Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Engineering cytokine therapeutics

An Author Correction to this article was published on 27 March 2023

This article has been updated

Abstract

Cytokines have pivotal roles in immunity, making them attractive as therapeutics for a variety of immune-related disorders. However, the widespread clinical use of cytokines has been limited by their short blood half-lives and severe side effects caused by low specificity and unfavourable biodistribution. Innovations in bioengineering have aided in advancing our knowledge of cytokine biology and yielded new technologies for cytokine engineering. In this Review, we discuss how the development of bioanalytical methods, such as sequencing and high-resolution imaging combined with genetic techniques, have facilitated a better understanding of cytokine biology. We then present an overview of therapeutics arising from cytokine re-engineering, targeting and delivery, mRNA therapeutics and cell therapy. We also highlight the application of these strategies to adjust the immunological imbalance in different immune-mediated disorders, including cancer, infection and autoimmune diseases. Finally, we look ahead to the hurdles that must be overcome before cytokine therapeutics can live up to their full potential.

Key points

  • Cytokines are crucial regulators of the immune system and have important roles in health and disease.

  • Recombinant cytokine therapy is hampered by the short blood half-life and severe side effects of cytokines.

  • Increased knowledge of cytokine biology converges with new bioengineering approaches to develop engineered cytokine therapeutics.

  • Cytokine therapeutics can be applied to modulate dysregulated immune responses in disorders such as cancer or autoimmune diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cytokine biology and mechanisms.
Fig. 2: Re-engineering cytokines.
Fig. 3: Cytokine targeting and delivery.
Fig. 4: mRNA encoding cytokines and cell therapeutics.

Similar content being viewed by others

Change history

References

  1. Chaplin, D. D. Overview of the immune response. J. Allergy Clin. Immunol. 125, S3–S23 (2010).

    Article  Google Scholar 

  2. Altan-Bonnet, G. & Mukherjee, R. Cytokine-mediated communication: a quantitative appraisal of immune complexity. Nat. Rev. Immunol. 19, 205–217 (2019).

    Article  Google Scholar 

  3. Stanley, A. C. & Lacy, P. Pathways for cytokine secretion. Physiology 25, 218–229 (2010).

    Article  Google Scholar 

  4. Leonardi, C. L. et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet 371, 1665–1674 (2008).

    Article  Google Scholar 

  5. Saenz, S. A., Taylor, B. C. & Artis, D. Welcome to the neighborhood: epithelial cell-derived cytokines license innate and adaptive immune responses at mucosal sites. Immunol. Rev. 226, 172–190 (2008).

    Article  Google Scholar 

  6. Arango Duque, G. & Descoteaux, A. Macrophage cytokines: involvement in immunity and infectious diseases. Front. Immunol. 5, 491 (2014).

    Article  Google Scholar 

  7. Eyerich, S., Eyerich, K., Cavani, A. & Schmidt-Weber, C. IL-17 and IL-22: siblings, not twins. Trends Immunol. 31, 354–361 (2010).

    Article  Google Scholar 

  8. Opal, S. M. & DePalo, V. A. Anti-inflammatory cytokines. Chest 117, 1162–1172 (2000).

    Article  Google Scholar 

  9. Gharee-Kermani, M. & Pham, S. Role of cytokines and cytokine therapy in wound healing and fibrotic diseases. Curr. Pharm. Des. 7, 1083–1103 (2001).

    Article  Google Scholar 

  10. Hughes, C. E. & Nibbs, R. J. B. A guide to chemokines and their receptors. FEBS J. 285, 2944–2971 (2018).

    Article  Google Scholar 

  11. Borden, E. C. et al. Interferons at age 50: past, current and future impact on biomedicine. Nat. Rev. Drug Discov. 6, 975–990 (2007).

    Article  Google Scholar 

  12. Hamilton, J. A. Colony-stimulating factors in inflammation and autoimmunity. Nat. Rev. Immunol. 8, 533–544 (2008).

    Article  Google Scholar 

  13. Roan, F., Obata-Ninomiya, K. & Ziegler, S. F. Epithelial cell-derived cytokines: more than just signaling the alarm. J. Clin. Invest. 129, 1441–1451 (2019).

    Article  Google Scholar 

  14. Smith, D. E. IL-33: a tissue derived cytokine pathway involved in allergic inflammation and asthma. Clin. Exp. Allergy 40, 200–208 (2010).

    Article  Google Scholar 

  15. Ouchi, N., Parker, J. L., Lugus, J. J. & Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 11, 85–97 (2011).

    Article  Google Scholar 

  16. Ihle, J. N. Cytokine receptor signalling. Nature 377, 591–594 (1995).

    Article  Google Scholar 

  17. O’Shea, J. J., Gadina, M. & Siegel, R. M. in Clinical Immunology 5th edn Ch. 9 (eds Rich, R. R. et al.) 127–155.e1 (2019).

  18. Arts, R. J. W. et al. BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe 23, 89–100.e5 (2018).

    Article  Google Scholar 

  19. Guo, L., Junttila, I. S. & Paul, W. E. Cytokine-induced cytokine production by conventional and innate lymphoid cells. Trends Immunol. 33, 598 (2012).

    Article  Google Scholar 

  20. Rousset, F., Garcia, E. & Banchereau, J. Cytokine-induced proliferation and immunoglobulin production of human B lymphocytes triggered through their CD40 antigen. J. Exp. Med. 173, 705–710 (1991).

    Article  Google Scholar 

  21. Tough, D. F., Borrow, P. & Sprent, J. Induction of bystander T cell proliferation by viruses and type I interferon in vivo. Science 272, 1947–1950 (1996).

    Article  Google Scholar 

  22. Ross, M. E. & Caligiuri, M. A. Cytokine-induced apoptosis of human natural killer cells identifies a novel mechanism to regulate the innate immune response. Blood 89, 910–918 (1997).

    Article  Google Scholar 

  23. Lin, J. X. et al. The role of shared receptor motifs and common stat proteins in the generation of cytokine pleiotropy and redundancy by IL-2, IL-4, IL-7, IL-13, and IL-15. Immunity 2, 331–339 (1995).

    Article  Google Scholar 

  24. Berraondo, P. et al. Cytokines in clinical cancer immunotherapy. Br. J. Cancer 120, 6–15 (2019).

    Article  Google Scholar 

  25. Ozaki, K. & Leonard, W. J. Cytokine and cytokine receptor pleiotropy and redundancy. J. Biol. Chem. 277, 29355–29358 (2002).

    Article  Google Scholar 

  26. Ruddy, M. J. et al. Functional cooperation between interleukin-17 and tumor necrosis factor-α is mediated by CCAAT/enhancer-binding protein family members. J. Biol. Chem. 279, 2559–2567 (2004).

    Article  Google Scholar 

  27. Yoshimoto, T. et al. IL-12 up-regulates IL-18 receptor expression on T cells, Th1 cells, and B cells: synergism with IL-18 for IFN-γ production. J. Immunol. 161, 3400–3407 (1998).

    Article  Google Scholar 

  28. Waldmann, T. A. The shared and contrasting roles of interleukin-2 (IL-2) and IL-15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy. Cancer Immunol. Res. 3, 219 (2015).

    Article  Google Scholar 

  29. Royall, J. A. et al. Tumor necrosis factor and interleukin 1 alpha increase vascular endothelial permeability. Am. J. Physiol. Lung Cell. Mol. Physiol. 257, L399–L410 (1989).

    Article  Google Scholar 

  30. Hafler, D. A. Cytokines and interventional immunology. Nat. Rev. Immunol. 7, 423–423 (2007).

    Article  Google Scholar 

  31. Monaco, C., Nanchahal, J., Taylor, P. & Feldmann, M. Anti-TNF therapy: past, present and future. Int. Immunol. 27, 55–62 (2015).

    Article  Google Scholar 

  32. Ly, K. et al. Anti IL-17 in psoriasis. Expert Rev. Clin. Immunol. 15, 1185–1194 (2019).

    Article  Google Scholar 

  33. van de Veerdonk, F. L. et al. A guide to immunotherapy for COVID-19. Nat. Med. 28, 39–50 (2022).

    Article  Google Scholar 

  34. Herman, A. C., Boone, T. C. & Lu, H. S. in Formulation, Characterization, and Stability of Protein Drugs (eds Pearlman, R. & Wang, Y. J.) 303–328 (Springer, 2002).

  35. Rasenack, J. et al. Peginterferon alpha-2a (40kD) [Pegasys] improves HR-QOL outcomes compared with unmodified interferon alpha-2a [Roferon-A]. Pharmacoeconomics 21, 341–349 (2003).

    Article  Google Scholar 

  36. Baldo, B. A. Side effects of cytokines approved for therapy. Drug Safety 37, 921–943 (2014).

    Article  Google Scholar 

  37. Golomb, H. M. et al. Alpha-2 interferon therapy of hairy-cell leukemia: a multicenter study of 64 patients. J. Clin. Oncol. 4, 900–905 (1986).

    Article  Google Scholar 

  38. Cohen, J. IL-12 deaths: explanation and a puzzle. Science 270, 908 (1995).

    Article  Google Scholar 

  39. Atkins, M. B. et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J. Clin. Oncol. 17, 2105–2116 (1999).

    Article  Google Scholar 

  40. Saiki, R. K. et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491 (1988).

    Article  Google Scholar 

  41. Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. USA 74, 5463–5467 (1977).

    Article  Google Scholar 

  42. Karas, M. & Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60, 2299–2301 (1988).

    Article  Google Scholar 

  43. Tanaka, K. et al. Protein and polymer analyses up to mlz 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass. Spectrom. 2, 151–153 (1988).

    Article  Google Scholar 

  44. Williamson, M. P., Havel, T. F. & Wüthrich, K. Solution conformation of proteinase inhibitor IIA from bull seminal plasma by 1H nuclear magnetic resonance and distance geometry. J. Mol. Biol. 182, 295–315 (1985).

    Article  Google Scholar 

  45. Woolfson, M. M. The development of structural x-ray crystallography. Phys. Scr. 93, 032501 (2018).

    Article  Google Scholar 

  46. Matadeen, R., Hon, W. C., Heath, J. K., Jones, E. Y. & Fuller, S. The dynamics of signal triggering in a gp130-receptor complex. Structure 15, 441–448 (2007).

    Article  Google Scholar 

  47. Wang, X., Rickert, M., Garcia, K. C. Structure of the quaternary complex of interleukin-2 with its alpha, beta, and gammac receptors. Science 310, 1159–1163 (2005).

    Article  Google Scholar 

  48. Gaffen, S. L. Signaling domains of the interleukin 2 receptor. Cytokine 14, 63–77 (2001).

    Article  Google Scholar 

  49. Johnson, K., Granzow, R., Creasey, A. & Ciardelli, T. Ligand binding analyses and functional activity of interleukin-2 receptor ectodomains. Methods 6, 199–205 (1994).

    Article  Google Scholar 

  50. Truneh, A. et al. Temperature-sensitive differential affinity of TRAIL for its receptors: DR5 is the highest affinity receptor. J. Biol. Chem. 275, 23319–23325 (2000).

    Article  Google Scholar 

  51. Levin, A. M. et al. Exploiting a natural conformational switch to engineer an interleukin-2 ‘superkine’. Nature 484, 529–533 (2012). The researchers employed directed evolution to engineer an IL-2 ‘superkine’ (MDNA11) with improved antitumour properties and reduced toxicity that is now undergoing a phase I/II clinical trial.

    Article  Google Scholar 

  52. Lumsden, A. & Wilkinson, D. The promise of gene ablation. Nature 347, 335–336 (1990).

    Article  Google Scholar 

  53. Kopf, M. et al. Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature 368, 339–342 (1994).

    Article  Google Scholar 

  54. Kluger, M. J., Kozak, W., Leon, L. R. & Conn, C. A. The use of knockout mice to understand the role of cytokines in fever. Clin. Exp. Pharmacol. Physiol. 25, 141–144 (1998).

    Article  Google Scholar 

  55. Ingman, W. V. & Jones, R. L. Cytokine knockouts in reproduction: the use of gene ablation to dissect roles of cytokines in reproductive biology. Hum. Reprod. Update 14, 179–192 (2008).

    Article  Google Scholar 

  56. McCaughtry, T. M. et al. Conditional deletion of cytokine receptor chains reveals that IL-7 and IL-15 specify CD8 cytotoxic lineage fate in the thymus. J. Exp. Med. 209, 2263–2276 (2012).

    Article  Google Scholar 

  57. Archambault, L. S., Trzilova, D., Gonia, S., Gale, C. & Wheeler, R. T. Intravital imaging reveals divergent cytokine and cellular immune responses to Candida albicans and Candida parapsilosis. mBio 10, e00266-19 (2019).

    Article  Google Scholar 

  58. van de Donk, P. P. et al. Interleukin-2 PET imaging in patients with metastatic melanoma before and during immune checkpoint inhibitor therapy. Eur. J. Nucl. Med. Mol. Imaging 48, 4369–4376 (2021).

    Article  Google Scholar 

  59. Park, L. M., Lannigan, J. & Jaimes, M. C. OMIP‐069: forty‐color full spectrum flow cytometry panel for deep immunophenotyping of major cell subsets in human peripheral blood. Cytometry 97, 1044 (2020).

    Article  Google Scholar 

  60. Zhang, T., Warden, A. R., Li, Y. & Ding, X. Progress and applications of mass cytometry in sketching immune landscapes. Clin. Transl Med. 10, e206 (2020).

    Article  Google Scholar 

  61. Iyer, A., Hamers, A. A. J. & Pillai, A. B. CyTOF® for the masses. Front. Immunol. 13, 815828 (2022).

    Article  Google Scholar 

  62. Cano-Gamez, E. et al. Single-cell transcriptomics identifies an effectorness gradient shaping the response of CD4+ T cells to cytokines. Nat. Commun. 11, 1801 (2020).

    Article  Google Scholar 

  63. Jiang, P. et al. Systematic investigation of cytokine signaling activity at the tissue and single-cell levels. Nat. Methods 18, 1181–1191 (2021).

    Article  Google Scholar 

  64. Netea, M. G. et al. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20, 375–388 (2020).

    Article  Google Scholar 

  65. Hahn, N. et al. The orphan cytokine receptor CRLF3 emerged with the origin of the nervous system and is a neuroprotective erythropoietin receptor in locusts. Front. Mol. Neurosci. 12, 251 (2019).

    Article  Google Scholar 

  66. Carter, P. Site-directed mutagenesis. Biochemistry 237, 1–7 (1986).

    Article  Google Scholar 

  67. Packer, M. S. & Liu, D. R. Methods for the directed evolution of proteins. Nat. Rev. Genet. 16, 379–394 (2015).

    Article  Google Scholar 

  68. Krieg, C., Létourneau, S., Pantaleo, G. & Boyman, O. Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells. Proc. Natl Acad. Sci. USA 107, 11906–11911 (2010).

    Article  Google Scholar 

  69. Junttila, I. S. et al. Redirecting cell-type specific cytokine responses with engineered interleukin-4 superkines. Nat. Chem. Biol. 8, 990–998 (2012).

    Article  Google Scholar 

  70. Mueller, T. D., Zhang, J.-L., Sebald, W. & Duschl, A. Structure, binding, and antagonists in the IL-4/IL-13 receptor system. Biochim. Biophys. Acta Mol. Cell Res. 1592, 237–250 (2002).

    Article  Google Scholar 

  71. Gorby, C. et al. Engineered IL-10 variants elicit potent immunomodulatory effects at low ligand doses. Sci. Signal. 13, eabc0653 (2020).

    Article  Google Scholar 

  72. Zhou, T. et al. IL-18BP is a secreted immune checkpoint and barrier to IL-18 immunotherapy. Nature 583, 609–614 (2020).

    Article  Google Scholar 

  73. Spangler, J. B., Moraga, I., Mendoza, J. L. & Garcia, K. C. Insights into cytokine–receptor interactions from cytokine engineering. Annu. Rev. Immunol. 33, 139–167 (2015).

    Article  Google Scholar 

  74. Saxton, R. A. et al. The tissue protective functions of interleukin-22 can be decoupled from pro-inflammatory actions through structure-based design. Immunity 54, 660–672.e9 (2021).

    Article  Google Scholar 

  75. Saxton, R. A. et al. Structure-based decoupling of the pro- and anti-inflammatory functions of interleukin-10. Science 371, eabc8433 (2021).

    Article  Google Scholar 

  76. Mendoza, J. L. et al. Structure of the IFNγ receptor complex guides design of biased agonists. Nature 567, 56–60 (2019).

    Article  Google Scholar 

  77. Glassman, C. R. et al. Structural basis for IL-12 and IL-23 receptor sharing reveals a gateway for shaping actions on T versus NK cells. Cell 184, 983–999.e24 (2021).

    Article  Google Scholar 

  78. Carmenate, T. et al. Human IL-2 mutein with higher antitumor efficacy than wild type IL-2. J. Immunol. 190, 6230–6238 (2013).

    Article  Google Scholar 

  79. Chen, X. et al. A novel human IL-2 mutein with minimal systemic toxicity exerts greater antitumor efficacy than wild-type IL-2. Cell Death Dis. 9, 989 (2018).

    Article  Google Scholar 

  80. Shanafelt, A. B. et al. A T-cell-selective interleukin 2 mutein exhibits potent antitumor activity and is well tolerated in vivo. Nat. Biotechnol. 18, 1197–1202 (2000).

    Article  Google Scholar 

  81. Peterson, L. B. et al. A long-lived IL-2 mutein that selectively activates and expands regulatory T cells as a therapy for autoimmune disease. J. Autoimmun. 95, 1–14 (2018).

    Article  Google Scholar 

  82. Ghelani, A. et al. Defining the threshold IL-2 signal required for induction of selective Treg cell responses using engineered IL-2 muteins. Front. Immunol. 11, 1106 (2020).

    Article  Google Scholar 

  83. Visweswaraiah, J. et al. Generation of PT101, a highly selective IL-2 mutein for treatment of autoimmune diseases. Ann. Rheum. Dis. 80, 13–13 (2021).

