Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Substantial ammonia emissions from sludge drying pans in wastewater treatment plants

Abstract

Wastewater treatment plants (WWTPs) are major sources of gaseous nitrogen (N) emissions. The nitrous oxide (N2O) emissions have been extensively studied, however, how ammonia (NH3) emissions contribute to N2O emissions, soil acidification and particulate matter (PM2.5) formation, have been largely overlooked. This study quantified NH3 and N2O emissions from a sludge drying pan (SDP), using inverse-dispersion modelling coupled with open-path Fourier infrared spectroscopic techniques. Here we show low N2O emissions (<0.001 g m−2 h−1) and mean NH3 emissions that are much higher in summer (0.293 g m−2 h−1) than in winter (0.060 g m−2 h−1). A mechanistic process model, correlating NH3 emissions with wind speed and temperature, predicts total NH3 emissions over the SDP cycle (634 days) at 43 t of NH3‒N. This represents 30% of total N in the SDP and 6–9% of total N in the WWTPs influent. This study highlights that the use of SDPs by WWTPs is a substantial NH3 emission source, offering new perspectives for mitigating global N emissions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Measured ammonia emission rates and nitogen input.
Fig. 2: Diurnal variations of ammonia emission rates.
Fig. 3: Correlation of temperature and wind speed with ammonia emission rates.
Fig. 4: A calibrated model used to predict ammonia emission rates.
Fig. 5: Ammonia emissions based on temperature and wind speed data collected throughout an SDP operation.

Data availability

The data including ammonia/nitrous oxide fluxes, climate wind and operational information about SDPs are available at https://doi.org/10.48610/169e2e3. The data are freely accessible and allowed for reuse under a Data Sharing Agreement with The University of Queensland and recipient. Source data are provided with this paper.

Code availability

The code used to predict ammonia emissions over the whole sludge drying cycle is available via Github at https://github.com/uqzhiyao/SDP-ammonia-emissions.

References

  1. Liu, L. et al. Exploring global changes in agricultural ammonia emissions and their contribution to nitrogen deposition since 1980. Proc. Natl Acad. Sci. USA 119, e2121998119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tian, H. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Shcherbak, I., Millar, N. & Robertson, G. P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl Acad. Sci. USA 111, 9199–9204 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Van Damme, M. et al. Industrial and agricultural ammonia point sources exposed. Nature 564, 99–103 (2018).

    Article  PubMed  Google Scholar 

  5. Galloway, J. N. et al. Nitrogen cycles: past, present, and future. Biogeochemistry 70, 153–226 (2004).

    Article  CAS  Google Scholar 

  6. Fowler, D. et al. The global nitrogen cycle in the twenty-first century. Philos. Trans. R. Soc. B 368, 20130164 (2013).

    Article  Google Scholar 

  7. Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636–639 (2008).

    Article  CAS  Google Scholar 

  8. Kampschreur, M. J., Temmink, H., Kleerebezem, R., Jetten, M. S. M. & van Loosdrecht, M. C. M. Nitrous oxide emission during wastewater treatment. Water Res. 43, 4093–4103 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Ravishankara, A. R., Daniel, J. S. & Portmann, R. W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326, 123–125 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Mosier, A. et al. Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutr. Cycl. Agroecosyst. 52, 225–248 (1998).

    Article  CAS  Google Scholar 

  11. Wang, Y. et al. Mitigating greenhouse gas and ammonia emissions from beef cattle feedlot production: a system meta-analysis. Environ. Sci. Technol. 52, 11232–11242 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Bodirsky, B. L. et al. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat. Commun. 5, 3858 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Sutton, M. A., Pitcairn, C. E. R. & Fowler, D. The exchange of ammonia between the atmosphere and plant communities. Adv. Ecol. Res. 24, 301–393 (1993).

