Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient and selective dechlorination of chlorinated organic pollutants by cob(II)alamin and zero-valent iron

This article has been updated

Abstract

The valorization of chlorinated organic pollutants in water, such as 1,2-dichloroethane (1,2-DCA), into value-added products, such as ethylene, offers a sustainable remediation strategy but is limited by low efficiency and selectivity. Here we present a bioinspired system, consisting of cobalamin (vitamin B12) cofactor and microscale zero-valent iron (mZVI), that dechlorinates 1,2-DCA to ethylene with a rate constant of 0.066 h−1 and near-100% selectivity. mZVI creates a moderately reducing environment that reduces cob(III)alamin (the original B12 species) to cob(II)alamin, which forms an organocobalt–1,2-DCA complex and drives proton-independent dihaloelimination, avoiding unwanted hydrogenation and ethylene over-reduction. The strategy is effective for various chlorinated alkanes, alkenes and aromatics, high concentrations of 1,2-DCA in wastewater and mixed pollutants in groundwater. Mechanochemically anchoring B12 onto mZVI enables assembly in a column reactor for continuous 1,2-DCA removal, achieving a more than tenfold reduction in costs compared with conventional redox processes. This work demonstrates a cost-effective approach to pollutant remediation and resource recovery through the rational modulation of B12 redox chemistry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Performance of the B12/mZVI system in reductive dechlorination.
Fig. 2: Mechanistic investigation of the dechlorination reaction.
Fig. 3: Cob(II)alamin drives high ethylene selectivity.
Fig. 4: DFT calculations.
Fig. 5: Environmental applications of B12/mZVI and B12-mZVIbm in real water matrices.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and its Supplementary Information.

Change history

  • 18 September 2025

    In the version of the article initially published, the peer reviewer Jordi Palau’s name appeared incorrectly and has now been amended in the HTML and PDF versions of the article.

References

  1. Leow, D., Li, G., Mei, T.-S. & Yu, J.-Q. Activation of remote meta-C–H bonds assisted by an end-on template. Nature 486, 518–522 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liang, Y., Lin, F., Adeli, Y., Jin, R. & Jiao, N. Efficient electrocatalysis for the preparation of (hetero)aryl chlorides and vinyl chloride with 1,2‐dichloroethane. Angew. Chem. Int. Ed. 58, 4566–4570 (2019).

    Article  CAS  Google Scholar 

  3. Sherwood, J. European restrictions on 1,2‐dichloroethane: C–H activation research and development should be liberated and not limited. Angew. Chem. Int. Ed. 57, 14286–14290 (2018).

    Article  CAS  Google Scholar 

  4. Wang, X.-C. et al. Ligand-enabled meta-C–H activation using a transient mediator. Nature 519, 334–338 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Phipps, R. J. & Gaunt, M. J. A meta-selective copper-catalyzed C–H bond arylation. Science 323, 1593–1597 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, Z., Yin, J., Zhou, F., Liu, Y. & You, J. Multicomponent reactions of pyridines to give ring‐fused pyridiniums: in situ activation strategy using 1,2‐dichloroethane as a vinyl equivalent. Angew. Chem. Int. Ed. 58, 254–258 (2018).

    Article  Google Scholar 

  7. Choi, C. et al. CO2-promoted electrocatalytic reduction of chlorinated hydrocarbons. J. Am. Chem. Soc. 146, 8486–8491 (2024).

    Article  CAS  PubMed  Google Scholar 

  8. Choi, C. et al. Efficient electrocatalytic valorization of chlorinated organic water pollutant to ethylene. Nat. Nanotechnol. 18, 160–167 (2022).

    Article  PubMed  Google Scholar 

  9. Ma, J. et al. Vapor intrusion risk of lead scavengers 1,2-dibromoethane (EDB) and 1,2-dichloroethane (DCA). Environ. Pollut. 213, 825–832 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Seok, J., Phan, N. T. Y., Kim, J.-C., Shin, H. & Choi, M. Catalytic synergy between Lewis acidic alumina and Pt in hydrodechlorination for plastic chemical recycling. J. Am. Chem. Soc. 146, 23881–23890 (2024).

    Article  CAS  PubMed  Google Scholar 

  11. Jiang, L. et al. Geobacter sp. strain IAE dihaloeliminates 1,1,2-trichloroethane and 1,2-dichloroethane. Environ. Sci. Technol. 56, 3430–3440 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Palau, J. et al. Hydrogen isotope fractionation during the biodegradation of 1,2-dichloroethane: potential for pathway identification using a multi-element (C, Cl, and H) isotope approach. Environ. Sci. Technol. 51, 10526–10535 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Chen, X. et al. Microdroplet-mediated multiphase cycling in a cloud of water drives chemoselective electrolysis. J. Am. Chem. Soc. 146, 29742–29750 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Deng, Y.-D. et al. The complete degradation of 1,2-dichloroethane in Escherichia coli by metabolic engineering. J. Hazard. Mater. 472, 134476 (2024).

    Article  CAS  PubMed  Google Scholar 

  15. Huo, K. et al. Creating an efficient 1,2-dichloroethane-mineralizing bacterium by a combination of pathway engineering and promoter engineering. Sci. Total Environ. 878, 163140 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Totten, L. A. & Roberts, A. L. Calculated one- and two-electron reduction potentials and related molecular descriptors for reduction of alkyl and vinyl halides in water. Crit. Rev. Environ. Sci. Technol. 31, 175–221 (2001).

    Article  CAS  Google Scholar 

  17. Liu, T. et al. Modular assembly of arenes, ethylene and heteroarenes for the synthesis of 1,2-arylheteroaryl ethanes. Nat. Chem. 16, 1705–1714 (2024).

    Article  CAS  PubMed  Google Scholar 

  18. De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Palau, J. et al. Distinct dual C–Cl isotope fractionation patterns during anaerobic biodegradation of 1,2-dichloroethane: potential to characterize microbial degradation in the field. Environ. Sci. Technol. 51, 2685–2694 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Gan, G. et al. Identification of catalytic active sites in nitrogen-doped carbon for electrocatalytic dechlorination of 1,2-dichloroethane. ACS Catal. 9, 10931–10939 (2019).

    Article  CAS  Google Scholar 

  21. Gan, G. et al. Nature of intrinsic defects in carbon materials for electrochemical dechlorination of 1,2-dichloroethane to ethylene. ACS Catal. 11, 14284–14292 (2021).

    Article  CAS  Google Scholar 

  22. Cheon, S. et al. Neighboring catalytic sites are essential for electrochemical dechlorination of 2-chlorophenol. J. Am. Chem. Soc. 146, 25151–25157 (2024).

    Article  CAS  PubMed  Google Scholar 

  23. Gan, G. et al. Active sites in single-atom Fe–Nx–C nanosheets for selective electrochemical dechlorination of 1,2-dichloroethane to ethylene. ACS Nano 14, 9929–9937 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Nunez Garcia, A., Boparai, H. K. & O’Carroll, D. M. Enhanced dechlorination of 1,2-dichloroethane by coupled nano iron-dithionite treatment. Environ. Sci. Technol. 50, 5243–5251 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Gan, G. et al. Metal–nitrogen–carbon single‐atom aerogels as self‐supporting electrodes for dechlorination of 1,2‐dichloroethane. Adv. Funct. Mater. 32, 2206263 (2022).

    Article  CAS  Google Scholar 

  26. Min, Y. et al. Mimicking reductive dehalogenases for efficient electrocatalytic water dechlorination. Nat. Commun. 14, 5134 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, S. et al. Genomic characterization of three unique Dehalococcoides that respire on persistent polychlorinated biphenyls. Proc. Natl Acad. Sci. USA 111, 12103–12108 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bommer, M. et al. Structural basis for organohalide respiration. Science 346, 455–458 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Ren, C. et al. A bioinspired molybdenum catalyst for aqueous perchlorate reduction. J. Am. Chem. Soc. 143, 7891–7896 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Qin, J. et al. An enzyme-mimic single Fe-N3 atom catalyst for the oxidative synthesis of nitriles via C–C bond cleavage strategy. Sci. Adv. 8, eadd1267 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xu, N., Zhang, X., Guo, P.-C., Xie, D.-H. & Sheng, G.-P. Biological self-protection inspired engineering of nanomaterials to construct a robust bio-nano system for environmental applications. Sci. Adv. 10, eadp2179 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, S. et al. Insight into the mechanism underlying Dehalococcoides mccartyi strain CBDB1-mediated B12-dependent aromatic reductive dehalogenation. Environ. Sci. Technol. 57, 10773–10781 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Kunze, C. et al. Cobamide-mediated enzymatic reductive dehalogenation via long-range electron transfer. Nat. Commun. 8, 15858 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, S. et al. Electron transport chains in organohalide-respiring bacteria and bioremediation implications. Biotechnol. Adv. 36, 1194–1206 (2018).