    Article  Google Scholar 

  84. Khoryati, L. et al. An IL-2 mutein engineered to promote expansion of regulatory T cells arrests ongoing autoimmunity in mice. Sci. Immunol. 5, eaba5264 (2020).

    Article  Google Scholar 

  85. Milton Harris, J. & Chess, R. B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2, 214–221 (2003).

    Article  Google Scholar 

  86. Molineux, G. Pegylation: engineering improved biopharmaceuticals for oncology. Pharmacotherapy 23, 3S–8S (2003).

    Article  Google Scholar 

  87. Meyers, F. J., Paradise, C., Scudder, S. A., Goodman, G. & Konrad, M. A phase I study including pharmacokinetics of polyethylene glycol conjugated interleukin-2. Clin. Pharmacol. Ther. 49, 307–313 (1991).

    Article  Google Scholar 

  88. Mattijssen, V. et al. Intratumoral PEG-interleukin-2 therapy in patients with locoregionally recurrent head and neck squamous-cell carcinoma. Ann. Oncol. 5, 957–960 (1994).

    Article  Google Scholar 

  89. Emmerich, J. et al. IL-10 directly activates and expands tumor-resident CD8+ T cells without de novo infiltration from secondary lymphoid organs. Cancer Res. 72, 3570–3581 (2012).

    Article  Google Scholar 

  90. Naing, A. et al. PEGylated IL-10 (pegilodecakin) induces systemic immune activation, CD8+ T cell invigoration and polyclonal T cell expansion in cancer patients. Cancer Cell 34, 775–791.e3 (2018).

    Article  Google Scholar 

  91. Ptacin, J. L. et al. An engineered IL-2 reprogrammed for anti-tumor therapy using a semi-synthetic organism. Nat. Commun. 12, 4785 (2021). The researchers developed a rationally PEGylated form of IL-2 (THOR-707) that selectively expands and activates effector T cells and NK cells and is undergoing a phase I/II clinical trial.

    Article  Google Scholar 

  92. Charych, D. H. et al. NKTR-214, an engineered cytokine with biased IL2 receptor binding, increased tumor exposure, and marked efficacy in mouse tumor models. Clin. Cancer Res. 22, 680–690 (2016).

    Article  Google Scholar 

  93. Dixit, N. et al. NKTR-358: a novel regulatory T-cell stimulator that selectively stimulates expansion and suppressive function of regulatory T cells for the treatment of autoimmune and inflammatory diseases. J. Transl Autoimmun. 4, 100103 (2021).

    Article  Google Scholar 

  94. Bristol Myers Squibb. Nektar and Bristol Myers Squibb announce update on clinical development program for bempegaldesleukin (BEMPEG) in pdivo (nivolumab). BMS https://news.bms.com/news/details/2022/Nektar-and-Bristol-Myers-Squibb-Announce-Update-on-Clinical-Development-Program-for-Bempegaldesleukin-BEMPEG-in-Combination-with-Opdivo-nivolumab/default.aspx (2022).

  95. Miyazaki, T. et al. NKTR-255, a novel polymer-conjugated rhIL-15 with potent antitumor efficacy. J. Immunother. Cancer 9, e002024 (2021).

    Article  Google Scholar 

  96. Noren, C. J., Anthony-Cahill, S. J., Griffith, M. C. & Schultz, P. G. A general method for site-specific incorporation of unnatural amino acids into proteins. Science 244, 182–188 (1989).

    Article  Google Scholar 

  97. Yang, Q. & Lai, S. K. Anti-PEG immunity: emergence, characteristics, and unaddressed questions. Wiley Interdisc. Rev. Nanomed. Nanobiotechnol. 7, 655–677 (2015).

    Article  Google Scholar 

  98. Sellaturay, P., Nasser, S., Islam, S., Gurugama, P. & Ewan, P. W. Polyethylene glycol (PEG) is a cause of anaphylaxis to the Pfizer/BioNTech mRNA COVID-19 vaccine. Clin. Exp. Allergy 51, 861–863 (2021).

    Article  Google Scholar 

  99. Anishchenko, I. et al. De novo protein design by deep network hallucination. Nature 600, 547–552 (2021).

    Article  Google Scholar 

  100. Biswas, S., Khimulya, G., Alley, E. C., Esvelt, K. M. & Church, G. M. Low-N protein engineering with data-efficient deep learning. Nat. Methods 18, 389–396 (2021).

    Article  Google Scholar 

  101. Pan, X. & Kortemme, T. Recent advances in de novo protein design: principles, methods, and applications. J. Biol. Chem. 296, 100558 (2021).

    Article  Google Scholar 

  102. Huang, P.-S., Boyken, S. E. & Baker, D. The coming of age of de novo protein design. Nature 537, 320–327 (2016).

    Article  Google Scholar 

  103. Goldenzweig, A. et al. Automated structure- and sequence-based design of proteins for high bacterial expression and stability. Mol. Cell 63, 337–346 (2016).

    Article  Google Scholar 

  104. Khersonsky, O. et al. Automated design of efficient and functionally diverse enzyme repertoires. Mol. Cell 72, 178–186.e5 (2018).

    Article  Google Scholar 

  105. Correia, B. E. et al. Proof of principle for epitope-focused vaccine design. Nature 507, 201–206 (2014).

    Article  Google Scholar 

  106. Silva, D. A. et al. De novo design of potent and selective mimics of IL-2 and IL-15. Nature 565, 186–191 (2019). This research is the first demonstration of how de novo protein design can be used to engineer an improved cytokine-receptor agonist (Neo-2/15) which is now in phase I/II clinical trials (NL-201).

    Article  Google Scholar 

  107. Wang, J., Cao, H., Zhang, J. Z. H. & Qi, Y. Computational protein design with deep learning neural networks. Sci. Rep. 8, 6349 (2018).

    Article  Google Scholar 

  108. Lin, E., Lin, C. H. & Lane, H. Y. De novo peptide and protein design using generative adversarial networks: an update. J. Chem. Inf. Model. 62, 761–774 (2022).

    Article  Google Scholar 

  109. Leman, J. K. et al. Macromolecular modeling and design in Rosetta: recent methods and frameworks. Nat. Methods 17, 665–680 (2020).

    Article  MathSciNet  Google Scholar 

  110. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  Google Scholar 

  111. Yen, M. et al. Facile discovery of surrogate cytokine agonists. Cell 185, 1414–1430.e19 (2022).

    Article  Google Scholar 

  112. Moraga, I. et al. Synthekines are surrogate cytokine and growth factor agonists that compel signaling through non-natural receptor dimers. eLife 6, 22882 (2017).

    Article  Google Scholar 

  113. Emmerich, J. et al. Abstract 1744: STK-012, an α/β selective IL-2 mutein for the activation of the antigen-activated T cells in solid tumor. Cancer Res. 81, 1744–1744 (2021).

    Article  Google Scholar 

  114. Ren, J. et al. Interleukin-2 superkines by computational design. Proc. Natl Acad. Sci. USA 119, e2117401119 (2022).

    Article  Google Scholar 

  115. Harvill, E. T. & Morrison, S. L. An IgG3–IL2 fusion protein activates complement, binds FcγRI, generates LAK activity and shows enhanced binding to the high affinity IL-2R. Immunotechnology 1, 95–105 (1995).

    Article  Google Scholar 

  116. Peng, L. S., Penichet, M. L. & Morrison, S. L. A single-chain IL-12 IgG3 antibody fusion protein retains antibody specificity and IL-12 bioactivity and demonstrates antitumor activity. J. Immunol. 163, 250–258 (1999).

    Article  Google Scholar 

  117. Halin, C. et al. Enhancement of the antitumor activity of interleukin-12 by targeted delivery to neovasculature. Nat. Biotechnol. 20, 264–269 (2002).

    Article  Google Scholar 

  118. Castellani, P. et al. The fibronectin isoform containing the ED-B oncofetal domain: a marker of angiogenesis. Int. J. Cancer 59, 612–618 (1994).

    Article  Google Scholar 

  119. Fallon, J. et al. The immunocytokine NHS-IL12 as a potential cancer therapeutic. Oncotarget 5, 1869–1884 (2014). The researchers fused IL-12 to a histone-binding antibody to engineer an immunocytokine target’s exposed DNA found at the site of the tumour.

    Article  Google Scholar 

  120. Zhang, L. et al. Imaging the alternatively spliced D domain of tenascin C in preclinical models of inflammatory bowel disease. Mol. Imaging Biol. https://doi.org/10.1007/s11307-022-01758-6 (2022).

    Article  Google Scholar 

  121. Tzeng, A., Kwan, B. H., Opel, C. F., Navaratna, T. & Wittrup, K. D. Antigen specificity can be irrelevant to immunocytokine efficacy and biodistribution. Proc. Natl Acad. Sci. USA 112, 3320–3325 (2015).

    Article  Google Scholar 

  122. Spangler, J. B. et al. Engineering a single-agent cytokine/antibody fusion that selectively expands regulatory T cells for autoimmune disease therapy. J. Immunol. 201, 2094–2106 (2018).

    Article  Google Scholar 

  123. Huyghe, L. et al. Safe eradication of large established tumors using neovasculature-targeted tumor necrosis factor-based therapies. EMBO Mol. Med. 12, e11223 (2020).

    Article  Google Scholar 

  124. Cauwels, A. & Tavernier, J. Tolerizing strategies for the treatment of autoimmune diseases: from ex vivo to in vivo strategies. Front. Immunol. 11, 674 (2020).

    Article  Google Scholar 

  125. Hank, J. A. et al. Immunogenicity of the Hu14.18-IL2 immunocytokine molecule in adults with melanoma and children with neuroblastoma. Clin. Cancer Res. 15, 5923–5930 (2009).

    Article  Google Scholar 

  126. Xu, S. et al. The role of collagen in cancer: from bench to bedside. J. Transl Med. 17, 309 (2019).

    Article  Google Scholar 

  127. Momin, N. et al. Anchoring of intratumorally administered cytokines to collagen safely potentiates systemic cancer immunotherapy. Sci. Transl Med. 11, 2614 (2019). The researchers fused pro-inflammatory cytokines to a collagen-binding protein to engineer cytokine fusion proteins with increased tumour retention.

    Article  Google Scholar 

  128. Agarwal, Y. et al. Intratumourally injected alum-tethered cytokines elicit potent and safer local and systemic anticancer immunity. Nat. Biomed. Eng. 6, 129–143 (2022).

    Article  Google Scholar 

  129. Mansurov, A. et al. Collagen-binding IL-12 enhances tumour inflammation and drives the complete remission of established immunologically cold mouse tumours. Nat. Biomed. Eng. 4, 531–543 (2020).

    Article  Google Scholar 

  130. Ishihara, J. et al. Targeted antibody and cytokine cancer immunotherapies through collagen affinity. Sci. Transl Med. 11, 3259 (2019).

    Article  Google Scholar 

  131. Rautio, J., Meanwell, N. A., Di, L. & Hageman, M. J. The expanding role of prodrugs in contemporary drug design and development. Nat. Rev. Drug Discov. 17, 559–587 (2018).

    Article  Google Scholar 

  132. López-Otín, C. & Matrisian, L. M. Emerging roles of proteases in tumour suppression. Nat. Rev. Cancer 7, 800–808 (2007).

    Article  Google Scholar 

  133. Hsu, E. J. et al. A cytokine receptor-masked IL2 prodrug selectively activates tumor-infiltrating lymphocytes for potent antitumor therapy. Nat. Commun. 12, 2768 (2021).

    Article  Google Scholar 

  134. O’Neil, J. et al. Tumor-selective activity of XTX202, a protein-engineered IL-2, in mice without peripheral toxicities in nonhuman primates. J. Clin. Oncol. 39, 2563–2563 (2021). The researchers developed an IL-2 prodrug that is inactive until the inactivation unit is cleaved by tumour-associated proteases.

    Article  Google Scholar 

  135. Mansurov, A. et al. Masking the immunotoxicity of interleukin-12 by fusing it with a domain of its receptor via a tumour-protease-cleavable linker. Nat. Biomed. Eng. 6, 819–829 (2022).

    Article  Google Scholar 

  136. Nirschl, C. et al. WTX-124 is a novel IL-2 pro-drug that is conditionally activated in tumors and drives antitumor immunity in murine syngeneic cancer models. J. Immunother. Cancer 9, A747–A747 (2021).

    Article  Google Scholar 

  137. Steiner, P. et al. Conditionally activated IL-12 or IFNα indukineTM molecules inhibit syngeneic lymphoma tumor growth in mice, induce anti-tumor immune responses and are tolerated in non-human primates. Blood 138, 2258–2258 (2021).

    Article  Google Scholar 

  138. Rosen, D. B. et al. TransConTM IL-2 β/γ: a novel long-acting prodrug of receptor-biased IL-2 designed for improved pharmocokinetics and optimal activation of T cells for the treatment of cancer [abstract 4507]. Immunology 80, 4507–4507 (2020).

    Google Scholar 

  139. Zhang, Y., Li, N., Suh, H. & Irvine, D. J. Nanoparticle anchoring targets immune agonists to tumors enabling anti-cancer immunity without systemic toxicity. Nat. Commun. 9, 6 (2018). The researchers anchored IL-2 and anti-CD137 on the surface of liposomes to improve tumour accumulation and decrease systemic toxicity.

    Article  Google Scholar 

  140. Kamaly, N. et al. Targeted interleukin-10 nanotherapeutics developed with a microfluidic chip enhance resolution of inflammation in advanced atherosclerosis. ACS Nano 10, 5280–5292 (2016).

    Article  Google Scholar 

  141. Barbier, A. J., Jiang, A. Y., Zhang, P., Wooster, R. & Anderson, D. G. The clinical progress of mRNA vaccines and immunotherapies. Nat. Biotechnol. 40, 840–854 (2022).

    Article  Google Scholar 

  142. Kawasaki, T. & Kawai, T. Toll-like receptor signaling pathways. Front. Immunol. 5, 461 (2014).

    Article  Google Scholar 

  143. Nance, K. D. & Meier, J. L. Modifications in an emergency: the role of N1-methylpseudouridine in COVID-19 vaccines. ACS Cent. Sci. 7, 748–756 (2021).

    Article  Google Scholar 

  144. Andries, O. et al. N1-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J. Control. Release 217, 337–344 (2015).

    Article  Google Scholar 

  145. Karikó, K. et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 16, 1833–1840 (2008).

    Article  Google Scholar 

  146. Karikó, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005).

    Article  Google Scholar 

  147. Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article  Google Scholar 

  148. Alameh, M.-G. et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 54, 2877–2892.e7 (2021).

    Article  Google Scholar 

  149. Li, C. et al. Mechanisms of innate and adaptive immunity to the Pfizer–BioNTech BNT162b2 vaccine. Nat. Immunol. 23, 543–555 (2022).

    Article  Google Scholar 

  150. Li, Y. et al. Multifunctional oncolytic nanoparticles deliver self-replicating IL-12 RNA to eliminate established tumors and prime systemic immunity. Nat. Cancer 1, 882–893 (2020).

    Article  Google Scholar 

  151. Liu, J. Q. et al. Intratumoral delivery of IL-12 and IL-27 mRNA using lipid nanoparticles for cancer immunotherapy. J. Control. Release 345, 306–313 (2022).

    Article  Google Scholar 

  152. Hewitt, S. L. et al. Durable anticancer immunity from intratumoral administration of IL-23, IL-36g, and OX40L mRNAs. Sci. Transl Med. 11, 9143 (2019). In this study, a cocktail of mRNA-encoding cytokines (IL-23, IL-36γ and OX40L) was intratumorally administered for cancer treatment.

    Article  Google Scholar 

  153. Hotz, C. et al. Local delivery of mRNA-encoded cytokines promotes antitumor immunity and tumor eradication across multiple preclinical tumor models. Sci. Transl Med. 13, eabc7804 (2021).

    Article  Google Scholar 

  154. Jain, R. et al. MicroRNAs enable mRNA therapeutics to selectively program cancer cells to self-destruct. Nucleic Acid. Ther. 28, 285–296 (2018).

    Article  Google Scholar 

  155. Melero, I., Castanon, E., Alvarez, M., Champiat, S. & Marabelle, A. Intratumoural administration and tumour tissue targeting of cancer immunotherapies. Nat. Rev. Clin. Oncol. 18, 558–576 (2021).

    Article  Google Scholar 

  156. Beck, J. D. et al. mRNA therapeutics in cancer immunotherapy. Mol. Cancer 20, 69 (2021).

    Article  Google Scholar 

  157. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04455620 (2023).

  158. Lai, I. et al. Lipid nanoparticles that deliver IL-12 messenger RNA suppress tumorigenesis in MYC oncogene-driven hepatocellular carcinoma. J. Immunother. Cancer 6, 125 (2018). In this study, a lipid nanoparticle encapsulating mRNA encoding IL-12 was intravenously administered to treat hepatocellular carcinoma.

    Article  Google Scholar 

  159. Lei, S. et al. Efficient colorectal cancer gene therapy with IL-15 mRNA nanoformulation. Mol. Pharm. 17, 3378–3391 (2020).

    Article  Google Scholar 

  160. Tahtinen, S. et al. IL-1 and IL-1ra are key regulators of the inflammatory response to RNA vaccines. Nat. Immunol. 23, 532–542 (2022).

    Article  Google Scholar 

  161. Veiga, N. et al. Cell specific delivery of modified mRNA expressing therapeutic proteins to leukocytes. Nat. Commun. 9, 4493 (2018).

    Article  Google Scholar 

  162. Kulkarni, J. A. et al. The current landscape of nucleic acid therapeutics. Nat. Nanotechnol. 16, 630–643 (2021).

    Article  Google Scholar 

  163. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article  Google Scholar 

  164. van Leent, M. M. T. et al. Regulating trained immunity with nanomedicine. Nat. Rev. Mater. 7, 465–481 (2022).

    Article  Google Scholar 

  165. June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T cell immunotherapy for human cancer. Science 359, 1361–1365 (2018).

    Article  Google Scholar 

  166. Seimetz, D., Heller, K. & Richter, J. Approval of first CAR-Ts: have we solved all hurdles for ATMPs? Cell Med. 11, 215517901882278 (2019).

    Article  Google Scholar 

  167. Morotti, M. et al. Promises and challenges of adoptive T-cell therapies for solid tumours. Br. J. Cancer 124, 1759–1776 (2021).

    Article  Google Scholar 

  168. Gajewski, T. F. et al. Cancer immunotherapy strategies based on overcoming barriers within the tumor microenvironment. Curr. Opin. Immunol. 25, 268–276 (2013).

    Article  Google Scholar 

  169. Koneru, M., Purdon, T. J., Spriggs, D., Koneru, S. & Brentjens, R. J. IL-12 secreting tumor-targeted chimeric antigen receptor T cells eradicate ovarian tumors in vivo. Oncoimmunology 4, e994446 (2015).

    Article  Google Scholar 

  170. Yeku, O. O., Purdon, T. J., Koneru, M., Spriggs, D. & Brentjens, R. J. Armored CAR T cells enhance antitumor efficacy and overcome the tumor microenvironment. Sci. Rep. 7, 10541 (2017).

    Article  Google Scholar 

  171. Zhang, L. et al. Tumor-infiltrating lymphocytes genetically engineered with an inducible gene encoding interleukin-12 for the immunotherapy of metastatic melanoma. Clin. Cancer Res. 21, 2278–2288 (2015).

    Article  Google Scholar 

  172. Shah, N. N. & Fry, T. J. Mechanisms of resistance to CAR T cell therapy. Nat. Rev. Clin. Oncol. 16, 372–385 (2019).

    Google Scholar 

  173. Yee, C. et al. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc. Natl Acad. Sci. USA 99, 16168–16173 (2002).

    Article  Google Scholar 

  174. Adachi, K. et al. IL-7 and CCL19 expression in CAR-T cells improves immune cell infiltration and CAR-T cell survival in the tumor. Nat. Biotechnol. 36, 346–351 (2018).

    Article  Google Scholar 

  175. Andersen, R. et al. Long-lasting complete responses in patients with metastatic melanoma after adoptive cell therapy with tumor-infiltrating lymphocytes and an attenuated IL2 regimen. Clin. Cancer Res. 22, 3734–3745 (2016).

    Article  Google Scholar 

  176. Lee, J. M. et al. Direct and indirect antitumor effects by human peripheral blood lymphocytes expressing both chimeric immune receptor and interleukin-2 in ovarian cancer xenograft model. Cancer Gene Ther. 17, 742–750 (2010).

    Article  Google Scholar 

  177. Sockolosky, J. T. et al. Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science 359, 1037–1042 (2018). The researchers developed an orthogonal IL-2 cytokine–receptor complex that selectively potentiates engineered T cells for engineered cell therapies.

    Article  Google Scholar 

  178. Zhang, Q. et al. A human orthogonal IL-2 and IL-2Rβ system enhances CAR T cell expansion and antitumor activity in a murine model of leukemia. Sci. Transl Med. 13, 6986 (2021).

    Article  Google Scholar 

  179. Hirai, T. et al. Selective expansion of regulatory T cells using an orthogonal IL-2/IL-2 receptor system facilitates transplantation tolerance. J. Clin. Invest. 131, e139991 (2021).

    Article  Google Scholar 

  180. Taylor, P. A. et al. L-selectinhi but not the L-selectinlo CD4+25+ T-regulatory cells are potent inhibitors of GVHD and BM graft rejection. Blood 104, 3804–3812 (2004).

    Article  Google Scholar 

  181. Mo, F. et al. An engineered IL-2 partial agonist promotes CD8+ T cell stemness. Nature 597, 544–548 (2021).

    Article  Google Scholar 

  182. Pohl-Guimarães, F. et al. RNA-modified T cells mediate effective delivery of immunomodulatory cytokines to brain tumors. Mol. Ther. 27, 837–849 (2019).

    Article  Google Scholar 

  183. Roybal, K. T. et al. Engineering T cells with customized therapeutic response programs using synthetic Notch receptors. Cell 167, 419–432.e16 (2016).

    Article  Google Scholar 

  184. Yao, W. et al. Intratumoral injection of dendritic cells overexpressing interleukin-12 inhibits melanoma growth. Oncol. Rep. 42, 370–376 (2019).

    Google Scholar 

  185. Minkis, K. et al. Type 2 bias of T cells expanded from the blood of melanoma patients switched to type 1 by IL-12p70 mRNA-transfected dendritic cells. Cancer Res. 68, 9441–9450 (2008).

    Article  Google Scholar 

  186. Tatsumi, T. et al. Intratumoral delivery of dendritic cells engineered to secrete both interleukin (IL)-12 and IL-18 effectively treats local and distant disease in association with broadly reactive Tc1-type immunity 1. Cancer Res. 63, 6378–6386 (2003).

    Google Scholar 

  187. Bontkes, H. J. et al. Dendritic cells transfected with interleukin-12 and tumor-associated antigen messenger RNA induce high avidity cytotoxic T cells. Gene Ther. 14, 366–375 (2007).

    Article  Google Scholar 

  188. Naka, T. et al. Tumor vaccine therapy against recrudescent tumor using dendritic cells simultaneously transfected with tumor RNA and granulocyte macrophage colony-stimulating factor RNA. Cancer Sci. 99, 407–413 (2008).

    Article  Google Scholar 

  189. Ljunggren, H. G. & Kärre, K. In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol. Today 11, 237–244 (1990).

    Article  Google Scholar 

  190. van den Bergh, J. et al. Transpresentation of interleukin-15 by IL-15/IL-15Rα mRNA-engineered human dendritic cells boosts antitumoral natural killer cell activity. Oncotarget 6, 44123–44133 (2015).

    Article  Google Scholar 

  191. Liu, E. et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N. Engl. J. Med. 382, 545–553 (2020).

    Article  Google Scholar 

  192. Kang, M. et al. Nanocomplex-mediated in vivo programming to chimeric antigen receptor-M1 macrophages for cancer therapy. Adv. Mater. 33, 2103258 (2021).

    Article  Google Scholar 

  193. Wang, S. et al. CAR-macrophage: an extensive immune enhancer to fight cancer. eBioMedicine 76, 103873 (2022).

    Article  Google Scholar 

  194. Kaczanowska, S. et al. Genetically engineered myeloid cells rebalance the core immune suppression program in metastasis. Cell 184, 2033–2052.e21 (2021).

    Article  Google Scholar 

  195. Nash, A. M. et al. Clinically translatable cytokine delivery platform for eradication of intraperitoneal tumors. Sci. Adv. 8, 1032 (2022).

    Article  Google Scholar 

  196. Mosallaei, M. et al. Genetically engineered mesenchymal stem cells: targeted delivery of immunomodulatory agents for tumor eradication. Cancer Gene Ther. 27, 854–868 (2020).

    Article  Google Scholar 

  197. Razeghian, E. et al. Mesenchymal stem/stromal cells as a vehicle for cytokine delivery: an emerging approach for tumor immunotherapy. Front. Med. 8, 1405 (2021).

    Article  Google Scholar 

  198. Adams, G. P. & Weiner, L. M. Monoclonal antibody therapy of cancer. Nat. Biotechnol. 23, 1147–1157 (2005).

    Article  Google Scholar 

  199. Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).

    Article  Google Scholar 

  200. Perrillo, R. Benefits and risks of interferon therapy for hepatitis B. Hepatology 49, S103–S111 (2009).

    Article  Google Scholar 

  201. Panitch, H. S. Interferons in multiple sclerosis. Drugs 44, 946–962 (1992).

    Article  Google Scholar 

  202. Fyfe, G. et al. Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J. Clin. Oncol. 13, 688–696 (1995).

    Article  Google Scholar 

  203. Bennett, C. L., Djulbegovic, B., Norris, L. B. & Armitage, J. O. Colony-stimulating factors for febrile neutropenia during cancer therapy. N. Engl. J. Med. 368, 1131–1139 (2013).

    Article  Google Scholar 

  204. Zhang, P., Sun, F., Liu, S. & Jiang, S. Anti-PEG antibodies in the clinic: current issues and beyond PEGylation. J. Control. Release 244, 184–193 (2016).

    Article  Google Scholar 

  205. Mitra, S. et al. Interleukin-2 activity can be fine tuned with engineered receptor signaling clamps. Immunity 42, 826–838 (2015).

    Article  Google Scholar 

  206. Mould, D. R. & Green, B. Pharmacokinetics and pharmacodynamics of monoclonal antibodies: concepts and lessons for drug development. BioDrugs 24, 23–39 (2010).

    Article  Google Scholar 

  207. Ghoreschi, K. et al. Interleukin-4 therapy of psoriasis induces Th2 responses and improves human autoimmune disease. Nat. Med. 9, 40–46 (2002).

    Article  Google Scholar 

  208. Tulpule, A. et al. Interleukin-4 in the treatment of AIDS-related Kaposi’s sarcoma. Ann. Oncol. 8, 79–83 (1997).

    Article  Google Scholar 

  209. Sportès, C. et al. Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets. J. Exp. Med. 205, 1701–1714 (2008).

    Article  Google Scholar 

  210. Rosenberg, S. A. et al. IL-7 administration to humans leads to expansion of CD8+ and CD4+ cells but a relative decrease of CD4+ T-regulatory cells. J. Immunother. 29, 313–319 (2006).

    Article  Google Scholar 

  211. Buruiana, F. E., Solà, I. & Alonso-Coello, P. Recombinant human interleukin 10 for induction of remission in Crohn’s disease. Cochrane Database Syst. Rev. 2012, CD005109 (2010).

    Google Scholar 

  212. Colombel, J. F. et al. Interleukin 10 (Tenovil) in the prevention of postoperative recurrence of Crohn’s disease. Gut 49, 42–46 (2001).

    Article  Google Scholar 

  213. Chernoff, A. E. et al. A randomized, controlled trial of IL-10 in humans. Inhibition of inflammatory cytokine production and immune responses. J. Immunol. 154, 5492–5499 (1995).

    Article  Google Scholar 

  214. Conlon, K. C. et al. Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer. J. Clin. Oncol. 33, 74–82 (2015).

    Article  Google Scholar 

  215. Petrella, T. M. et al. Final efficacy results of NCIC CTG IND.202: a randomized phase II study of recombinant interleukin-21 (rIL21) in patients with recurrent or metastatic melanoma (MM). J. Clin. Oncol. 31, 9032–9032 (2013).

    Article  Google Scholar 

  216. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00873756 (2016).

  217. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00508625 (2016).

  218. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00400764 (2011).

  219. Pina, A. S., Lowe, C. R. & Roque, A. C. A. Challenges and opportunities in the purification of recombinant tagged proteins. Biotechnol. Adv. 32, 366–381 (2014).

    Article  Google Scholar 

  220. Malyala, P. & Singh, M. Endotoxin limits in formulations for preclinical research. J. Pharm. Sci. 97, 2041–2044 (2008).

    Article  Google Scholar 

  221. Freitag, R. in Animal Cell Biotechnology Vol. 1104 (ed. Pörtner, R.) 419–458 (Humana, 2014).

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.D., T.A., A.M.H., M.G.N. and W.J.M.M. wrote the manuscript. All authors researched data for the article, provided substantial contributions to discussion of content and reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Mihai G. Netea or Willem J. M. Mulder.

Ethics declarations

Competing interests

W.J.M.M., L.A.B.J. and M.G.N. are scientific co-founders of and have equity in Trained Therapeutix Discovery. W.J.M.M. and M.G.N. have consulting agreements with Trained Therapeutix Discovery. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Yizhou Dong, Frances Balkwill, Beatrice Malacrida and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deckers, J., Anbergen, T., Hokke, A.M. et al. Engineering cytokine therapeutics. Nat Rev Bioeng 1, 286–303 (2023). https://doi.org/10.1038/s44222-023-00030-y

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44222-023-00030-y

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research