  14. Ma, R. et al. Mitigation potential of global ammonia emissions and related health impacts in the trade network. Nat. Commun. 12, 6308 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Clark, C. M. & Tilman, D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 451, 712–715 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Stokstad, E. Ammonia pollution from farming may exact hefty health costs. Science 343, 238 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Höpfner, M. et al. Ammonium nitrate particles formed in upper troposphere from ground ammonia sources during Asian monsoons. Nat. Geosci. 12, 608–612 (2019).

    Article  Google Scholar 

  18. Tschofen, P., Azevedo, I. L. & Muller, N. Z. Fine particulate matter damages and value added in the US economy. Proc. Natl Acad. Sci. USA 116, 19857–19862 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, X. et al. Societal benefits of halving agricultural ammonia emissions in China far exceed the abatement costs. Nat. Commun. 11, 4357 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Liu, M. et al. Ammonia emission control in China would mitigate haze pollution and nitrogen deposition, but worsen acid rain. Proc. Natl Acad. Sci. USA 116, 7760–7765 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Duan, H. et al. Insights into nitrous oxide mitigation strategies in wastewater treatment and challenges for wider implementation. Environ. Sci. Technol. 55, 7208–7224 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Tchobanoglus, G., Burton, F. & Stensel, H. D. Wastewater Engineering: Treatment and Reuse (American Water Works Association, 2003).

  23. Valach, A. C. et al. Ammonia emissions from a dairy housing and wastewater treatment plant quantified with an inverse dispersion method accounting for deposition loss. J. Air Waste Manag. Assoc. 73, 930–950 (2023).

    Article  CAS  PubMed  Google Scholar 

  24. Appels, L., Baeyens, J., Degrève, J. & Dewil, R. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog. Energy Combust. Sci. 34, 755–781 (2008).

  25. Carpenter, L. V. Sludge drying on open and covered drying beds. Sewage Work J. 10, 503–512 (1938).

  26. Wang, L. K., Li, Y., Shammas, N. K. & Sakellaropoulos, G. P. in Biosolids Treatment Processes (eds Wang, L. K. et al.) 403–430 (Springer, 2007).

  27. Turovskiy, I. S. & Mathai, P. K. Wastewater Sludge Processing (Wiley, 2006).

  28. Pan, Y. et al. Sludge-drying lagoons: a potential significant methane source in wastewater treatment plants. Environ. Sci. Technol. 50, 1368–1375 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Samuelsson, J. et al. Optical technologies applied alongside on-site and remote approaches for climate gas emission quantification at a wastewater treatment plant. Water Res. 131, 299–309 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Kupper, T. et al. Ammonia and greenhouse gas emissions from slurry storage—a review. Agric. Ecosyst. Environ. 300, 106963 (2020).

    Article  CAS  Google Scholar 

  31. Incropera, F. P., DeWitt, D. P., Bergman, T. L. & Lavine, A. S. Fundamentals of Heat and Mass Transfer (Wiley, 1996).

  32. Rong, L., Nielsen, P. V. & Zhang, G. Effects of airflow and liquid temperature on ammonia mass transfer above an emission surface: experimental study on emission rate. Bioresour. Technol. 100, 4654–4661 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Denmead, O. T., Freney, J. R. & Simpson, J. R. Dynamics of ammonia volatilization during furrow irrigation of maize. Soil Sci. Soc. Am. J. 46, 149–155 (1982).

    Article  CAS  Google Scholar 

  34. Wang, Z. et al. Bioleaching of toxic metals from anaerobically digested sludge without external chemical addition. Water Res. 200, 117211 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Fux, C., Velten, S., Carozzi, V., Solley, D. & Keller, J. Efficient and stable nitritation and denitritation of ammonium-rich sludge dewatering liquor using an SBR with continuous loading. Water Res. 40, 2765–2775 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Guo, X. et al. Terahertz nanoscopy: advances, challenges, and the road ahead. Appl. Phys. Rev. 11, 021306 (2024).

  37. Annual Ammonia (NH3) Emissions in the United States from 2002 to 2023 [chart] (EPA, accessed 30 June 2024); www.statista.com/statistics/501317/volume-of-ammonia-emissions-us/

  38. Kupper, T., Bonjour, C. & Menzi, H. Evolution of farm and manure management and their influence on ammonia emissions from agriculture in Switzerland between 1990 and 2010. Atmos. Environ. 103, 215–221 (2015).

    Article  CAS  Google Scholar 

  39. Velthof, G. L. et al. A model for inventory of ammonia emissions from agriculture in the Netherlands. Atmos. Environ. 46, 248–255 (2012).

    Article  CAS  Google Scholar 

  40. Nielsen, D. A., Nielsen, L. P., Schramm, A. & Revsbech, N. P. Oxygen distribution and potential ammonia oxidation in floating, liquid manure crusts. J. Environ. Qual. 39, 1813–1820 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Misselbrook, T. H. et al. Crusting of stored dairy slurry to abate ammonia emissions: pilot‐scale studies. J. Environ. Qual. 34, 411–419 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Baldé, H. et al. Ammonia emissions from liquid manure storages are affected by anaerobic digestion and solid–liquid separation. Agric. For. Meteorol. 258, 80–88 (2018).

    Article  Google Scholar 

  43. Li, C., He, Z.-Y., Hu, H.-W. & He, J.-Z. Niche specialization of comammox Nitrospira in terrestrial ecosystems: oligotrophic or copiotrophic? Crit. Rev. Environ. Sci. Technol. 53, 161–176 (2023).

    Article  Google Scholar 

  44. Prosser, J. I., Hink, L., Gubry-Rangin, C. & Nicol, G. W. Nitrous oxide production by ammonia oxidizers: physiological diversity, niche differentiation and potential mitigation strategies. Glob. Chang. Biol. 26, 103–118 (2020).

    Article  PubMed  Google Scholar 

  45. VanderZaag, A. C., Gordon, R. J., Jamieson, R. C., Burton, D. L. & Stratton, G. W. Gas emissions from straw covered liquid dairy manure during summer storage and autumn agitation. Trans. ASABE 52, 599–608 (2009).

    Article  CAS  Google Scholar 

  46. Bai, M. et al. Long-term onsite monitoring of a sewage sludge drying pan finds methane emissions consistent with IPCC default emission factor. Water Res. X 19, 100184 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, Z. et al. Acidic aerobic digestion of anaerobically-digested sludge enabled by a novel ammonia-oxidizing bacterium. Water Res. 194, 116962 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Wang, Z. et al. Ammonium-based bioleaching of toxic metals from sewage sludge in a continuous bioreactor. Water Res. 256, 121651 (2024).

    Article  CAS  PubMed  Google Scholar 

  49. Li, Y. et al. Transformation and fate of pharmaceuticals, personal care products, and per- and polyfluoroalkyl substances during aerobic digestion of anaerobically digested sludge. Water Res. 219, 118568 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Griffith, D. W. T. et al. A Fourier transform infrared trace gas and isotope analyser for atmospheric applications. Atmos. Meas. Tech. 5, 2481–2498 (2012).

    Article  CAS  Google Scholar 

  51. Smith, T. E. L. et al. New emission factors for Australian vegetation fires measured using open-path Fourier transform infrared spectroscopy–Part 2: Australian tropical savanna fires. Atmos. Chem. Phys. 14, 11335–11352 (2014).

    Article  Google Scholar 

  52. Paton-Walsh, C., Smith, T. E. L., Young, E. L., Griffith, D. W. T. & Guérette, É.-A. New emission factors for Australian vegetation fires measured using open-path Fourier transform infrared spectroscopy–Part 1: methods and Australian temperate forest fires. Atmos. Chem. Phys. 14, 11313–11333 (2014).

    Article  Google Scholar 

  53. Griffith, D. W. T. Synthetic calibration and quantitative analysis of gas-phase FT-IR spectra. Appl. Spectrosc. 50, 59–70 (1996).

    Article  CAS  Google Scholar 

  54. Rothman, L. S. et al. The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 110, 533–572 (2009).

    Article  CAS  Google Scholar 

  55. Bai, M. et al. Gaseous emissions from an intensive vegetable farm measured with slant-path FTIR technique. Agric. For. Meteorol. 258, 50–55 (2018).

    Article  Google Scholar 

  56. Flesch, T. K., Wilson, J. D. & Yee, E. Backward-time Lagrangian stochastic dispersion models and their application to estimate gaseous emissions. J. Appl. Meteorol. Climatol. 34, 1320–1332 (1995).

    Article  Google Scholar 

  57. Garratt, J. R. The atmospheric boundary layer. Earth Sci. Rev. 37, 89–134 (1994).

    Article  Google Scholar 

  58. Stumm, W., Morgan, J. J. & Drever, J. I. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters (Wiley, 1996).

Download references

Acknowledgements

We thank Melbourne Water for funding and access to operational data. We acknowledge D. Milano and R. Gough at Melbourne Water for their kind assistance. We also thank R. Trouvé for kindly assisting in the field. M.B. acknowledges the support of Australian Research Council Hub Smart Fertilizer. Z.W. and L.Y. would like to acknowledge the support of Australian Research Council Research Hub (IH210100001).

Author information

Authors and Affiliations

Authors

Contributions

M.B.: conceptualization (lead), methodology (lead), formal analysis (lead), writing—original draft preparation (lead), visualization (supporting), data curation (supporting), funding acquisition (equal), writing—review and editing (equal). Z.W.: conceptualization (lead), methodology (lead), formal analysis (lead), writing—original draft preparation (lead), visualization (lead), data curation (lead), writing—review and editing (equal). D.S.: conceptualization (supporting), methodology (supporting), resources (equal), writing—review and editing (equal), supervision (equal), funding acquisition (equal), project administration (lead). J.L.: conceptualization (supporting), methodology (supporting), resources (equal), writing—review and editing (equal), supervision (equal), funding acquisition (equal). P.D.J.: conceptualization (supporting), resources (equal), writing—review and editing (equal), funding acquisition (equal). L.Y.: conceptualization (supporting), writing—review and editing (equal), supervision (equal). D.C.: conceptualization (supporting), methodology (supporting), writing—review and editing (equal), supervision (equal), funding acquisition (equal), project administration (lead).

Corresponding authors

Correspondence to Mei Bai or Zhiyao Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Thomas Kupper and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

SDP ammonia estimates in the USA, Wind data measurement, Data filtering criteria, as well as the IDM emission measurement uncertainty, with Supplementary Figs. 1 and 2.

Reporting Summary

Supplementary Data

Measured ammonia emission rate in summer campaign and sludge turning time.

Source data

Source Data Fig. 1

Ammonia emission rates measured in winter and summer campaign (a), nitrogen balance in feed sludge over the drying cycle (b).

Source Data Fig. 2

Diurnal variation of ammonia emission rate Q (μg m−2 s−1) over 3 d in winter (ac) and summer campaign (df).

Source Data Fig. 3

Pearson correlation of ammonia emission rate (μg m−2 s−1) with temperature (°C) (a) and with wind speed (m s−1) (b).

Source Data Fig. 4

Measured and modelled ammonia emission rate (μg m−2 s−1) with wind speed and temperature (a). Predicted ammonia emission rates in scenarios with a range of temperature (b).

Source Data Fig. 5

Weekly mean temperature and wind speed over the cycle of the SDP (a), predicted ammonia emission rates (b).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, M., Wang, Z., Seneviratne, D. et al. Substantial ammonia emissions from sludge drying pans in wastewater treatment plants. Nat Water (2025). https://doi.org/10.1038/s44221-025-00479-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44221-025-00479-8

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene