904, 166220 (2023).

    Article  PubMed  CAS  Google Scholar 

  64. Liu, Y. et al. Progress and challenges in structural, in situ and operando characterization of single-atom catalysts by X-ray based synchrotron radiation techniques. Chem. Soc. Rev. 53, 11850–11887 (2024).

    Article  PubMed  CAS  Google Scholar 

  65. Yao, Y. et al. High performance polyester reverse osmosis desalination membrane with chlorine resistance. Nat. Sustain. 4, 138–146 (2021).

    Article  Google Scholar 

  66. Yao, Y. et al. More resilient polyester membranes for high-performance reverse osmosis desalination. Science 384, 333–338 (2024).

    Article  PubMed  CAS  Google Scholar 

  67. Wang, R. & Lin, S. Membrane design principles for ion-selective electrodialysis: an analysis for Li/Mg separation. Environ. Sci. Technol. 58, 3552–3563 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Wang, R. & Lin, S. Pore model for nanofiltration: history, theoretical framework, key predictions, limitations, and prospects. J. Membr. Sci. 620, 118809 (2021).

    Article  CAS  Google Scholar 

  69. Wang, L. et al. Salt and water transport in reverse osmosis membranes: beyond the solution-diffusion model. Environ. Sci. Technol. 55, 16665–16675 (2021).

    Article  PubMed  CAS  Google Scholar 

  70. Richards, L. A., Schäfer, A. I., Richards, B. S. & Corry, B. The importance of dehydration in determining ion transport in narrow pores. Small 8, 1701–1709 (2012).

    Article  PubMed  CAS  Google Scholar 

  71. Lu, C. et al. In situ characterization of dehydration during ion transport in polymeric nanochannels. J. Am. Chem. Soc. 143, 14242–14252 (2021).

    Article  PubMed  CAS  Google Scholar 

  72. Richard Bowen, W. & Wahab Mohammad, A. Diafiltration by nanofiltration: prediction and optimization. AIChE J. 44, 1799–1812 (1998).

    Article  Google Scholar 

  73. Childress, A. E. & Elimelech, M. Relating nanofiltration membrane performance to membrane charge (electrokinetic) characteristics. Environ. Sci. Technol. 34, 3710–3716 (2000).

    Article  CAS  Google Scholar 

  74. Coronell, O., Mariñas, B. J., Zhang, X. & Cahill, D. G. Quantification of functional groups and modeling of their ionization behavior in the active layer of FT30 reverse osmosis membrane. Environ. Sci. Technol. 42, 5260–5266 (2008).

    Article  PubMed  CAS  Google Scholar 

  75. Bruni, L. & Bandini, S. The role of the electrolyte on the mechanism of charge formation in polyamide nanofiltration membranes. J. Membr. Sci. 308, 136–151 (2008).

    Article  CAS  Google Scholar 

  76. Chaudhury, S. G. The Donnan membrane equilibrium. Nature 152, 76–77 (1943).

    Article  CAS  Google Scholar 

  77. Dechadilok, P. & Deen, W. M. Hindrance factors for diffusion and convection in pores. Ind. Eng. Chem. Res. 45, 6953–6959 (2006).

    Article  CAS  Google Scholar 

  78. Wang, J. et al. A critical review of transport through osmotic membranes. J. Membr. Sci. 454, 516–537 (2014).

    Article  CAS  Google Scholar 

  79. Duan, Y. Design principles of catalytic reactive membranes for water treatment. Figshare https://doi.org/10.6084/m9.figshare.29333090 (2025).

Download references

Acknowledgements

This research was partially funded by the Yale University Superfund Research Program (SRP), which is supported by a grant from the National Institute of Environmental Health Sciences, National Institutes of Health (award no. P42ES033815) and the Rice Center for Membrane Excellence (RiCeME). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Y.D. and M.E. Methodology: Y.D., R.W., A.N.S. and M.E. Formal analysis: Y.D., R.W., A.N.S. and M.E. Writing—original draft preparation: Y.D. Writing—review and editing: Y.D., R.W., A.N.S. and M.E. Supervision: M.E. Funding acquisition: M.E. All authors have read and agreed to the published version of the study.

Corresponding author

Correspondence to Menachem Elimelech.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Qi Sun, Gaofeng Zeng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–23, Tables 1 and 2 and Texts 1–7.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Y., Wang, R., Shocron, A.N. et al. Design principles of catalytic reactive membranes for water treatment. Nat Water 3, 949–962 (2025). https://doi.org/10.1038/s44221-025-00467-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44221-025-00467-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing