Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Realizing the practical application of CO2 electroreduction for urban wastewater denitrification

Abstract

The artificial recycling of CO2 into value-added feedstocks and chemicals provides a sustainable approach to mitigate its greenhouse effect and realize a carbon-neutral economy, for which the direct and efficient utilization of CO2 reduction products without additional separation and purification remains challenging. Here an electrochemical–biological hybrid system has been developed to merge CO2 electrolysis with municipal wastewater treatment. In this set-up, the formate produced electrocatalytically (formate-e) in neutral electrolyte (1.0 M KHCO3) is directly applied as a carbon source and energy carrier for biological denitrification using activated sludge from municipal wastewater treatment plants, exhibiting an excellent nitrate nitrogen (NO3-N) removal rate of ~3.06 mg l−1 h−1. Moreover, after long-term continuous operation of the tailored denitrification bioreactor, the formate-e displayed high denitrification rate of 1.08 mgNO3-N per gram suspended solids per litre per hour, surpassing that of acetate, widely used as a commercial carbon source. Further environmental and techno-economic analyses suggest that integrating this electrochemical–biological hybrid system with an electrochemical recovery and separation system can significantly lower the cost of the electrolyte, thereby showing promise for the direct use of formate-e in industrial applications for wastewater treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design of an electrochemical–biological hybrid system.
Fig. 2: Structure and performance of the prepared catalysts.
Fig. 3: Biological denitrification using formate-e as external carbon source.
Fig. 4: System combining the CO2RR and continuous-flow bioreactor for long-term operation.
Fig. 5: Environmental and economic analysis.

Similar content being viewed by others

Data availability

All of the data that support the findings of this study are included in the Article and its Supplementary Information. Source data are provided with this paper. These data are also available via figshare at https://doi.org/10.6084/m9.figshare.29815832 (ref. 56).

References

  1. Siegenthaler, U. & Sarmiento, J. L. Atmospheric carbon dioxide and the ocean. Nature 365, 119–125 (1993).

    Article  CAS  Google Scholar 

  2. Liu, Z., Deng, Z., Davis, S. & Ciais, P. Monitoring global carbon emissions in 2022. Nat. Rev. Earth Environ. 4, 205–206 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  3. MacDowell, N., Fennell, P. S., Shah, N. & Maitland, G. C. The role of CO2 capture and utilization in mitigating climate change. Nat. Clim. Change 7, 243–249 (2017).

    Article  CAS  Google Scholar 

  4. Jordaan, S. M. & Wang, C. Electrocatalytic conversion of carbon dioxide for the Paris goals. Nat. Catal. 4, 915–920 (2021).

    Article  Google Scholar 

  5. Overa, S., Feric, T. G., Park, A.-H. A. & Jiao, F. Tandem and hybrid processes for carbon dioxide utilization. Joule 5, 8–13 (2021).

    Article  Google Scholar 

  6. Birdja, Y. Y. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019).

    Article  CAS  Google Scholar 

  7. Overa, S., Ko, B. H., Zhao, Y. & Jiao, F. Electrochemical approaches for CO2 conversion to chemicals: a journey toward practical applications. Acc. Chem. Res. 55, 638–648 (2022).

    Article  PubMed  CAS  Google Scholar 

  8. Liu, Z., Yang, H., Kutz, R. & Masel, R. I. CO2 electrolysis to CO and O2 at high selectivity, stability and efficiency using sustainion membranes. J. Electrochem. Soc. 165, J3371 (2018).

    Article  CAS  Google Scholar 

  9. Han, N., Ding, P., He, L., Li, Y. & Li, Y. Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate. Adv. Energy Mater. 10, 1902338 (2020).

    Article  CAS  Google Scholar 

  10. Li, C. W. & Kanan, M. W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 134, 7231–7234 (2012).

    Article  PubMed  CAS  Google Scholar 

  11. Zhang, G. et al. Selective CO2 electroreduction to methanol via enhanced oxygen bonding. Nat. Commun. 13, 7768 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Qiu, X.-F. et al. A stable and conductive covalent organic framework with isolated active sites for highly selective electroreduction of carbon dioxide to acetate. Angew. Chem. Int. Ed. 61, e202206470 (2022).

    Article  CAS  Google Scholar 

  13. Zhang, J. et al. Accelerating electrochemical CO2 reduction to multi-carbon products via asymmetric intermediate binding at confined nanointerfaces. Nat. Commun. 14, 1298 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Xia, W. et al. Adjacent copper single atoms promote C–C coupling in electrochemical CO2 reduction for the efficient conversion of ethanol. J. Am. Chem. Soc. 145, 17253–17264 (2023).

    Article  PubMed  CAS  Google Scholar 

  15. Yang, P.-P. et al. Highly enhanced chloride adsorption mediates efficient neutral CO2 electroreduction over a dual-phase copper catalyst. J. Am. Chem. Soc. 145, 8714–8725 (2023).

    Article  PubMed  CAS  Google Scholar 

  16. Dinh, C.-T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    Article  PubMed  CAS  Google Scholar 

  17. Möller, T. et al. The product selectivity zones in gas diffusion electrodes during the electrocatalytic reduction of CO2. Energy Environ. Sci. 14, 5995–6006 (2021).

    Article  Google Scholar 

  18. Ren, S. et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 365, 367–369 (2019).

    Article  PubMed  CAS  Google Scholar 

  19. Zhou, Y., Ganganahalli, R., Verma, S., Tan, H. R. & Yeo, B. S. Production of C3–C6 acetate esters via CO electroreduction in a membrane electrode assembly cell. Angew. Chem. Int. Ed. 61, e202202859 (2022).

    Article  CAS  Google Scholar 

  20. Gu, Z. et al. Efficient electrocatalytic CO2 reduction to C2+ alcohols at defect-site-rich Cu surface. Joule 5, 429–440 (2021).

    Article  CAS  Google Scholar 

  21. Seger, B., Robert, M. & Jiao, F. Best practices for electrochemical reduction of carbon dioxide. Nat. Sustain. 6, 236–238 (2023).

    Article  Google Scholar 

  22. Zheng, T. et al. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nat. Catal. 5, 388–396 (2022).

    Article  CAS  Google Scholar 

  23. Bi, H. et al. Biofuel synthesis from carbon dioxide via a bio-electrocatalysis system. Chem Catal. 3, 100557 (2023).

    CAS  Google Scholar 

  24. Hann, E. C. et al. A hybrid inorganic–biological artificial photosynthesis system for energy-efficient food production. Nat. Food 3, 461–471 (2022).

    Article  PubMed  CAS  Google Scholar 

  25. Wang, X.-H., Wang, X., Huppes, G., Heijungs, R. & Ren, N.-Q. Environmental implications of increasingly stringent sewage discharge standards in municipal wastewater treatment plants: case study of a cool area of China. J. Clean. Prod. 94, 278–283 (2015).

    Article  Google Scholar 

  26. Ghafari, S., Hasan, M. & Aroua, M. K. Bio-electrochemical removal of nitrate from water and wastewater—a review. Bioresour. Technol. 99, 3965–3974 (2008).

    Article  PubMed  CAS  Google Scholar 

  27. Xu, Z., Dai, X. & Chai, X. Effect of different carbon sources on denitrification performance, microbial community structure and denitrification genes. Sci. Total Environ. 634, 195–204 (2018).

    Article  PubMed  CAS  Google Scholar 

  28. Tian, Y. et al. Glycine adversely affects enhanced biological phosphorus removal. Water Res. 209, 117894 (2022).

    Article  PubMed  CAS  Google Scholar 

  29. Gu, X. et al. Influence mechanism of C/N ratio on heterotrophic nitrification- aerobic denitrification process. Bioresour. Technol. 343, 126116 (2022).

    Article  PubMed  CAS  Google Scholar 

  30. Qiu, G. et al. Polyphosphate-accumulating organisms in full-scale tropical wastewater treatment plants use diverse carbon sources. Water Res. 149, 496–510 (2019).

    Article  PubMed  CAS  Google Scholar 

  31. Xue, Z. et al. An alternative carbon source withdrawn from anaerobic fermentation of soybean wastewater to improve the deep denitrification of tail water. Biochem. Eng. J. 132, 217–224 (2018).

    Article  CAS  Google Scholar 

  32. Kargi, F. & Uygur, A. Effect of carbon source on biological nutrient removal in a sequencing batch reactor. Bioresour. Technol. 89, 89–93 (2003).

    Article  PubMed  CAS  Google Scholar 

  33. Wang, T. et al. Halogen-incorporated Sn catalysts for selective electrochemical CO2 reduction to formate. Angew. Chem. Int. Ed. 62, e202211174 (2023).

    Article  CAS  Google Scholar 

  34. Zhu, J. et al. Surface passivation for highly active, selective, stable, and scalable CO2 electroreduction. Nat. Commun. 14, 4670 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Liu, L., Jiang, J., Jin, S., Xia, Z. & Tang, M. Hydrothermal synthesis of β-bismuth oxide nanowires from particles. CrystEngComm 13, 2529–2532 (2011).

    Article  CAS  Google Scholar 

  36. Wang, Z. et al. Carbon-confined indium oxides for efficient carbon dioxide reduction in a solid-state electrolyte flow cell. Angew. Chem. Int. Ed. 61, e202200552 (2022).

    Article  CAS  Google Scholar 

  37. Zheng, Y. et al. Toward more efficient carbon-based electrocatalysts for hydrogen peroxide synthesis: roles of cobalt and carbon defects in two-electron ORR catalysis. Nano Lett. 23, 1100–1108 (2023).

    Article  PubMed  CAS  Google Scholar 

  38. Bi, J. et al. High-rate CO2 electrolysis to formic acid over a wide potential window: an electrocatalyst comprised of indium nanoparticles on chitosan-derived graphene. Angew. Chem. Int. Ed. 62, e202307612 (2023).

    Article  CAS  Google Scholar 

  39. Wagner, A., Sahm, C. D. & Reisner, E. Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat. Catal. 3, 775–786 (2020).

    Article  CAS  Google Scholar 

  40. Wu, Q. et al. Nanograin-boundary-abundant Cu2O-Cu nanocubes with high C2+ selectivity and good stability during electrochemical CO2 reduction at a current density of 500 mA/cm2. ACS Nano 17, 12884–12894 (2023).

    Article  PubMed  CAS  Google Scholar 

  41. Xing, Z., Hu, L., Ripatti, D. S., Hu, X. & Feng, X. Enhancing carbon dioxide gas-diffusion electrolysis by creating a hydrophobic catalyst microenvironment. Nat. Commun. 12, 136 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Arán-Ais, R. M., Scholten, F., Kunze, S., Rizo, R. & Roldan Cuenya, B. The role of in situ generated morphological motifs and Cu(I) species in C2+ product selectivity during CO2 pulsed electroreduction. Nat. Energy 5, 317–325 (2020).

    Article  Google Scholar 

  43. Yang, Y. et al. Operando studies reveal active Cu nanograins for CO2 electroreduction. Nature 614, 262–269 (2023).

    Article  PubMed  CAS  Google Scholar 

  44. Hung, S.-F. et al. Operando X-ray absorption spectroscopic studies of the carbon dioxide reduction reaction in a modified flow cell. Catal. Sci. Technol. 12, 2739–2743 (2022).

    Article  CAS  Google Scholar 

  45. Deng, P. et al. Bismuth oxides with enhanced bismuth–oxygen structure for efficient electrochemical reduction of carbon dioxide to formate. ACS Catal. 10, 743–750 (2020).

    Article  CAS  Google Scholar 

  46. Li, Z. et al. In situ investigations on Bi-based electrocatalyst construction and reaction dynamic monitoring toward efficient CO2 reduction. Chem Catal. 3, 100767 (2023).

    CAS  Google Scholar 

  47. Liang, X.-D. et al. In-situ constructing Bi@Bi2O2CO3 nanosheet catalyst for ampere-level CO2 electroreduction to formate. Nano Energy 114, 108638 (2023).

    Article  CAS  Google Scholar 

  48. Lu, H., Chandran, K. & Stensel, D. Microbial ecology of denitrification in biological wastewater treatment. Water Res. 64, 237–254 (2014).

    Article  PubMed  CAS  Google Scholar 

  49. Kelly, J. J. et al. DNA microarray detection of nitrifying bacterial 16s rRNA in wastewater treatment plant samples. Water Res. 39, 3229–3238 (2005).

    Article  PubMed  CAS  Google Scholar 

  50. Srinandan, C. S., D’souza, G., Srivastava, N., Nayak, B. B. & Nerurkar, A. S. Carbon sources influence the nitrate removal activity, community structure and biofilm architecture. Bioresour. Technol. 117, 292–299 (2012).

    Article  PubMed  CAS  Google Scholar 

  51. McIlroy, S. J. et al. Identification of active denitrifiers in full-scale nutrient removal wastewater treatment systems. Environ. Microbiol. 18, 50–64 (2016).

    Article  PubMed  CAS  Google Scholar 

  52. McIlroy, S. J. et al. ‘Candidatus Competibacter’-lineage genomes retrieved from metagenomes reveal functional metabolic diversity. ISME J. 8, 613–624 (2014).

    Article  PubMed  CAS  Google Scholar 

  53. Dong, N., Zeng, Z., Russenberger, M., Zhou, L. & Zhuang, W.-Q. Investigating cake layer development and functional genes in formate- and acetate-driven heterotrophic denitrifying AnMBRs. Chem. Eng. J. 485, 149623 (2024).

    Article  CAS  Google Scholar 

  54. Wang, P. et al. Integrated system for electrolyte recovery, product separation, and CO2 capture in CO2 reduction. Nat. Commun. 16, 731 (2025).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Chen, J. et al. Relating the carbon sources to denitrifying community in full-scale wastewater treatment plants. Chemosphere 361, 142329 (2024).

    Article  PubMed  CAS  Google Scholar 

  56. Wu, Q. et al. Realizing the practical application of CO2 electroreduction for urban wastewater denitrification. figshare https://doi.org/10.6084/m9.figshare.29815832 (2025).

Download references

Acknowledgements

G.C., G.Q. and W.-W.Z. thank the support of the National Natural Science Foundation of China (22471077, 21971070, 52270035 and 22374066), the Guangdong Basic and Applied Basic Research Foundation (2022A1515012047), the Guangdong Innovative and Entrepreneurial Research Team Program (2019ZT08L075), the Guangdong Pearl River Talent Program (2019QN01L159, 2019QN01L125), the Science and Technology Program of Guangzhou (202103040002, 2025A04J7050) and the National Key R&D Program of China (2023YFC3708505). K.-S.P., Y.-Y.C. and S.-F.H. acknowledge the support from the National Science and Technology Council, Taiwan (Contract Number NSTC 114-2628-M-A49-005). We thank the support from the Yushan Young Scholar Program (MOE-114-YSFMS-0010-003-P2) and the Center for Emergent Functional Matter Science, Ministry of Education, Taiwan. X.W. acknowledges support through an ECS grant from the Research Grants Council of the Hong Kong Special Administrative Region (project number 21300323) and the CityU start-up fund (project number 9610600).

Author information

Authors and Affiliations

Authors

Contributions

G.C. and G.Q. conceived the idea. Q.W., R.D., H.W. and P.W. prepared the catalysts and conducted the CO2 electroreduction tests. S.J., J.C. and Q.W. conducted a denitrification batch experiment. Y.Q., K.Y., Y.Z. and L.Z. contributed to thorough discussions on this work. K.-S.P., Y.-Y.C. and S.-F.H. carried out the operando XAS measurements. X.-Q.T. and W.-J.O. conducted the LCA analysis. G.Q., W.-W.Z. and G.C. proposed the idea, designed the experiments, analysed the data and wrote the paper with editing from G.Q. and X.W. G.C. supervised and coordinated all investigators in this project.

Corresponding authors

Correspondence to Wei-Wei Zhao, Sung-Fu Hung, Guanglei Qiu or Guangxu Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Ke Xie, Cesar Torres and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–39, Tables 1–12 and references.

Reporting Summary

Peer Review File

Supplementary Data

Source data for Supplementary Figs. 1–39.

Source data

Source Data Figs. 2–5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Ji, S., Chen, J. et al. Realizing the practical application of CO2 electroreduction for urban wastewater denitrification. Nat Water (2025). https://doi.org/10.1038/s44221-025-00516-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44221-025-00516-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing