Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Large-scale deployment of single-atom catalysts via cross-scale confinement in ceramic membranes for advanced water treatment

Abstract

Single-atom catalysts (SACs) demonstrate exceptional catalytic activity, yet their practical deployment in water treatment remains hindered by instability, scalability barriers and incompatibility with existing infrastructure. Here we present a hierarchical cross-scale assembly of manganese SACs confined within the nanopores of a ZrO2 ceramic membrane (Mn-SA@CM), enabling scalable deployment for advanced water treatment. Validated in a pilot-scale device treating 1,200 litres of real hospital wastewater, Mn-SA@CM achieves an exceptionally high decontamination rate (9.8 × 104 min−1) and ultrahigh permeability (150 l m−2 h−1 bar−1), overcoming the permeability–reactivity trade-off. This hierarchical design integrates metal–organic framework-derived micropores to stabilize atomic sites, membrane nanopores to drive advection-enhanced mass transfer and macroporous ceramic supports to ensure mechanical durability. Nanoconfinement inside the membrane pores concentrates reactants near catalytic sites, boosting degradation kinetics by 105-fold compared with bulk systems. The membrane also exhibits self-cleaning functionality, sustaining >97% removal of emerging contaminants over 168 h with negligible flux decline or metal leaching. By bridging atomic-scale catalysis with macroscale engineering via cross-scale assembly, this work establishes a viable, infrastructure-compatible platform for deploying SACs in real-world environmental remediation and beyond.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Preparation and microstructure characterization of Mn-SA@CM.
Fig. 2: Structural characterization of Mn-SA catalysts.
Fig. 3: Catalytic performance of Mn-SA@CM.
Fig. 4: Reactive species and activation mechanisms of high-performance Mn-SA@CM/PMS system for water decontamination.
Fig. 5: Pilot-scale application of Mn-SA@CM/PMS system.

Similar content being viewed by others

Data availability

The data for this study are available within the Article and its Supplementary Information.

References

  1. Xu, J. et al. Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2. Nat. Sustain. 4, 233–241 (2021).

    Article  PubMed  Google Scholar 

  2. Hou, C.-C., Wang, H.-F., Li, C. & Xu, Q. From metal–organic frameworks to single/dual-atom and cluster metal catalysts for energy applications. Energy Environ. Sci. 13, 1658–1693 (2020).

    Article  CAS  Google Scholar 

  3. Gloag, L., Somerville, S. V., Gooding, J. J. & Tilley, R. D. Co-catalytic metal–support interactions in single-atom electrocatalysts. Nat. Rev. Mater. 9, 173–189 (2024).

    Article  CAS  Google Scholar 

  4. Mi, X. et al. Almost 100% peroxymonosulfate conversion to singlet oxygen on single-atom CoN2+2 sites. Angew. Chem. Int. Ed. 60, 4588–4593 (2021).

    Article  CAS  Google Scholar 

  5. Meng, Y. et al. Nanoconfinement steers nonradical pathway transition in single atom fenton-like catalysis for improving oxidant utilization. Nat. Commun. 15, 5314 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dong, X., Chen, Z., Tang, A., Dionysiou, D. D. & Yang, H. Mineral modulated single atom catalyst for effective water treatment. Adv. Funct. Mater. 32, 2111565 (2022).

    Article  CAS  Google Scholar 

  7. Gu, C.-H. et al. Upcycling waste sewage sludge into superior single-atom Fenton-like catalyst for sustainable water purification. Nat. Water 2, 649–662 (2024).

    Article  CAS  Google Scholar 

  8. Hodges, B. C., Cates, E. L. & Kim, J.-H. Challenges and prospects of advanced oxidation water treatment processes using catalytic nanomaterials. Nat. Nanotechnol. 13, 642–650 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Wu, X. & Kim, J.-H. Outlook on single atom catalysts for persulfate-based advanced oxidation. ACS ES&T Eng. 2, 1776–1796 (2022).

    Article  CAS  Google Scholar 

  10. Zhu, Z.-S. et al. Multidimensional engineering of single-atom cobalt catalysts for ultrafast Fenton-like reactions. Nat. Water 3, 211–221 (2025).

    Article  CAS  Google Scholar 

  11. Dong, Y. et al. Ultrastable ceramic-based metal–organic framework membranes with missing linkers for robust desalination. Nat. Water 2, 464–474 (2024).

    Article  CAS  Google Scholar 

  12. Wu, X. et al. Single-Atom Cobalt Incorporated in a 2D Graphene Oxide Membrane for Catalytic Pollutant Degradation. Environ. Sci. Technol. 56, 1341–1351 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Chen, F. et al. Embedding electronic perpetual motion into single-atom catalysts for persistent Fenton-like reactions. Proc. Natl Acad. Sci. USA 121, e2314396121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu, Q. Y., Yang, Z. W., Wang, Z. W. & Wang, W. L. Oxygen doping of cobalt-single-atom coordination enhances peroxymonosulfate activation and high-valent cobalt-oxo species formation. Proc. Natl Acad. Sci. USA 120, e2219923120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yin, Y. et al. Boosting Fenton-like reactions via single atom Fe catalysis. Environ. Sci. Technol. 53, 11391–11400 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, X. et al. Free-standing membrane incorporating single-atom catalysts for ultrafast electroreduction of low-concentration nitrate. Proc. Natl Acad. Sci. USA 120, e2217703120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang, Z.-Q. et al. Nano-island-encapsulated cobalt single-atom catalysts for breaking activity-stability trade-off in Fenton-like reactions. Nat. Commun. 16, 115 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liu, Y.-Q. et al. Magnesium oxide-supported single atoms with fine-modulated steric location for polymerization transfer removal of water pollutants. Environ. Sci. Technol. 59, 880–891 (2025).

    Article  CAS  PubMed  Google Scholar 

  19. Zhou, X. et al. Ceramic thin-film composite membranes with tunable subnanometer pores for molecular sieving. Nat. Commun. 14, 7255 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lu, N. & Liu, F. Tempospatially confined catalytic membranes for advanced water remediation. Adv. Mater. 36, 2311419 (2024).

    Article  CAS  Google Scholar 

  21. Luo, R. et al. Flowerlike FeOX–MnOX amorphous oxides anchored on PTFE/PPS membrane for efficient dust filtration and low-temperature no reduction. Ind. Eng. Chem. Res. 61, 5816–5824 (2022).

    Article  CAS  Google Scholar 

  22. Lee, W. J., Bao, Y., Hu, X. & Lim, T.-T. Hybrid catalytic ozonation-membrane filtration process with CeOx and MnOx impregnated catalytic ceramic membranes for micropollutants degradation. Chem. Eng. J. 378, 121670 (2019).

    Article  CAS  Google Scholar 

  23. Wang, X. et al. Robust ultrathin nanoporous MOF membrane with intra-crystalline defects for fast water transport. Nat. Commun. 13, 266 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhai, M., Moghadam, F., Gosiamemang, T., Heng, J. Y. Y. & Li, K. Facile orientation control of MOF-303 hollow fiber membranes by a dual-source seeding method. Nat. Commun. 15, 10264 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Feng, J. et al. A Mn-N3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO2 electroreduction. Nat. Commun. 11, 4341 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Guo, Z. et al. Single-atom Mn–N4 site-catalyzed peroxone reaction for the efficient production of hydroxyl radicals in an acidic solution. J. Am. Chem. Soc. 141, 12005–12010 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Guo, J. et al. Size-dependent catalysis in Fenton-like chemistry: from nanoparticles to single atoms. Adv. Mater. 36, 2403965 (2026).

    Article  Google Scholar 

  28. Tian, M. et al. Overcoming the permeability–selectivity challenge in water purification using two-dimensional cobalt-functionalized vermiculite membrane. Nat. Commun. 15, 391 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhao, Y., Sun, M., Wang, X., Wang, C. & Elimelech, M. Janus electrocatalytic flow-through membrane enables highly selective singlet oxygen production. Nat. Commun. 11, 6228 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, B. et al. Nanocurvature-induced field effects enable control over the activity of single-atom electrocatalysts. Nat. Commun. 15, 1719 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, S. et al. Mechanism of heterogeneous Fenton reaction kinetics enhancement under nanoscale spatial confinement. Environ. Sci. Technol. 54, 10868–10875 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Asif, M. B., Zhang, S., Qiu, L. & Zhang, Z. Ultrahigh-permeance functionalized boron nitride membrane for nanoconfined heterogeneous catalysis. Chem. Catal. 2, 550–562 (2022).

    CAS  Google Scholar 

  33. Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993).

    Article  CAS  Google Scholar 

  34. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  35. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Article  Google Scholar 

  37. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  38. Wang, V., Xu, N., Liu, J.-C., Tang, G. & Geng, W.-T. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021).

    Article  CAS  Google Scholar 

  39. Momma, K. & Izumi, F. VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653–658 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (grant nos. 52460003 to Y.Y., 22236003 to B.P. and 22376093 to W.F.), Natural Science Foundation of Jiangsu Province (grant no. BK20230797 to W.F.), Natural Science Foundation of Jiangxi Province (grant no. 20242BAB25319 to Y.Y.), Key R&D Program of Jiangxi Province (grant no. 20252BCE310043 to Y.Y.) and State Key Laboratory of Water Pollution Control and Green Resource Recycling Foundation (grant no. PCRRF25044 to Y.Y.).

Author information

Authors and Affiliations

Authors

Contributions

Y.Y., W.F. and B.P. conceived the idea and designed the experiments. Y.Y. and H.L. carried out the material synthesis and performance tests. Y.Y., H.L., Z.H., R.Y., H.X., Q.W., Y.W. and X.C. carried out the characterization and performed the data analysis. Q.C. and W.F. supervised the project. Y.Y. and H.L. drafted the manuscript. W.F., B.P. and Q.C. revised the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Wanyi Fu, Qibing Chang or Bingcai Pan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks the anonymous reviewer(s) for their contributions to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Texts 1–5, Figs. 1–35 and Tables 1–14.

Reporting Summary

Source data

Source Data Figs. 2–5

All source data for main figures.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Li, H., Fu, W. et al. Large-scale deployment of single-atom catalysts via cross-scale confinement in ceramic membranes for advanced water treatment. Nat Water (2025). https://doi.org/10.1038/s44221-025-00512-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44221-025-00512-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing