Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

CRISPR engineering in organoids for gene repair and disease modelling

Abstract

Organoids bridge the gap between 2D cell lines and in vivo studies. With their 3D organization and cellular heterogeneity, adult stem cell-derived organoids closely resemble their tissue of origin. The development of CRISPR-mediated genome engineering and the recent additions of base and prime editing to the CRISPR toolbox have greatly simplified the generation of exact, isogenic models for Mendelian diseases. Here, we review recent developments in CRISPR-mediated genome engineering and its application in human adult-stem-cell-derived organoids in the construction of isogenic disease models. These models allow accurate qualification of the impact of allelic disease variants observed in patients. Furthermore, we discuss the use of organoids as models for safety and efficacy of CRISPR for gene repair. Although transplantation of repaired tissue remains challenging, benchmarking CRISPR tools in organoids can bring genome engineering one step closer to patients.

Key points

  • CRISPR–Cas9-mediated genome engineering acts by introducing double-stranded DNA breaks into the genome. The damage repair process can be used for gene knockout or precise targeted introduction of exogenous DNA.

  • Next-generation CRISPR tools, including base and prime editing, allow for induction of precise base changes and small insertions and deletions, bypassing potentially deleterious double-stranded DNA breaks.

  • Owing to their 3D organization, adult-stem-cell-derived organoids closely resemble the tissue of origin and are therefore a good model system to study human health and disease.

  • CRISPR–Cas9-mediated genome engineering can be used to create isogenic models to investigate the onset, cause and treatment of human diseases.

  • CRISPR tools can be benchmarked for efficiency and safety by studying gene repair ex vivo in adult-stem-cell-derived organoids, facilitating CRISPR–Cas9 clinical translation.

  • Ex vivo repaired adult-stem-cell-derived organoids can potentially be transplanted into patients to relieve disease phenotypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CRISPR engineering in adult-stem-cell-derived organoids.
Fig. 2: Principles of CRISPR–Cas9-mediated genome engineering.
Fig. 3: Principles of cytosine and adenine base editing.
Fig. 4: Principles of prime editing.
Fig. 5: The process of creating isogenic disease models in adult-stem-cell-derived organoids.

Similar content being viewed by others

References

  1. Visscher, P. M. et al. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101, 5–22 (2017).

    Article  Google Scholar 

  2. Xuan, J., Yu, Y., Qing, T., Guo, L. & Shi, L. Next-generation sequencing in the clinic: promises and challenges. Cancer Lett. 340, 284–295 (2013).

    Article  Google Scholar 

  3. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012). This article contains the first description of the CRISPR–Cas9 system as a potential tool for RNA-programmable genome engineering.

    Article  Google Scholar 

  4. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  Google Scholar 

  5. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  Google Scholar 

  6. Kapałczyńska, M. et al. 2D and 3D cell cultures — a comparison of different types of cancer cell cultures. Arch. Med. Sci. 14, 910–919 (2018).

    Google Scholar 

  7. Clevers, H. Modeling development and disease with organoids. Cell 165, 1586–1597 (2016).

    Article  Google Scholar 

  8. Kim, J., Koo, B. K. & Knoblich, J. A. Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 21, 571–584 (2020).

    Article  Google Scholar 

  9. Sato, T. et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141, 1762–1772 (2011).

    Article  Google Scholar 

  10. Barker, N. et al. Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 6, 25–36 (2010).

    Article  Google Scholar 

  11. Schutgens, F. et al. Tubuloids derived from human adult kidney and urine for personalized disease modeling. Nat. Biotechnol. 37, 303–313 (2019).

    Article  Google Scholar 

  12. Huch, M. et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J. 32, 2708–2721 (2013).

    Article  Google Scholar 

  13. Linnemann, J. R. et al. Quantification of regenerative potential in primary human mammary epithelial cells. Development 142, 3239–3251 (2015).

    Google Scholar 

  14. Boretto, M. et al. Development of organoids from mouse and human endometrium showing endometrial epithelium physiology and long-term expandability. Development 144, 1775–1786 (2017).

    Google Scholar 

  15. Lõhmussaar, K. et al. Patient-derived organoids model cervical tissue dynamics and viral oncogenesis in cervical cancer. Cell Stem Cell 28, 1380–1396.e6 (2021).

    Article  Google Scholar 

  16. Huch, M. et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494, 247–250 (2013).

    Article  Google Scholar 

  17. Hu, H. et al. Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell 175, 1591–1606.e19 (2018).

    Article  Google Scholar 

  18. Sachs, N. et al. Long‐term expanding human airway organoids for disease modeling. EMBO J. 38, e100300 (2019).

    Article  Google Scholar 

  19. Nikolić, M. Z. et al. Human embryonic lung epithelial tips are multipotent progenitors that can be expanded in vitro as long-term self-renewing organoids. eLife 6, e26575 (2017).

    Article  Google Scholar 

  20. Ren, W. et al. Single Lgr5- or Lgr6-expressing taste stem/progenitor cells generate taste bud cells ex vivo. Proc. Natl Acad. Sci. USA 111, 16401–16406 (2014).

    Article  Google Scholar 

  21. Bannier-Hélaouët, M. et al. Exploring the human lacrimal gland using organoids and single-cell sequencing. Cell Stem Cell 28, 1221–1232.e7 (2021).

    Article  Google Scholar 

  22. Mullenders, J. et al. Mouse and human urothelial cancer organoids: a tool for bladder cancer research. Proc. Natl Acad. Sci. USA 116, 4567–4574 (2019).

    Article  Google Scholar 

  23. Karthaus, W. R. et al. Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell 159, 163–175 (2014).

    Article  Google Scholar 

  24. van der Vaart, J. et al. Adult mouse and human organoids derived from thyroid follicular cells and modeling of Graves’ hyperthyroidism. Proc. Natl Acad. Sci. USA 118, e2117017118 (2021).

    Article  Google Scholar 

  25. Ogundipe, V. M. L. et al. Generation and differentiation of adult tissue-derived human thyroid organoids. Stem Cell Rep. 16, 913–925 (2021).

    Article  Google Scholar 

  26. Sato, T. et al. Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009). This article describes the first adult-stem-cell-derived organoid cultures derived from the mouse intestine.

    Article  Google Scholar 

  27. Wright, A. V., Nuñez, J. K. & Doudna, J. A. Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 164, 29–44 (2016).

    Article  Google Scholar 

  28. Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C. & Doudna, J. A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507, 62–67 (2014).

    Article  Google Scholar 

  29. Ghezraoui, H. et al. Chromosomal translocations in human cells are generated by canonical nonhomologous end-joining. Mol. Cell 55, 829–842 (2014).

    Article  Google Scholar 

  30. Zhang, X. H., Tee, L. Y., Wang, X. G., Huang, Q. S. & Yang, S. H. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol. Ther. Nucleic Acids 4, e264 (2015).

    Article  Google Scholar 

  31. Kleinstiver, B. P. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).

    Article  Google Scholar 

  32. Vakulskas, C. A. et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat. Med. 24, 1216–1224 (2018).

    Article  Google Scholar 

  33. Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).

    Article  Google Scholar 

  34. Tsai, S. Q. et al. CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR–Cas9 nuclease off-targets. Nat. Methods 14, 607–614 (2017).

    Article  Google Scholar 

  35. Kosicki, M., Tomberg, K. & Bradley, A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765–771 (2018).

    Article  Google Scholar 

  36. Leibowitz, M. L. et al. Chromothripsis as an on-target consequence of CRISPR–Cas9 genome editing. Nat. Genet. 53, 895–905 (2021).

    Article  Google Scholar 

  37. Branzei, D. & Foiani, M. Regulation of DNA repair throughout the cell cycle. Nat. Rev. Mol. Cell Biol. 9, 297–308 (2008).

    Article  Google Scholar 

  38. Maruyama, T. et al. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat. Biotechnol. 33, 538–542 (2015).

    Article  Google Scholar 

  39. Lin, S., Staahl, B. T., Alla, R. K. & Doudna, J. A. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife 3, e04766 (2014).

    Article  Google Scholar 

  40. Rees, H. A. & Liu, D. R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770–788 (2018).

    Article  Google Scholar 

  41. Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    Article  Google Scholar 

  42. Chavez, A. et al. Highly-efficient Cas9-mediated transcriptional programming. Nat. Methods 12, 326–328 (2015).

    Article  Google Scholar 

  43. Vojta, A. et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res. 44, 5615–5628 (2016).

    Article  Google Scholar 

  44. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016). This article reports the first base-editing system by fusing cytidine deaminase APOBEC to nickase- and nuclease-inactive Cas9 allowing for C-to-T base editing.

    Article  Google Scholar 

  45. Cascalho, M. Advantages and disadvantages of cytidine deamination. J. Immunol. 172, 6513–6518 (2004).

    Article  Google Scholar 

  46. Komor, A. C. et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci. Adv. 3, eaao4774 (2017).

    Article  Google Scholar 

  47. Zafra, M. P. et al. Optimized base editors enable efficient editing in cells, organoids and mice. Nat. Biotechnol. 36, 888–896 (2018).

    Article  Google Scholar 

  48. Koblan, L. W. et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat. Biotechnol. 36, 843–848 (2018).

    Article  Google Scholar 

  49. Levy, J. M. et al. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat. Biomed. Eng. 4, 97–110 (2020).

    Article  Google Scholar 

  50. Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729 (2016).

    Article  Google Scholar 

  51. Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017). This article describes the first adenine base editor that allows for A-to-G base editing without the need for DSBs.

    Article  Google Scholar 

  52. Esvelt, K. M., Carlson, J. C. & Liu, D. R. A system for the continuous directed evolution of biomolecules. Nature 472, 499–503 (2011).

    Article  Google Scholar 

  53. Gaudelli, N. M. et al. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat. Biotechnol. 38, 892–900 (2020).

    Article  Google Scholar 

  54. Richter, M. F. et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 38, 883–891 (2020).

    Article  Google Scholar 

  55. Hu, J. H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57–63 (2018).

    Article  Google Scholar 

  56. Nishimasu, H. et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science. 9, 1259–1262 (2018).

    Article  Google Scholar 

  57. Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. Unconstrained genome targeting with near-PAMless engineered CRISPR–Cas9 variants. Science. 368, 290–296 (2020).

    Article  Google Scholar 

  58. Yu, S.-Y. et al. Increasing the targeting scope of CRISPR base editing system beyond NGG. CRISPR J. 5, 187–202 (2022).

    Article  Google Scholar 

  59. Pavlov, Y. I. et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 8, 647–656 (2019).

    Google Scholar 

  60. Zuo, E. et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 292, eaav9973 (2019).

    Google Scholar 

  61. Yu, Y. et al. Cytosine base editors with minimized unguided DNA and RNA off-target events and high on-target activity. Nat. Commun. 11, 2052 (2020).

    Article  Google Scholar 

  62. Kurt, I. C. et al. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat. Biotechnol. 39, 41–46 (2021).

    Article  Google Scholar 

  63. Koblan, L. W. et al. Efficient C•G-to-G•C base editors developed using CRISPRi screens, target-library analysis, and machine learning. Nat. Biotechnol. 39, 1414–1425 (2021).

    Article  Google Scholar 

  64. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019). This article presents prime editing as a tool that can potentially repair 89% of all disease-causing mutations observed in humans without the need for DSBs.

    Article  Google Scholar 

  65. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    Article  Google Scholar 

  66. Anzalone, A. V. et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat. Biotechnol. 40, 731–740 (2021).

    Article  Google Scholar 

  67. Lin, Q. et al. High-efficiency prime editing with optimized, paired pegRNAs in plants. Nat. Biotechnol. 39, 923–927 (2021).

    Article  Google Scholar 

  68. Choi, J. et al. Precise genomic deletions using paired prime editing. Nat. Biotechnol. 40, 218–226 (2022).

    Article  Google Scholar 

  69. Nelson, J. W. et al. Engineered pegRNAs improve prime editing efficiency. Nat. Biotechnol. https://doi.org/10.1038/s41587-021-01039-7 (2021).

    Article  Google Scholar 

  70. Chen, P. J. et al. Enhanced prime editing systems by manipulating cellular determinants of editing outcomes. Cell 184, 5635–5652.e29 (2021).

    Article  Google Scholar 

  71. Fearon, E. F. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    Article  Google Scholar 

  72. Drost, J. et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature 521, 43–47 (2015).

    Article  Google Scholar 

  73. Matano, M. et al. Modeling colorectal cancer using CRISPR-Cas9–mediated engineering of human intestinal organoids. Nat. Med. 21, 256–262 (2015).

    Article  Google Scholar 

  74. Dekkers, J. F. et al. Modeling breast cancer using CRISPR-Cas9-mediated engineering of human breast organoids. J. Natl. Cancer Inst. 112, 540–544 (2020).

    Article  Google Scholar 

  75. Artegiani, B. et al. Probing the tumor suppressor function of BAP1 in CRISPR-engineered human liver organoids. Cell Stem Cell 24, 927–943.e6 (2019).

    Article  Google Scholar 

  76. Seino, T. et al. Human pancreatic tumor organoids reveal loss of stem cell niche factor dependence during disease progression. Cell Stem Cell 22, 454–467.e6 (2018).

    Article  Google Scholar 

  77. Lee, J. et al. Reconstituting development of pancreatic intraepithelial neoplasia from primary human pancreas duct cells. Nat. Commun. 8, 14686 (2017).

    Article  Google Scholar 

  78. Drost, J. et al. Use of CRISPR-modified human stem cell organoids to study the origin of mutational signatures in cancer. Science 358, 234–238 (2017).

    Article  Google Scholar 

  79. Jager, M. et al. Deficiency of nucleotide excision repair is associated with mutational signature observed in cancer. Genome Res. 29, 1067–1077 (2019).

    Article  Google Scholar 

  80. Kawasaki, K. et al. Chromosome engineering of human colon-derived organoids to develop a model of traditional serrated adenoma. Gastroenterology 158, 638–651.e8 (2020).

    Article  Google Scholar 

  81. Artegiani, B. et al. Fast and efficient generation of knock-in human organoids using homology-independent CRISPR–Cas9 precision genome editing. Nat. Cell Biol. 22, 321–331 (2020).

    Article  Google Scholar 

  82. Lo, Y. H. et al. A CRISPR/Cas9-engineered ARID1A-deficient human gastric cancer organoid model reveals essential and nonessential modes of oncogenic transformation. Cancer Discov. 11, 1562–1581 (2021).

    Article  Google Scholar 

  83. Kawasaki, K. et al. An organoid biobank of neuroendocrine neoplasms enables genotype–phenotype mapping. Cell 183, 1420–1435.e21 (2020).

    Article  Google Scholar 

  84. Yan, H. H. N. et al. Organoid cultures of early-onset colorectal cancers reveal distinct and rare genetic profiles. Gut 69, 2165–2179 (2020).

    Article  Google Scholar 

  85. Post, J. B. et al. CRISPR-induced RASGAP deficiencies in colorectal cancer organoids reveal that only loss of NF1 promotes resistance to EGFR inhibition. Oncotarget 10, 1440–1457 (2019).

    Article  Google Scholar 

  86. Bock, C. et al. High-content CRISPR screening. Nat. Rev. Methods Prim. 2, 8 (2022).

    Article  Google Scholar 

  87. Wang, T. et al. Identification and characterization of essential genes in the human genome. Science 350, 1096–1101 (2015).

    Article  Google Scholar 

  88. Shalem, O. et al. Genome-scale CRISPR–Cas9 knockout screening in human cells. Science 343, 84–88 (2014).

    Article  Google Scholar 

  89. Michels, B. E. et al. Pooled in vitro and in vivo CRISPR–Cas9 screening identifies tumor suppressors in human colon organoids. Cell Stem Cell 26, 782–792.e7 (2020).

    Article  Google Scholar 

  90. Ringel, T. et al. Genome-scale CRISPR screening in human intestinal organoids identifies drivers of TGF-β resistance. Cell Stem Cell 26, 431–440.e8 (2020).

    Article  Google Scholar 

  91. Boettcher, S. et al. A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies. Science 365, 599–604 (2019).

    Article  Google Scholar 

  92. Stolze, B., Reinhart, S., Bulllinger, L., Fröhling, S. & Scholl, C. Comparative analysis of KRAS codon 12, 13, 18, 61, and 117 mutations using human MCF10A isogenic cell lines. Sci. Rep. 5, 8535 (2014).

    Article  Google Scholar 

  93. Geurts, M. H. et al. Evaluating CRISPR-based prime editing for cancer modeling and CFTR repair in organoids. Life Sci. Alliance 4, 1–12 (2021).

    Article  Google Scholar 

  94. Schene, I. F. et al. Prime editing for functional repair in patient-derived disease models. Nat. Commun. 11, 5352 (2020).

    Article  Google Scholar 

  95. van Rijn, J. M. et al. Intestinal failure and aberrant lipid metabolism in patients with DGAT1 deficiency. Gastroenterology 155, 130–143.e15 (2018).

    Article  Google Scholar 

  96. Nanki, K. et al. Somatic inflammatory gene mutations in human ulcerative colitis epithelium. Nature 577, 254–259 (2020).

    Article  Google Scholar 

  97. Lamers, M. M. et al. SARS-CoV-2 productively infects human gut enterocytes. Science 369, 50–54 (2020).

    Article  Google Scholar 

  98. Zhou, J. et al. Infection of bat and human intestinal organoids by SARS-CoV-2. Nat. Med. 26, 1077–1083 (2020).

    Article  Google Scholar 

  99. Geurts, M. H., van der Vaart, J., Beumer, J. & Clevers, H. The organoid platform: promises and challenges as tools in the fight against COVID-19. Stem Cell Rep. 16, 412–418 (2021).

    Article  Google Scholar 

  100. Beumer, J. et al. A CRISPR/Cas9 genetically engineered organoid biobank reveals essential host factors for coronaviruses. Nat. Commun. 12, 5498 (2021).

    Article  Google Scholar 

  101. Veres, A. et al. Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell 15, 27–30 (2014).

    Article  Google Scholar 

  102. Wu, X. et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol. 32, 670–676 (2014).

    Article  Google Scholar 

  103. Lombaert, I. M. A. et al. Rescue of salivary gland function after stem cell transplantation in irradiated glands. PLoS One 3, e2063 (2008).

    Article  Google Scholar 

  104. Schwank, G. et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13, 653–658 (2013). This article reports the first proof of the potential clinical application of CRISPR by repairing the most common mutation that causes cystic fibrosis in patient-derived intestinal organoids.

    Article  Google Scholar 

  105. Sosnay, P. R. et al. Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene. Nat. Genet. 45, 1160–1167 (2013).

    Article  Google Scholar 

  106. Dekkers, J. F. et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat. Med. 19, 939–945 (2013).

    Article  Google Scholar 

  107. Dekkers, J. F. et al. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci. Transl. Med. 8, 344ra84–344ra84 (2016).

    Article  Google Scholar 

  108. Berkers, G. et al. Rectal organoids enable personalized treatment of cystic fibrosis. Cell Rep. 26, 1701–1708.e3 (2019).

    Article  Google Scholar 

  109. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015).

    Article  Google Scholar 

  110. Maule, G. et al. Allele specific repair of splicing mutations in cystic fibrosis through AsCas12a genome editing. Nat. Commun. 10, 3556 (2019).

    Article  Google Scholar 

  111. Geurts, M. H. et al. CRISPR-based adenine editors correct nonsense mutations in a cystic fibrosis organoid biobank. Cell Stem Cell 26, 503–510.e7 (2020). This article reports the first proof of DSB-free gene repair in adult-stem-cell-derived organoids by repairing mutations that cause cystic fibrosis in patient-derived organoids without genome-wide off-target effects.

    Article  Google Scholar 

  112. Schene, I. F. et al. Mutation-specific reporter for optimization and enrichment of prime editing. Nat. Commun. 13, 1028 (2022).

    Article  Google Scholar 

  113. van der Vaart, J. et al. Modelling of primary ciliary dyskinesia using patient‐derived airway organoids. EMBO Rep. 22, e52058 (2021).

    Google Scholar 

  114. Kuscu, C. et al. CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations. Nat. Methods 14, 710–712 (2017).

    Article  Google Scholar 

  115. Wang, X. et al. Efficient gene silencing by adenine base editor-mediated start codon mutation. Mol. Ther. 28, 431–440 (2020).

    Article  Google Scholar 

  116. Kluesner, M. G. et al. CRISPR–Cas9 cytidine and adenosine base editing of splice-sites mediates highly-efficient disruption of proteins in primary and immortalized cells. Nat. Commun. 12, 2437 (2021).

    Article  Google Scholar 

  117. Conant, D. et al. Inference of CRISPR edits from sanger trace data. CRISPR J. 5, 123–130 (2022).

    Article  Google Scholar 

  118. Arbab, M. et al. Determinants of base editing outcomes from target library analysis and machine learning. Cell 182, 463–480.e30 (2020).

    Article  Google Scholar 

  119. Andersson-Rolf, A. et al. One-step generation of conditional and reversible gene knockouts. Nat. Methods 14, 287–289 (2017).

    Article  Google Scholar 

  120. Sun, D. et al. A functional genetic toolbox for human tissue-derived organoids. eLife 10, e67886 (2021).

    Article  Google Scholar 

  121. Yarnall, M. T. N. et al. Drag-and-drop genome insertion of large sequences without DNA cleavage using CRISPR-directed integrases. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01527-4 (2022).

  122. Price, S. et al. A suspension technique for efficient large-scale cancer organoid culturing and perturbation screens. Sci. Rep. 12, 5571 (2022).

    Article  Google Scholar 

  123. Hanna, R. E. et al. Massively parallel assessment of human variants with base editor screens. Cell 184, 1064–1080.e20 (2021).

    Article  Google Scholar 

  124. Drost, J. & Clevers, H. Translational applications of adult stem cell-derived organoids. Development 144, 968–975 (2017).

    Article  Google Scholar 

  125. Yui, S. et al. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat. Med. 18, 618–623 (2012).

    Article  Google Scholar 

  126. Pringle, S. et al. Human salivary gland stem cells functionally restore radiation damaged salivary glands. Stem Cell 34, 640–652 (2016).

    Article  Google Scholar 

  127. Sampaziotis, F. et al. Cholangiocyte organoids can repair bile ducts after transplantation in the human liver. Science 371, 839–846 (2021).

    Article  Google Scholar 

  128. Gillmore, J. D. et al. CRISPR–Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021). This article describes a landmark clinical trial in which patients are injected with nuclease-active Cas9 and a sgRNA targeting the transthyretin gene that causes amyloid plaques in the liver.

    Article  Google Scholar 

  129. Doman, J. L., Raguram, A., Newby, G. A. & Liu, D. R. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat. Biotechnol. 38, 620–628 (2020).

    Article  Google Scholar 

  130. Aida, T. et al. Prime editing primarily induces undesired outcomes in mice. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/2020.08.06.239723v1 (2020).

  131. Shen, B. et al. Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat. Methods 11, 399–402 (2014).

    Article  Google Scholar 

  132. Muller, H. J. Artificial transmutation of the gene. Science 66, 84–87 (1927).

    Article  Google Scholar 

  133. Brenner, S. The genetics of Ceanorhabditis elegans. Genetics 77, 71–94 (1974).

    Article  Google Scholar 

  134. Nüsslein-volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801 (1980).

    Article  Google Scholar 

  135. Doudna, J. A. & Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096–1258096 (2014).

    Article  Google Scholar 

  136. Scherer, S. & Davis, R. W. Replacement of chromosome segments with altered DNA sequences constructed in vitro. Proc. Natl Acad. Sci. USA 76, 4951–4955 (1979).

    Article  Google Scholar 

  137. Smithies, O., Gregg, R. G., Boggst, S. S., Koralewski, M. A. & Kucherlapati, R. S. Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination. Nature 317, 230–236 (1985).

    Article  Google Scholar 

  138. Rudin, N., Sugarman, E. & Haber, J. E. Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. Genetics 122, 519–534 (1989).

    Article  Google Scholar 

  139. Rouet, P., Smih, F. & Jasin, M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell. Biol. 14, 8096–8106 (1994).

    Google Scholar 

  140. Epinat, J. C. et al. A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res. 31, 2952–2962 (2003).

    Article  Google Scholar 

  141. Wood, A. J. et al. Targeted genome editing across species using ZFNs and TALENs. Science 333, 307 (2011).

    Article  Google Scholar 

  142. Hu, J. H., Davis, K. M. & Liu, D. R. Chemical biology approaches to genome editing: understanding, controlling, and delivering programmable nucleases. Cell Chem. Biol. 23, 57–73 (2016).

    Article  Google Scholar 

  143. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).

    Article  Google Scholar 

  144. Brouns, S. J. J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–965 (2008).

    Article  Google Scholar 

  145. Akcakaya, P. et al. In vivo CRISPR editing with no detectable genome-wide off-target mutations. Nature 561, 416–419 (2018).

    Article  Google Scholar 

  146. Shirley, J. L., de Jong, Y. P., Terhorst, C. & Herzog, R. W. Immune responses to viral gene therapy vectors. Mol. Ther. 28, 709–722 (2020).

    Article  Google Scholar 

  147. Wu, Z., Asokan, A. & Samulski, R. J. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol. Ther. 14, 316–327 (2006).

    Article  Google Scholar 

  148. Nieuwenhuis, B. et al. Optimization of adeno-associated viral vector-mediated transduction of the corticospinal tract: comparison of four promoters. Gene Ther. 28, 56–74 (2021).

    Article  Google Scholar 

  149. Burger, C. et al. Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol. Ther. 10, 302–317 (2004).

    Article  Google Scholar 

  150. Naso, M. F., Tomkowicz, B., Perry, W. L. & Strohl, W. R. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs 31, 317–334 (2017).

    Article  Google Scholar 

  151. Liu, P. et al. Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice. Nat. Commun. 12, 2121 (2021).

    Article  Google Scholar 

  152. Böck, D. et al. In vivo prime editing of a metabolic liver disease in mice. Sci. Transl. Med. 14, eabl9238 (2022).

    Article  Google Scholar 

  153. Segel M. et al. Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science 185, 882–889 (2021).

    Article  Google Scholar 

  154. June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T cell immunotherapy for human cancer. Science. 359, 1361–1365 (2018).

    Article  Google Scholar 

  155. Frangoul, H. et al. CRISPR–Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 384, 252–260 (2021).

    Article  Google Scholar 

  156. Watanabe, S. et al. Transplantation of intestinal organoids into a mouse model of colitis. Nat. Protoc. 17, 649–671 (2022).

    Article  Google Scholar 

  157. Sugimoto, S. et al. An organoid-based organ-repurposing approach to treat short bowel syndrome. Nature 592, 99–104 (2021).

    Google Scholar 

Download references

Acknowledgements

The authors thank J. Beumer for providing confocal images of human intestinal organoids, S. Gandhi for providing confocal images of human fetal hepatocyte organoids and J. van der Vaart for providing confocal images of murine thyroid organoids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Clevers.

Ethics declarations

Competing interests

H.C. is inventor on several patents related to organoid technology; his full disclosure is given at https://www.uu.nl/staff/JCClevers/. H.C. is currently head of pharma Research Early Development (pRED) at Roche. H.C. holds several patents on organoid technology. Their application numbers, followed by their publication numbers (if applicable), are as follows: PCT/NL2008/050543, WO2009/022907; PCT/NL2010/000017, WO2010/090513; PCT/IB2011/002167, WO2012/014076; PCT/IB2012/052950, WO2012/168930; PCT/EP2015/060815, WO2015/173425; PCT/EP2015/077990, WO2016/083613; PCT/EP2015/077988, WO2016/083612; PCT/EP2017/054797, WO2017/149025; PCT/EP2017/065101, WO2017/220586; PCT/EP2018/086716, n/a; and GB1819224.5, n/a. M.H.G. is currently a scientist at Xilis BV.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Nicholas Zachos and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geurts, M.H., Clevers, H. CRISPR engineering in organoids for gene repair and disease modelling. Nat Rev Bioeng 1, 32–45 (2023). https://doi.org/10.1038/s44222-022-00013-5

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44222-022-00013-5

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research