    Article  PubMed  Google Scholar 

  35. Heckel, B. & Elsner, M. Exploring mechanisms of biotic chlorinated alkane reduction: evidence of nucleophilic substitution (SN2) with vitamin B12. Environ. Sci. Technol. 56, 6325–6336 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Payne, K. A. P. et al. Reductive dehalogenase structure suggests a mechanism for B12-dependent dehalogenation. Nature 517, 513–516 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. McCauley, K. M. et al. Properties and reactivity of chlorovinylcobalamin and vinylcobalamin and their implications for vitamin B12-catalyzed reductive dechlorination of chlorinated alkenes. J. Am. Chem. Soc. 127, 1126–1136 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Guo, M. & Chen, Y. Coenzyme cobalamin: biosynthesis, overproduction and its application in dehalogenation—a review. Rev. Environ. Sci. Biotechnol. 17, 259–284 (2018).

    Article  CAS  Google Scholar 

  39. Dewey, C., Juillot, F., Fendorf, S. & Bargar, J. R. Seasonal oxygenation of contaminated floodplain soil releases Zn to porewater. Environ. Sci. Technol. 57, 4841–4851 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Gong, L., Qiu, X., Tratnyek, P. G., Liu, C. & He, F. FeNX(C)-coated microscale zero-valent iron for fast and stable trichloroethylene dechlorination in both acidic and basic pH conditions. Environ. Sci. Technol. 55, 5393–5402 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Gu, Y. et al. Sulfidation mitigates the passivation of zero valent iron at alkaline pHs: experimental evidences and mechanism. Water Res. 159, 233–241 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Low, A. et al. Isolation, characterization and bioaugmentation of an acidotolerant 1,2-dichloroethane respiring Desulfitobacterium species from a low pH aquifer. FEMS Microbiol. Ecol. 95, fiz055 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Schmidt, M., Lege, S. & Nijenhuis, I. Comparison of 1,2-dichloroethane, dichloroethene and vinyl chloride carbon stable isotope fractionation during dechlorination by two Dehalococcoides strains. Water Res. 52, 146–154 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Jeong, W.-G., Kim, J.-G. & Baek, K. Removal of 1,2-dichloroethane in groundwater using Fenton oxidation. J. Hazard. Mater. 428, 128253 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Zhou, Z. et al. Insights into enhanced removal of 1,2-dichloroethane by amorphous boron-enhanced Fenton system: performances and mechanisms. J. Hazard. Mater. 420, 126589 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Chen, W. et al. In-situ activation of persulfate by emplaced magnetite nanoparticles for degradation of 1,2-dichloroethane in porous media. Water Res. 268, 122574 (2025).

    Article  CAS  PubMed  Google Scholar 

  47. Sun, Z. et al. Vitamin B12 (CoII) initiates the reductive defluorination of branched perfluorooctane sulfonate (br-PFOS) in the presence of sulfide. Chem. Eng. J. 423, 130149 (2021).

    Article  CAS  Google Scholar 

  48. Assaf-Anid, N., Hayes, K. F. & Vogel, T. M. Reduction dechlorination of carbon tetrachloride by cobalamin(II) in the presence of dithiothreitol: mechanistic study, effect of redox potential and pH. Environ. Sci. Technol. 28, 246–252 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Huang, C.-C., Lo, S.-L. & Lien, H.-L. Vitamin B12-mediated hydrodechlorination of dichloromethane by bimetallic Cu/Al particles. Chem. Eng. J. 273, 413–420 (2015).

    Article  CAS  Google Scholar 

  50. Kim, Y. H. & Carraway, E. R. Reductive dechlorination of PCE and TCE by vitamin B12 and ZVMs. Environ. Technol. 23, 1135–1145 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Kliegman, S. & McNeill, K. Reconciling disparate models of the involvement of vinyl radicals in cobalamin-mediated dechlorination reactions. Environ. Sci. Technol. 43, 8961–8967 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Huang, D. et al. Elucidating the role of single-atom Pd for electrocatalytic hydrodechlorination. Environ. Sci. Technol. 55, 13306–13316 (2021).

    CAS  PubMed  Google Scholar 

  53. He, F. et al. Dechlorination of excess trichloroethene by bimetallic and sulfidated nanoscale zero-valent iron. Environ. Sci. Technol. 52, 8627–8637 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Chiu, P.-C. & Reinhard, M. Transformation of carbon tetrachloride by reduced vitamin B12 in aqueous cysteine solution. Environ. Sci. Technol. 30, 1882–1889 (1996).

