Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Expanding methanogens with genetic potential for extracellular electron transfer capabilities in anaerobic wastewater treatment ecosystems

Abstract

Methanogens have key roles in wastewater treatment, coupling water quality control and bioenergy recovery. However, our understanding of direct interspecies electron transfer via extracellular electron transfer (EET)—a newly discovered methanogenic pathway for CO2 reduction—remains limited because pure-culture cultivation is difficult and few strains are confirmed. Here we show that a survey of 378 methanogen genomes reveals key methanogenesis-related genes and widespread EET-associated structures, including proton-pumping Fpo complexes, conductive flagellin, conductive sheaths and multihaem c-type cytochromes. We identify 84 strains with genomic potential for EET, greatly expanding the candidate pool. Analysis of over 500 anaerobic digestion samples, including those from wastewater treatment systems, revealed that putative EET-capable methanogen genera are widespread, environmentally correlative and central to syntrophic networks. These findings deepen our understanding of methanogenic diversity in advancing wastewater treatment and sustainability while also broadening insights into methanogenesis across diverse aquatic ecosystems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the screening workflow to identify putative EET-capable methanogens.
Fig. 2: Identification of CO2 reduction pathway genes and substrate utilization in methanogen strains.
Fig. 3: Identification and characterization of membrane-associated and membrane-integral Fpo proteins in methanogens.
Fig. 4: Distribution of conductive structures in methanogens.
Fig. 5: Global distribution and environmental context of putative EET-capable methanogens.
Fig. 6: Role of putative EET-capable methanogens in the global syntrophic network.

Data availability

The datasets generated and/or analysed during this study are available within this article and its Supplementary Information. No custom software or unpublished code was developed in this study.

References

  1. Lyu, Z., Shao, N., Akinyemi, T. & Whitman, W. B. Methanogenesis. Curr. Biol. 28, R727–R732 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Kaster, A. K. et al. More than 200 genes required for methane formation from H2 and CO2 and energy conservation are present in Methanothermobacter marburgensis and Methanothermobacter thermautotrophicus. Archaea 2011, 973848 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhao, Z., Li, Y., Zhang, Y. & Lovley, D. R. Sparking anaerobic digestion: promoting direct interspecies electron transfer to enhance methane production. iScience 23, 101794 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dueholm, M. K. D. et al. MiDAS 5: global diversity of bacteria and archaea in anaerobic digesters. Nat. Commun. 15, 5361 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gilmore, S. P. et al. Genomic analysis of methanogenic archaea reveals a shift towards energy conservation. BMC Genomics 18, 639 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Michal, B. et al. PhyMet(2): a database and toolkit for phylogenetic and metabolic analyses of methanogens. Environ. Microbiol. Rep. 10, 378–382 (2018).

    Article  PubMed  Google Scholar 

  7. Ye, L., Mei, R., Liu, W. T., Ren, H. & Zhang, X. X. Machine learning-aided analyses of thousands of draft genomes reveal specific features of activated sludge processes. Microbiome 8, 16 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Garcia, P. S., Gribaldo, S. & Borrel, G. Diversity and evolution of methane-related pathways in archaea. Annu. Rev. Microbiol. 76, 727–755 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Rotaru, A.-E. et al. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy Environ. Sci. 7, 408–415 (2014).

    Article  CAS  Google Scholar 

  10. Holmes, D. E., Zhou, J., Ueki, T., Woodard, T. & Lovley, D. R. Mechanisms for electron uptake by Methanosarcina acetivorans during direct interspecies electron transfer. mBio 12, e0234421 (2021).

    Article  PubMed  Google Scholar 

  11. Holmes, D. E. et al. Metatranscriptomic evidence for direct interspecies electron transfer between Geobacter and Methanothrix species in methanogenic rice paddy soils. Appl. Environ. Microbiol. 83, e00223-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lovley, D. R. & Walker, D. J. F. Geobacter protein nanowires. Front. Microbiol. 10, 2078 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yee, M. O. & Rotaru, A. E. Extracellular electron uptake in Methanosarcinales is independent of multiheme c-type cytochromes. Sci. Rep. 10, 372 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gao, K. & Lu, Y. Putative extracellular electron transfer in methanogenic archaea. Front. Microbiol. 12, 611739 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zheng, S., Liu, F., Wang, B., Zhang, Y. & Lovley, D. R. Methanobacterium capable of direct interspecies electron transfer. Environ. Sci. Tech. 54, 15347–15354 (2020).

    Article  CAS  Google Scholar 

  16. Rotaru, A.-E. et al. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Appl. Environ. Microbiol. 80, 4599–4605 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cruz Viggi, C. et al. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation. Environ. Sci. Tech. 48, 7536–7543 (2014).

    Article  CAS  Google Scholar 

  18. Yin, Q. & Wu, G. Advances in direct interspecies electron transfer and conductive materials: electron flux, organic degradation and microbial interaction. Biotechnol. Adv. 37, 107443 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Gupta, D., Chen, K., Elliott, S. J. & Nayak, D. D. MmcA is an electron conduit that facilitates both intracellular and extracellular electron transport in Methanosarcina acetivorans. Nat. Commun. 15, 3300 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Holmes, D. E. et al. A membrane-bound cytochrome enables Methanosarcina acetivorans to conserve energy to support growth from extracellular electron transfer. mBio 10, e00789-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhou, J., Smith, J. A., Li, M. & Holmes, D. E. Methane production by Methanothrix thermoacetophila via direct interspecies electron transfer with Geobacter metallireducens. mBio 14, e00360–00323 (2023).

    PubMed  PubMed Central  Google Scholar 

  22. Qi, Y. L. et al. Analysis of nearly 3000 archaeal genomes from terrestrial geothermal springs sheds light on interconnected biogeochemical processes. Nat. Commun. 15, 4066 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yee, M. O., Snoeyenbos-West, O. L., Thamdrup, B., Ottosen, L. D. M. & Rotaru, A.-E. Extracellular electron uptake by two Methanosarcina species. Front. Energy Res. 7, 29 (2019).

    Article  Google Scholar 

  24. Zhao, Z. et al. Why do DIETers like drinking: metagenomic analysis for methane and energy metabolism during anaerobic digestion with ethanol. Water Res. 171, 115425 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Yin, Q., He, K., Collins, G., De Vrieze, J. & Wu, G. Microbial strategies driving low concentration substrate degradation for sustainable remediation solutions. npj Clean Water 7, 52 (2024).

    Article  Google Scholar 

  26. Holmes, D. E. et al. Electron and proton flux for carbon dioxide reduction in Methanosarcina barkeri during direct interspecies electron transfer. Front. Microbiol. 9, 3109 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Huang, L. et al. Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri in an electric syntrophic coculture. ISME J. 16, 370–377 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Greening, C. et al. Physiology, biochemistry, and applications of F420-and Fo-dependent redox reactions. Microbiol. Mol. Biol. Rev. 80, 451–493 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Welte, C. & Deppenmeier, U. Membrane-bound electron transport in Methanosaeta thermophila. J. Bacteriol. 193, 2868–2870 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou, J. J., Holmes, D. E., Tang, H. Y. & Lovley, D. R. Correlation of key physiological properties of isolates with environment of origin. Appl. Environ. Microbiol. 87, e00731-21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Edwards, M. J., Richardson, D. J., Paquete, C. M. & Clarke, T. A. Role of multiheme cytochromes involved in extracellular anaerobic respiration in bacteria. Protein Sci. 29, 830–842 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Poweleit, N. et al. CryoEM structure of the Methanospirillum hungatei archaellum reveals structural features distinct from the bacterial flagellum and type IV pilus. Nat. Microbiol. 2, 16222 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Walker, D. J. et al. The archaellum of Methanospirillum hungatei is electrically conductive. MBio 10, e00579–00519 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jarrell, K. F., Albers, S.-V., & Machado, J. N. d. S. A comprehensive history of motility and Archaellation in Archaea. FEMS Microbes 2, xtab002 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dong, Y., Shan, Y., Xia, K. & Shi, L. The proposed molecular mechanisms used by archaea for Fe(III) reduction and Fe(II) oxidation. Front. Microbiol. 12, 690918 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ouboter, H. T. et al. Mechanisms of extracellular electron transfer in anaerobic methanotrophic archaea. Nat. Commun. 15, 1477 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, X. et al. Multi-heme cytochrome-mediated extracellular electron transfer by the anaerobic methanotroph ‘Candidatus Methanoperedens nitroreducens’. Nat. Commun. 14, 6118 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shi, Z. et al. Genome-centric metatranscriptomics analysis reveals the role of hydrochar in anaerobic digestion of waste activated sludge. Environ. Sci. Technol. 55, 8351–8361 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Liu, H. et al. Extracellular-proton-transfer driving high energy-conserving methanogenesis in anaerobic digestion. Water Res. 262, 122102 (2024).

    Article  CAS  PubMed  Google Scholar 

  40. Li, L. et al. Extracellular electron transfer based methylotrophic methanogenesis in paddy soil and the prevalent Methanomassiliicoccus. Commun. Earth Environ. 6, 297 (2025).

    Article  Google Scholar 

  41. Lovley, D. R. Electrically conductive pili: biological function and potential applications in electronics. Curr. Opin. Electrochem. 4, 190–198 (2017).

    Article  CAS  Google Scholar 

  42. Shi, L. et al. Extracellular electron transfer mechanisms between microorganisms and minerals. Nat. Rev. Microbiol. 14, 651–662 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. MacLeod, F. A., Guiot, S. R. & Costerton, J. W. Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor. Appl. Environ. Microbiol. 56, 1598–1607 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Guiot, S. R., Pauss, A. & Costerton, J. W. A structured model of the anaerobic granule consortium. Water Sci. Technol. 25, 1–10 (1992).

    Article  CAS  Google Scholar 

  45. Lusk, B. G. Thermophiles; or, the modern prometheus: the importance of extreme microorganisms for understanding and applying extracellular electron transfer. Front. Microbiol. 10, 818 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hao, L. et al. Novel syntrophic bacteria in full-scale anaerobic digesters revealed by genome-centric metatranscriptomics. ISME J. 14, 906–918 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gan, Y. L., Qiu, Q. F., Liu, P. F., Rui, J. P. & Lu, Y. H. Syntrophic oxidation of propionate in rice field soil at 15 and 30 °C under methanogenic conditions. Appl. Environ. Microbiol. 78, 4923–4932 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nozhevnikova, A. N. et al. Syntrophy and interspecies electron transfer in methanogenic microbial communities. Microbiology 89, 129–147 (2020).

    Article  CAS  Google Scholar 

  49. Walker, D. J. F. et al. Syntrophus conductive pili demonstrate that common hydrogen-donating syntrophs can have a direct electron transfer option. ISME J. 14, 837–846 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ziels, R. M., Nobu, M. K. & Sousa, D. Z. Elucidating syntrophic butyrate-degrading populations in anaerobic digesters using stable-isotope-informed genome-resolved metagenomics. mSystems 4, e00159-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Usman, M., Shi, Z., Cai, Y., Zhang, S. & Luo, G. Microbial insights towards understanding the role of hydrochar in enhancing phenol degradation in anaerobic digestion. Environ. Pollut. 330, 121779 (2023).

    Article  CAS  PubMed  Google Scholar 

  52. Mostafa, A., Im, S., Lee, M. K., Song, Y. C. & Kim, D. H. Enhanced anaerobic digestion of phenol via electrical energy input. Chem. Eng. J. 389, 124501 (2020).

    Article  CAS  Google Scholar 

  53. Martins, G., Salvador, A. F., Pereira, L. & Alves, M. M. Methane production and conductive materials: a critical review. Environ. Sci. Technol. 52, 10241–10253 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Rotaru, A. E., Yee, M. O. & Musat, F. Microbes trading electricity in consortia of environmental and biotechnological significance. Curr. Opin. Biotechnol. 67, 119–129 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Joyce, A. et al. Linking microbial community structure and function during the acidified anaerobic digestion of grass. Front. Microbiol. 9, 540 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Van Steendam, C., Smets, I., Skerlos, S. & Raskin, L. Improving anaerobic digestion via direct interspecies electron transfer requires development of suitable characterization methods. Curr. Opin. Biotechnol. 57, 183–190 (2019).

    Article  PubMed  Google Scholar 

  57. Lovley, D. R. & Holmes, D. E. Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms. Nat. Rev. Microbiol. 20, 5–19 (2021).

    Article  PubMed  Google Scholar 

  58. Logan, B. E., Rossi, R., Ragab, A. & Saikaly, P. E. Electroactive microorganisms in bioelectrochemical systems. Nat. Rev. Microbiol. 17, 307–319 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Liu, Y. in Handbook of Hydrocarbon and Lipid Microbiology (ed. Timmis, K. N.) (Springer, 2010).

  60. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  62. Sayers, E. W. et al. Database resources of the national center for biotechnology information in 2025. Nucleic Acids Res. 53, D20–D29 (2025).

    Article  PubMed  Google Scholar 

  63. Arbour, T. J., Gilbert, B. & Banfield, J. F. Diverse microorganisms in sediment and groundwater are implicated in extracellular redox processes based on genomic analysis of bioanode communities. Front. Microbiol. 11, 1694 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bray, M. S. et al. Phylogenetic and structural diversity of aromatically dense pili from environmental metagenomes. Environ. Microbiol. Rep. 12, 49–57 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Walker, D. J. et al. Electrically conductive pili from pilin genes of phylogenetically diverse microorganisms. ISME J. 12, 48–58 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Saunders, S. H., et al. Extracellular DNA promotes efficient extracellular electron transfer by pyocyanin in Pseudomonas aeruginosa biofilms. Cell 182, 919–932 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tan, Y. et al. The low conductivity of Geobacter uraniireducens pili suggests a diversity of extracellular electron transfer mechanisms in the genus Geobacter. Front. Microbiol. 7, 980 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Huang, L., Tang, J., Chen, M., Liu, X. & Zhou, S. Two modes of riboflavin-mediated extracellular electron transfer in Geobacter uraniireducens. Front. Microbiol. 9, 2886 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hutchings, C., Dawson, C. S., Krueger, T., Lilley, K. S. & Breckels, L. M. A bioconductor workflow for processing, evaluating, and interpreting expression proteomics data. F1000Res 12, 1402 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Liu, C. et al. High efficiency in-situ biogas upgrading in a bioelectrochemical system with low energy input. Water Res. 197, 117055 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was partially supported by the Taighde Éireann–Research Ireland (formerly Science Foundation Ireland) and the Sustainable Energy Authority of Ireland under the SFI Frontiers for the Future Awards Programme (22/FFP-A/10346) (G.W.) and National Natural Science Foundation of China (52400107) (Q.Y. and B.L.). Q.Y. thanks the EU Marie Skłodowska Curie Actions Postdoctoral fellowship (101103499), C.L. and Y.D. thank the scholarship from the China Scholarship Council (202206510027), and G.W. is grateful for the support from the Galway University Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Q.Y. and G.W. Investigation: Q.Y., B.L. and C.L. Writing—original draft: Q.Y. and G.W. Writing—review and editing: Q.Y., Y.D., B.L., C.L. and G.W. Supervision: Y.D. and G.W. Funding acquisition: Q.Y. and G.W.

Corresponding author

Correspondence to Guangxue Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Joonyeob Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Sensitivity analysis of the number and taxonomic composition of putative EET-capable methanogens identified at different aromatic amino acid content thresholds in flagellin proteins.

Bars represent the counts of methanogen genera and species identified under thresholds ranging from 4.9% to 10%. Colours indicate different genera.

Extended Data Fig. 2 Metatranscriptomic results of a microbial electrolysis cell system.

a. Schematic representation of methane production comparing MEC (poised cathode, −0.5 V vs. SHE) and non-energized (NE) control conditions. Statistical significance was assessed using a two-sided Student’s t-test. p for CH4 (%):3.94 × 10−2⁰; p for CH4 (mL): 9.01 × 10−2⁰. b. Taxonomic composition of dominant methanogenic species detected in biocathode and bulk sludge samples across treatments. c. The expression levels (Transcripts Per Kilobase Million, TPM) of key fpo genes in Methanothrix and Methanosarcina taxa under MEC and NE conditions. d. The expression levels of CO2 reduction genes in Methanothrix and Methanosarcina taxa. e. The expression levels of flaB gene attributed to Methanosarcina and Methanospirillum. f. The expression levels of Mspa (Mthe_1070) gene attributed to Methanothrix. ***: p < 0.001.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, Texts 1–9 and Tables 1–6.

Reporting Summary

Source Data for Supplementary Figures

Source data for Supplementary Figs. 1, 2, 4, 5a, 5b and 6.

Source data

Source Data Table 1.

Source data for all data presented in graphs within the figures.

Source Data Table 2.

Source data for all data presented in graphs within the extended data figures.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Q., Liu, C., Li, B. et al. Expanding methanogens with genetic potential for extracellular electron transfer capabilities in anaerobic wastewater treatment ecosystems. Nat Water (2025). https://doi.org/10.1038/s44221-025-00524-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44221-025-00524-6

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research