    Article  CAS  Google Scholar 

  55. Bae, S., Collins, R. N., Waite, T. D. & Hanna, K. Advances in surface passivation of nanoscale zerovalent iron: a critical review. Environ. Sci. Technol. 52, 12010–12025 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Li, M. et al. Kirkendall effect boosts phosphorylated nZVI for efficient heavy metal wastewater treatment. Angew. Chem. Int. Ed. 60, 17115–17122 (2021).

    Article  CAS  Google Scholar 

  57. Wei, K. et al. Strained zero‐valent iron for highly efficient heavy metal removal. Adv. Funct. Mater. 32, 2200498 (2022).

    Article  CAS  Google Scholar 

  58. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2011).

    Article  PubMed  Google Scholar 

  59. Cai, S. et al. Cations facilitate sulfidation of zero-valent iron by elemental sulfur: mechanism and dechlorination application. Water Res. 242, 120262 (2023).

    Article  CAS  PubMed  Google Scholar 

  60. Kang, Q. et al. A synthetic cell-free 36-enzyme reaction system for vitamin B12 production. Nat. Commun. 14, 5177 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gong, L. et al. Coincorporation of N and S into zero-valent iron to enhance TCE dechlorination: kinetics, electron efficiency, and dechlorination capacity. Environ. Sci. Technol. 55, 16088–16098 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Frisch, M. et al. Gaussian 09, Revision D.01 (Gaussian, Inc., 2013).

  63. Lu, T. A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. J. Chem. Phys. 161, 082503 (2024).

    Article  CAS  PubMed  Google Scholar 

  64. Zhang, N. et al. Crystal engineering of TiO2 for enhanced catalytic oxidation of 1,2-dichloroethane on a Pt/TiO2 catalyst. Environ. Sci. Technol. 57, 7086–7096 (2023).

    Article  CAS  PubMed  Google Scholar 

  65. Yu, X. et al. High selectivity to HCl for the catalytic removal of 1,2-dichloroethane over RuP/3DOM WOx: insights into the effects of P-doping and H2O introduction. Environ. Sci. Technol. 55, 14906–14916 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. El-Sharnouby, O., Boparai, H. K., Herrera, J. & O’Carroll, D. M. Aqueous-phase catalytic hydrodechlorination of 1,2-dichloroethane over palladium nanoparticles (nPd) with residual borohydride from nPd synthesis. Chem. Eng. J. 342, 281–292 (2018).

    Article  CAS  Google Scholar 

  67. VanStone, N., Elsner, M., Lacrampe-Couloume, G., Mabury, S. & Lollar, B. S. Potential for identifying abiotic chloroalkane degradation mechanisms using carbon isotopic fractionation. Environ. Sci. Technol. 42, 126–132 (2007).

    Article  Google Scholar 

  68. Liu, X., Vellanki, B. P., Batchelor, B. & Abdel-Wahab, A. Degradation of 1,2-dichloroethane with advanced reduction processes (ARPs): effects of process variables and mechanisms. Chem. Eng. J. 237, 300–307 (2014).

    Article  CAS  Google Scholar 

  69. Koenig, J. C. et al. Particles and enzymes: combining nanoscale zero valent iron and organochlorine respiring bacteria for the detoxification of chloroethane mixtures. J. Hazard. Mater. 308, 106–112 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (grant nos. 42225704 to F.H., 42421005 to Z.W. and W2411032 to F.H.) and the Fundamental Research Funds for the Central Universities (grant no. JUSRP202407001 to F.H.).

Author information

Authors and Affiliations

Contributions

F.H. and B.X. conceived and designed the project. H.W., C.C., Z.C. and S.C. conducted the experiments and HRMS characterizations. B.Z., Y.Z. and B.L. carried out the electrochemical characterizations and DFT calculations. H.W., M.Y., B.L., Y.Z. and C.C. wrote the paper. F.H., B.G., Z.W. and B.X. helped with data analysis and paper polishing. F.H. and Z.W. supervised the project. All authors discussed the results and made rational suggestions.

Corresponding authors

Correspondence to Ying Zhao, Beidou Xi or Feng He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Jordi Palau and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–42, Tables 1–5 and References.

Source data

Source Data Figs. 1

Source data for Figs. 1–5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Cheng, C., Zhao, B. et al. Efficient and selective dechlorination of chlorinated organic pollutants by cob(II)alamin and zero-valent iron. Nat Water (2025). https://doi.org/10.1038/s44221-025-00499-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44221-025-00499-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing