Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synthetic macromolecular switches for precision control of therapeutic cell functions

Abstract

Cells rely on complex molecular networks to perceive and process external and internal signals into tailored responses. These cellular abilities can be augmented and modified by integrating artificial gene circuitry for the engineering of cell-based therapeutics. In this Review, we outline the engineering principles that govern the design of synthetic gene networks, highlighting how the sensitivity, detection range and specificity of synthetic gene networks can be optimized for in vivo functionality. In particular, we examine synthetic molecular modules, including transcriptionally regulated, translationally regulated and post-translationally regulated circuits, that enable tailored adjustments in therapeutic cell functions based on dynamic disease-state cues, or that can be remotely controlled using clinically compatible external molecular or physical signals. Furthermore, we explore the potential of multi-input regulatable logic-gated programs to enhance the efficacy and safety of engineered cell immunotherapies for cancer treatment, and highlight the application of synthetic gene circuits for gene therapy and the design of therapeutic microbes. Finally, we examine how synthetic-biology-inspired therapies may benefit from evolving genome engineering technologies and synergy with artificial intelligence.

Key points

  • Synthetic macromolecular switches responding to external or endogenous signals at the DNA, RNA or protein level offer promising tools for developing safe and effective therapeutic cells.

  • Consideration of tradeoffs inherent to each regulatory mode, including dynamic ranges, response times, genetic footprint and component sources, is crucial for their optimal therapeutic application.

  • Synthetic transcriptional systems can be integrated in cancer gene and cell therapy products, and translational and post-translational switches are being explored in preclinical studies.

  • Machine learning models, trained on high-quality datasets, can aid in the design and optimization of synthetic macromolecular circuits to meet clinical requirements while reducing the time and cost of development.

  • To aid the clinical translation of large circuits integrating extracellularly controlled logical operations, gene transfer methods for ex vivo or in vivo cell engineering must be improved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Programming transcriptional regulatory networks for responsiveness to molecular or physical signals.
Fig. 2: Programming translational regulatory networks for responsiveness to external signals.
Fig. 3: Applications of post-translationally regulated systems.
Fig. 4: Regulatable engineered cells targeting cancer.
Fig. 5: Leveraging artificial intelligence to advance synthetic-biology-inspired therapies.

Similar content being viewed by others

References

  1. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

    Article  Google Scholar 

  2. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).

    Article  Google Scholar 

  3. Kramer, B. P. et al. An engineered epigenetic transgene switch in mammalian cells. Nat. Biotechnol. 22, 867–870 (2004).

    Article  Google Scholar 

  4. Tigges, M., Marquez-Lago, T. T., Stelling, J. & Fussenegger, M. A tunable synthetic mammalian oscillator. Nature 457, 309–312 (2009).

    Article  Google Scholar 

  5. Madderson, O., Teixeira, A. P. & Fussenegger, M. Emerging mammalian gene switches for controlling implantable cell therapies. Curr. Opin. Chem. Biol. 64, 98–105 (2021).

    Article  Google Scholar 

  6. Teixeira, A. P. & Fussenegger, M. Synthetic biology-inspired therapies for metabolic diseases. Curr. Opin. Biotechnol. 47, 59–66 (2017).

    Article  Google Scholar 

  7. Bertschi, A. et al. Controlling therapeutic protein expression via inhalation of a butter flavor molecule. Nucleic Acids Res. 51, e28 (2023).

    Article  Google Scholar 

  8. Galvan, S., Madderson, O., Xue, S., Teixeira, A. P. & Fussenegger, M. Regulation of transgene expression by the natural sweetener xylose. Adv. Sci. 9, e2203193 (2022).

    Article  Google Scholar 

  9. Teixeira, A. P., Xue, S., Huang, J. & Fussenegger, M. Evolution of molecular switches for regulation of transgene expression by clinically licensed gluconate. Nucleic Acids Res. 51, e85 (2023).

    Article  Google Scholar 

  10. Huang, J., Xue, S., Xie, Y.-Q., Teixeira, A. P. & Fussenegger, M. Ultrashort-peptide-responsive gene switches for regulation of therapeutic protein expression in mammalian cells. Adv. Sci. 11, e2309411 (2024).

    Article  Google Scholar 

  11. Motta-Mena, L. B. et al. An optogenetic gene expression system with rapid activation and deactivation kinetics. Nat. Chem. Biol. 10, 196–202 (2014).

    Article  Google Scholar 

  12. Wang, X., Chen, X. & Yang, Y. Spatiotemporal control of gene expression by a light-switchable transgene system. Nat. Methods 9, 266–269 (2012).

    Article  Google Scholar 

  13. Stefanov, B. A. et al. Genetically encoded protein thermometer enables precise electrothermal control of transgene expression. Adv. Sci. 8, e2101813 (2021).

    Article  Google Scholar 

  14. Nguyen, D. P. et al. Ligand-binding domains of nuclear receptors facilitate tight control of split CRISPR activity. Nat. Commun. 7, 12009 (2016).

    Article  Google Scholar 

  15. Picard, D. Chaperoning steroid hormone action. Trends Endocrinol. Metab. 17, 229–235 (2006).

    Article  Google Scholar 

  16. Beerli, R. R., Schopfer, U., Dreier, B. & Barbas, C. F. III Chemically regulated zinc finger transcription factors. J. Biol. Chem. 275, 32617–32627 (2000).

    Article  Google Scholar 

  17. Mercer, A. C. et al. Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors. ACS Synth. Biol. 3, 723–730 (2014).

    Article  Google Scholar 

  18. Webster, N. J., Green, S., Jin, J. R. & Chambon, P. The hormone-binding domains of the estrogen and glucocorticoid receptors contain an inducible transcription activation function. Cell 54, 199–207 (1988).

    Article  Google Scholar 

  19. Gersbach, C. A., Gaj, T. & Barbas, C. F. III Synthetic zinc finger proteins: the advent of targeted gene regulation and genome modification technologies. Acc. Chem. Res. 47, 2309–2318 (2014).

    Article  Google Scholar 

  20. Moscou, M. J. & Bogdanove, A. J. A simple cipher governs DNA recognition by TAL effectors. Science 326, 1501 (2009).

    Article  Google Scholar 

  21. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  Google Scholar 

  22. McCarty, N. S., Graham, A. E., Studena, L. & Ledesma-Amaro, R. Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nat. Commun. 11, 1281 (2020).

    Article  Google Scholar 

  23. Li, H. S. et al. Multidimensional control of therapeutic human cell function with synthetic gene circuits. Science 378, 1227–1234 (2022).

    Article  Google Scholar 

  24. Franko, N. et al. Integrated compact regulators of protein activity enable control of signaling pathways and genome-editing in vivo. Cell Discov. 10, 9 (2024).

    Article  Google Scholar 

  25. Wei, C. T. et al. A chemically controlled Cas9 switch enables temporal modulation of diverse effectors. Nat. Chem. Biol. 19, 981–991 (2023).

    Article  Google Scholar 

  26. Kleinjan, D. A., Wardrope, C., Nga Sou, S. & Rosser, S. J. Drug-tunable multidimensional synthetic gene control using inducible degron-tagged dCas9 effectors. Nat. Commun. 8, 1191 (2017).

    Article  Google Scholar 

  27. Banaszynski, L. A., Chen, L. C., Maynard-Smith, L. A., Ooi, A. G. & Wandless, T. J. A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126, 995–1004 (2006).

    Article  Google Scholar 

  28. Nakahara, E., Mullapudi, V., Collier, G. E., Joachimiak, L. A. & Hulleman, J. D. Development of a new DHFR-based destabilizing domain with enhanced basal turnover and applicability in mammalian systems. ACS Chem. Biol. 17, 2877–2889 (2022).

    Article  Google Scholar 

  29. Miyazaki, Y., Imoto, H., Chen, L. C. & Wandless, T. J. Destabilizing domains derived from the human estrogen receptor. J. Am. Chem. Soc. 134, 3942–3945 (2012).

    Article  Google Scholar 

  30. Franko, N., Teixeira, A. P., Xue, S., Charpin-El Hamri, G. & Fussenegger, M. Design of modular autoproteolytic gene switches responsive to anti-coronavirus drug candidates. Nat. Commun. 12, 6786 (2021).

    Article  Google Scholar 

  31. Inoue, T., Heo, W. D., Grimley, J. S., Wandless, T. J. & Meyer, T. An inducible translocation strategy to rapidly activate and inhibit small GTPase signaling pathways. Nat. Methods 2, 415–418 (2005).

    Article  Google Scholar 

  32. Gao, Y. et al. Complex transcriptional modulation with orthogonal and inducible dCas9 regulators. Nat. Methods 13, 1043–1049 (2016).

    Article  Google Scholar 

  33. Mahameed, M., Wang, P., Xue, S. & Fussenegger, M. Engineering receptors in the secretory pathway for orthogonal signalling control. Nat. Commun. 13, 7350 (2022).

    Article  Google Scholar 

  34. Bertschi, A., Wang, P., Galvan, S., Teixeira, A. P. & Fussenegger, M. Combinatorial protein dimerization enables precise multi-input synthetic computations. Nat. Chem. Biol. 19, 767–777 (2023).

    Article  Google Scholar 

  35. Palli, S. R., Kapitskaya, M. Z., Kumar, M. B. & Cress, D. E. Improved ecdysone receptor-based inducible gene regulation system. Eur. J. Biochem. 270, 1308–1315 (2003).

    Article  Google Scholar 

  36. Beltran, J. et al. Rapid biosensor development using plant hormone receptors as reprogrammable scaffolds. Nat. Biotechnol. 40, 1855–1861 (2022).

    Article  Google Scholar 

  37. Rihtar, E. et al. Chemically inducible split protein regulators for mammalian cells. Nat. Chem. Biol. 19, 64–71 (2023).

    Article  Google Scholar 

  38. Chin, S. E. et al. A simeprevir-inducible molecular switch for the control of cell and gene therapies. Nat. Commun. 14, 7753 (2023).

    Article  Google Scholar 

  39. Konermann, S. et al. Optical control of mammalian endogenous transcription and epigenetic states. Nature 500, 472–476 (2013).

    Article  Google Scholar 

  40. Muller, K. et al. A red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells. Nucleic Acids Res. 41, e77 (2013).

    Article  Google Scholar 

  41. Chen, R. Deep brain optogenetics without intracranial surgery. Nat. Biotechnol. 39, 161–164 (2021).

    Article  Google Scholar 

  42. Li, C. & Samulski, R. J. Engineering adeno-associated virus vectors for gene therapy. Nat. Rev. Genet. 21, 255–272 (2020).

    Article  Google Scholar 

  43. Cui, M. et al. A single-component, light-assisted uncaging switch for endoproteolytic release. Nat. Chem. Biol. 20, 353–364 (2024).

    Article  Google Scholar 

  44. Dolberg, T. B. et al. Computation-guided optimization of split protein systems. Nat. Chem. Biol. 17, 531–539 (2021).

    Article  Google Scholar 

  45. Kroeze, W. K. et al. PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. Nat. Struct. Mol. Biol. 22, 362–369 (2015).

    Article  Google Scholar 

  46. Mansouri, M. et al. Smart-watch-programmed green-light-operated percutaneous control of therapeutic transgenes. Nat. Commun. 12, 3388 (2021).

    Article  Google Scholar 

  47. Morsut, L. et al. Engineering customized cell sensing and response behaviors using synthetic Notch receptors. Cell 164, 780–791 (2016).

    Article  Google Scholar 

  48. Zhu, I. et al. Modular design of synthetic receptors for programmed gene regulation in cell therapies. Cell 185, 1431–1443 e1416 (2022).

    Article  Google Scholar 

  49. Barnea, G. et al. The genetic design of signaling cascades to record receptor activation. Proc. Natl Acad. Sci. USA 105, 64–69 (2008).

    Article  Google Scholar 

  50. Kipniss, N. H. et al. Engineering cell sensing and responses using a GPCR-coupled CRISPR-Cas system. Nat. Commun. 8, 2212 (2017).

    Article  Google Scholar 

  51. Haellman, V., Saxena, P., Jiang, Y. & Fussenegger, M. Rational design and optimization of synthetic gene switches for controlling cell-fate decisions in pluripotent stem cells. Metab. Eng. 65, 99–110 (2021).

    Article  Google Scholar 

  52. Bai, P. et al. A fully human transgene switch to regulate therapeutic protein production by cooling sensation. Nat. Med. 25, 1266–1273 (2019).

    Article  Google Scholar 

  53. Labanieh, L. et al. Enhanced safety and efficacy of protease-regulated CAR-T cell receptors. Cell 185, 1745–1763 e1722 (2022).

    Article  Google Scholar 

  54. Scheller, L., Strittmatter, T., Fuchs, D., Bojar, D. & Fussenegger, M. Generalized extracellular molecule sensor platform for programming cellular behavior. Nat. Chem. Biol. 14, 723–729 (2018).

    Article  Google Scholar 

  55. Strittmatter, T. et al. Programmable DARPin-based receptors for the detection of thrombotic markers. Nat. Chem. Biol. 18, 1125–1134 (2022).

    Article  Google Scholar 

  56. Grusch, M. et al. Spatio-temporally precise activation of engineered receptor tyrosine kinases by light. EMBO J. 33, 1713–1726 (2014).

    Article  Google Scholar 

  57. Krawczyk, K., Scheller, L., Kim, H. & Fussenegger, M. Rewiring of endogenous signaling pathways to genomic targets for therapeutic cell reprogramming. Nat. Commun. 11, 608 (2020).

    Article  Google Scholar 

  58. Huang, J., Xue, S., Buchmann, P., Teixeira, A. P. & Fussenegger, M. An electrogenetic interface to program mammalian gene expression by direct current. Nat. Metab. 5, 1395–1407 (2023).

    Article  Google Scholar 

  59. Beilstein, K., Wittmann, A., Grez, M. & Suess, B. Conditional control of mammalian gene expression by tetracycline-dependent hammerhead ribozymes. ACS Synth. Biol. 4, 526–534 (2015).

    Article  Google Scholar 

  60. Goldfless, S. J., Belmont, B. J., de Paz, A. M., Liu, J. F. & Niles, J. C. Direct and specific chemical control of eukaryotic translation with a synthetic RNA–protein interaction. Nucleic Acids Res. 40, e64 (2012).

    Article  Google Scholar 

  61. Strobel, B. et al. A small-molecule-responsive riboswitch enables conditional induction of viral vector-mediated gene expression in mice. ACS Synth. Biol. 9, 1292–1305 (2020).

    Article  Google Scholar 

  62. Endo, K., Stapleton, J. A., Hayashi, K., Saito, H. & Inoue, T. Quantitative and simultaneous translational control of distinct mammalian mRNAs. Nucleic Acids Res. 41, e135 (2013).

    Article  Google Scholar 

  63. Saito, H. et al. Synthetic translational regulation by an L7Ae-kink-turn RNP switch. Nat. Chem. Biol. 6, 71–78 (2010).

    Article  Google Scholar 

  64. Wagner, T. E. et al. Small-molecule-based regulation of RNA-delivered circuits in mammalian cells. Nat. Chem. Biol. 14, 1043–1050 (2018).

    Article  Google Scholar 

  65. Liu, R. et al. Optogenetic control of RNA function and metabolism using engineered light-switchable RNA-binding proteins. Nat. Biotechnol. 40, 779–786 (2022).

    Article  Google Scholar 

  66. Nakanishi, H. et al. Light-controllable RNA-protein devices for translational regulation of synthetic mRNAs in mammalian cells. Cell Chem. Biol. 28, 662–674 (2021).

    Article  Google Scholar 

  67. Weber, A. M. et al. A blue light receptor that mediates RNA binding and translational regulation. Nat. Chem. Biol. 15, 1085–1092 (2019).

    Article  Google Scholar 

  68. Shao, J. et al. Engineered poly(A)-surrogates for translational regulation and therapeutic biocomputation in mammalian cells. Cell Res. 34, 31–46 (2024).

    Article  Google Scholar 

  69. Zhong, G., Wang, H., Bailey, C. C., Gao, G. & Farzan, M. Rational design of aptazyme riboswitches for efficient control of gene expression in mammalian cells. eLife 5, e18858 (2016).

    Article  Google Scholar 

  70. Hou, Q. & Jaffrey, S. R. Synthetic biology tools to promote the folding and function of RNA aptamers in mammalian cells. RNA Biol. 20, 198–206 (2023).

    Article  Google Scholar 

  71. Chen, Y. Y., Jensen, M. C. & Smolke, C. D. Genetic control of mammalian T-cell proliferation with synthetic RNA regulatory systems. Proc. Natl Acad. Sci. USA 107, 8531–8536 (2010).

    Article  Google Scholar 

  72. Xiang, J. S. et al. Massively parallel RNA device engineering in mammalian cells with RNA-Seq. Nat. Commun. 10, 4327 (2019).

    Article  Google Scholar 

  73. Zhong, G. et al. A reversible RNA on-switch that controls gene expression of AAV-delivered therapeutics in vivo. Nat. Biotechnol. 38, 169–175 (2020).

    Article  Google Scholar 

  74. Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008).

    Article  Google Scholar 

  75. Fukunaga, K. et al. Small-molecule aptamer for regulating RNA functions in mammalian cells and animals. J. Am. Chem. Soc. 145, 7820–7828 (2023).

    Article  Google Scholar 

  76. Luo, L. M., Jea, J. D. Y., Wang, Y., Chao, P. W. & Yen, L. S. Control of mammalian gene expression by modulation of polyA signal cleavage at 5′ UTR. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01989-0 (2024).

    Article  Google Scholar 

  77. Monteys, A. M. et al. Regulated control of gene therapies by drug-induced splicing. Nature 596, 291–295 (2021).

    Article  Google Scholar 

  78. Vogel, M., Weigand, J. E., Kluge, B., Grez, M. & Suess, B. A small, portable RNA device for the control of exon skipping in mammalian cells. Nucleic Acids Res. 46, e48 (2018).

    Article  Google Scholar 

  79. Georgakopoulos-Soares, I. et al. Alternative splicing modulation by G-quadruplexes. Nat. Commun. 13, 2404 (2022).

    Article  Google Scholar 

  80. Schmok, J. C. et al. Large-scale evaluation of the ability of RNA-binding proteins to activate exon inclusion. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02014-0 (2024).

    Article  Google Scholar 

  81. Kormann, M. S. et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat. Biotechnol. 29, 154–157 (2011).

    Article  Google Scholar 

  82. Geall, A. J. et al. Nonviral delivery of self-amplifying RNA vaccines. Proc. Natl Acad. Sci. USA 109, 14604–14609 (2012).

    Article  Google Scholar 

  83. Mc Cafferty, S. et al. In vivo validation of a reversible small molecule-based switch for synthetic self-amplifying mRNA regulation. Mol. Ther. 29, 1164–1173 (2021).

    Article  Google Scholar 

  84. Yesbolatova, A. et al. The auxin-inducible degron 2 technology provides sharp degradation control in yeast, mammalian cells, and mice. Nat. Commun. 11, 5701 (2020).

    Article  Google Scholar 

  85. Noviello, G., Gjaltema, R. A. F. & Schulz, E. G. CasTuner is a degron and CRISPR/Cas-based toolkit for analog tuning of endogenous gene expression. Nat. Commun. 14, 3225 (2023).

    Article  Google Scholar 

  86. Nabet, B. et al. Rapid and direct control of target protein levels with VHL-recruiting dTAG molecules. Nat. Commun. 11, 4687 (2020).

    Article  Google Scholar 

  87. Nabet, B. et al. The dTAG system for immediate and target-specific protein degradation. Nat. Chem. Biol. 14, 431–441 (2018).

    Article  Google Scholar 

  88. Agbowuro, A. A., Huston, W. M., Gamble, A. B. & T, J. D. Proteases and protease inhibitors in infectious diseases. Medicinal Res. Rev. 38, 1295–1331 (2018).

    Article  Google Scholar 

  89. Chung, H. K. et al. Tunable and reversible drug control of protein production via a self-excising degron. Nat. Chem. Biol. 11, 713–720 (2015).

    Article  Google Scholar 

  90. Jacobs, C. L., Badiee, R. K. & Lin, M. Z. StaPLs: versatile genetically encoded modules for engineering drug-inducible proteins. Nat. Methods 15, 523–526 (2018).

    Article  Google Scholar 

  91. Tague, E. P., Dotson, H. L., Tunney, S. N., Sloas, D. C. & Ngo, J. T. Chemogenetic control of gene expression and cell signaling with antiviral drugs. Nat. Methods 15, 519–522 (2018).

    Article  Google Scholar 

  92. Mahameed, M., Xue, S., Stefanov, B. A., Hamri, G. C. & Fussenegger, M. Engineering a rapid insulin release system controlled by oral drug administration. Adv. Sci. 9, e2105619 (2022).

    Article  Google Scholar 

  93. Mansouri, M., Ray, P. G., Franko, N., Xue, S. & Fussenegger, M. Design of programmable post-translational switch control platform for on-demand protein secretion in mammalian cells. Nucleic Acids Res. 51, e1 (2023).

    Article  Google Scholar 

  94. Praznik, A. et al. Regulation of protein secretion through chemical regulation of endoplasmic reticulum retention signal cleavage. Nat. Commun. 13, 1323 (2022).

    Article  Google Scholar 

  95. Wang, X. et al. A programmable protease-based protein secretion platform for therapeutic applications. Nat. Chem. Biol. 20, 432–442 (2024).

    Article  Google Scholar 

  96. Vlahos, A. E. et al. Protease-controlled secretion and display of intercellular signals. Nat. Commun. 13, 912 (2022).

    Article  Google Scholar 

  97. Wang, J. H., Gessler, D. J., Zhan, W., Gallagher, T. L. & Gao, G. P. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct. Target Ther. 9, 78 (2024).

    Article  Google Scholar 

  98. Barrett, J. A. et al. Regulated intratumoral expression of IL-12 using a RheoSwitch Therapeutic System® (RTS®) gene switch as gene therapy for the treatment of glioma. Cancer Gene Ther. 25, 106–116 (2018).

    Article  Google Scholar 

  99. Chiocca, E. A. et al. Regulatable interleukin-12 gene therapy in patients with recurrent high-grade glioma: results of a phase 1 trial. Sci. Transl. Med. 11, eaaw5680 (2019).

    Article  Google Scholar 

  100. Cirella, A. et al. Novel strategies exploiting interleukin-12 in cancer immunotherapy. Pharmacol. Ther. 239, 108189 (2022).

    Article  Google Scholar 

  101. Cripe, T. P. et al. Leveraging gene therapy to achieve long-term continuous or controllable expression of biotherapeutics. Sci. Adv. 8, eabm1890 (2022).

    Article  Google Scholar 

  102. Cappell, K. M. & Kochenderfer, J. N. Long-term outcomes following CAR T cell therapy: what we know so far. Nat. Rev. Clin. Oncol. 20, 359–371 (2023).

    Article  Google Scholar 

  103. Weber, E. W. et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science 372, 49 (2021).

    Article  Google Scholar 

  104. Marofi, F. et al. CAR T cells in solid tumors: challenges and opportunities. Stem Cell Res. Ther. 12, 81 (2021).

    Article  Google Scholar 

  105. Majzner, R. G. & Mackall, C. L. Tumor antigen escape from CAR T-cell therapy. Cancer Discov. 8, 1219–1226 (2018).

    Article  Google Scholar 

  106. Choe, J. H. et al. SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. Sci. Transl. Med. 13, eabe7378 (2021).

    Article  Google Scholar 

  107. Hyrenius-Wittsten, A. et al. SynNotch CAR circuits enhance solid tumor recognition and promote persistent antitumor activity in mouse models. Sci. Transl. Med. 13, eabd8836 (2021).

    Article  Google Scholar 

  108. Hernandez-Lopez, R. A. et al. T cell circuits that sense antigen density with an ultrasensitive threshold. Science 371, 1166–1171 (2021).

    Article  Google Scholar 

  109. Tousley, A. M. et al. Co-opting signalling molecules enables logic-gated control of CAR T cells. Nature 615, 507–516 (2023).

    Article  Google Scholar 

  110. Lajoie, M. J. et al. Designed protein logic to target cells with precise combinations of surface antigens. Science 369, 1637–1643 (2020).

    Article  Google Scholar 

  111. Minutolo NG, S. P. et al. Quantitative control of gene-engineered T-cell activity through the covalent attachment of targeting ligands to a universal immune receptor. J. Am. Chem. Soc. 142, 6554–6568 (2020).

    Article  Google Scholar 

  112. Stepanov, A. V. et al. Control of the antitumour activity and specificity of CAR T cells via organic adapters covalently tethering the CAR to tumour cells. Nat. Biomed. Eng. 8, 529–543 (2024).

    Article  Google Scholar 

  113. Li, H. S. et al. High-performance multiplex drug-gated CAR circuits. Cancer Cell 40, 1294–1305 e1294 (2022).

    Article  Google Scholar 

  114. Allen, G. M. et al. Synthetic cytokine circuits that drive T cells into immune-excluded tumors. Science 378, 1186 (2022).

    Article  Google Scholar 

  115. Maldini, C. R., Ellis, G. I. & Riley, J. L. CAR T cells for infection, autoimmunity and allotransplantation. Nat. Rev. Immunol. 18, 605–616 (2018).

    Article  Google Scholar 

  116. Huang, J., Xue, S., Teixeira, A. P. & Fussenegger, M. A gene-switch platform interfacing with reactive oxygen species enables transcription fine-tuning by soluble and volatile pharmacologics and food additives. Adv. Sci. (Weinh.) 11, e2306333 (2024).

    Google Scholar 

  117. Kemmer, C. et al. Self-sufficient control of urate homeostasis in mice by a synthetic circuit. Nat. Biotechnol. 28, 355–360 (2010).

    Article  Google Scholar 

  118. Schukur, L., Geering, B., Charpin-El Hamri, G. & Fussenegger, M. Implantable synthetic cytokine converter cells with AND-gate logic treat experimental psoriasis. Sci. Transl. Med. 7, 318ra201 (2015).

    Article  Google Scholar 

  119. Zhao, H. et al. Tuning of cellular insulin release by music for real-time diabetes control. Lancet Diabetes Endocrinol. 11, 637–640 (2023).

    Article  Google Scholar 

  120. Zhou, Y. et al. A small and highly sensitive red/far-red optogenetic switch for applications in mammals. Nat. Biotechnol. 40, 262–272 (2022).

    Article  Google Scholar 

  121. Naldini, L. Gene therapy returns to centre stage. Nature 526, 351–360 (2015).

    Article  Google Scholar 

  122. Birocchi, F. et al. Targeted inducible delivery of immunoactivating cytokines reprograms glioblastoma microenvironment and inhibits growth in mouse models. Sci. Transl. Med. 14, eabl4106 (2022).

    Article  Google Scholar 

  123. Deuse, T. et al. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nat. Biotechnol. 37, 252–258 (2019).

    Article  Google Scholar 

  124. Wang, B. et al. Generation of hypoimmunogenic T cells from genetically engineered allogeneic human induced pluripotent stem cells. Nat. Biomed. Eng. 5, 429–440 (2021).

    Article  Google Scholar 

  125. Fong, C. Y., Gauthaman, K. & Bongso, A. Teratomas from pluripotent stem cells: a clinical hurdle. J. Cell Biochem. 111, 769–781 (2010).

    Article  Google Scholar 

  126. Mehta, A. et al. Interim phase I clinical data of FT819-101, a study of the first-ever, off-the-shelf, iPSC-derived TCR-less CD19 CAR T-cell therapy for patients with relapsed/refractory B-cell malignancies. Blood 140, 4577–4578 (2022).

    Article  Google Scholar 

  127. Charbonneau, M. R., Isabella, V. M., Li, N. & Kurtz, C. B. Developing a new class of engineered live bacterial therapeutics to treat human diseases. Nat. Commun. 11, 1738 (2020).

    Article  Google Scholar 

  128. Hwang, I. Y. et al. Engineered probiotic can eliminate and prevent gut infection in animal models. Nat. Commun. 8, 15028 (2017).

    Article  Google Scholar 

  129. Koh, E. et al. Engineering probiotics to inhibit Clostridioides difficile infection by dynamic regulation of intestinal metabolism. Nat. Commun. 13, 3834 (2022).

    Article  Google Scholar 

  130. Pawelek, J. M., Low, K. B. & Bermudes, D. Bacteria as tumour-targeting vectors. Lancet Oncol. 4, 548–556 (2003).

    Article  Google Scholar 

  131. Din, M. O. et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature 536, 81–85 (2016).

    Article  Google Scholar 

  132. Chowdhury, S. et al. Programmable bacteria induce durable tumor regression and systemic antitumor immunity. Nat. Med. 25, 1057–1063 (2019).

    Article  Google Scholar 

  133. Gurbatri, C. R. et al. Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies. Sci. Transl. Med. 12, eaax0876 (2020).

    Article  Google Scholar 

  134. Bell, H. N. et al. Microenvironmental ammonia enhances T cell exhaustion in colorectal cancer. Cell Metab. 35, 134–149 e136 (2023).

    Article  Google Scholar 

  135. Canale, F. P. et al. Metabolic modulation of tumours with engineered bacteria for immunotherapy. Nature 598, 662–666 (2021).

    Article  Google Scholar 

  136. Adolfsen, K. J. et al. Improvement of a synthetic live bacterial therapeutic for phenylketonuria with biosensor-enabled enzyme engineering. Nat. Commun. 12, 6215 (2021).

    Article  Google Scholar 

  137. Vockley, J. et al. Efficacy and safety of a synthetic biotic for treatment of phenylketonuria: a phase 2 clinical trial. Nat. Metab. 5, 1685–1690 (2023).

    Article  Google Scholar 

  138. Kurtz, C. B. et al. An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Sci. Transl. Med. 11, eaau7975 (2019).

    Article  Google Scholar 

  139. Rottinghaus, A. G., Ferreiro, A., Fishbein, S. R. S., Dantas, G. & Moon, T. S. Genetically stable CRISPR-based kill switches for engineered microbes. Nat. Commun. 13, 672 (2022).

    Article  Google Scholar 

  140. Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

    Article  Google Scholar 

  141. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  Google Scholar 

  142. Yeh, A. H. et al. De novo design of luciferases using deep learning. Nature 614, 774–780 (2023).

    Article  Google Scholar 

  143. Carinhas, N., Oliveira, R., Alves, P. M., Carrondo, M. J. & Teixeira, A. P. Systems biotechnology of animal cells: the road to prediction. Trends Biotechnol. 30, 377–385 (2012).

    Article  Google Scholar 

  144. Teixeira, A. P., Alves, C., Alves, P. M., Carrondo, M. J. & Oliveira, R. Hybrid elementary flux analysis/nonparametric modeling: application for bioprocess control. BMC Bioinforma. 8, 30 (2007).

    Article  Google Scholar 

  145. Notin, P., Rollins, N., Gal, Y., Sander, C. & Marks, D. Machine learning for functional protein design. Nat. Biotechnol. 42, 216–228 (2024).

    Article  Google Scholar 

  146. Bryant, D. H. et al. Deep diversification of an AAV capsid protein by machine learning. Nat. Biotechnol. 39, 691–696 (2021).

    Article  Google Scholar 

  147. Zhu, D. et al. Optimal trade-off control in machine learning-based library design, with application to adeno-associated virus (AAV) for gene therapy. Sci. Adv. 10, eadj3786 (2024).

    Article  Google Scholar 

  148. Kelsic, E. D. & GM, C. Challenges and opportunities of machine-guided capsid engineering for gene therapy. Cell Gene Ther. Insights. 5, 523–536 (2019).

    Article  Google Scholar 

  149. Ichikawa, D. M. et al. A universal deep-learning model for zinc finger design enables transcription factor reprogramming. Nat. Biotechnol. 41, 1117–1129 (2023).

    Article  Google Scholar 

  150. Thean, D. G. L. et al. Machine learning-coupled combinatorial mutagenesis enables resource-efficient engineering of CRISPR-Cas9 genome editor activities. Nat. Commun. 13, 2219 (2022).

    Article  Google Scholar 

  151. Zhang, P. et al. Deep flanking sequence engineering for efficient promoter design using DeepSEED. Nat. Commun. 14, 6309 (2023).

    Article  Google Scholar 

  152. Sumi, S., Hamada, M. & Saito, H. Deep generative design of RNA family sequences. Nat. Methods 21, 435–443 (2024).

    Article  Google Scholar 

  153. Daniels, K. G. et al. Decoding CAR T cell phenotype using combinatorial signaling motif libraries and machine learning. Science 378, 1194–1200 (2022).

    Article  Google Scholar 

  154. Castellanos-Rueda, R. et al. speedingCARs: accelerating the engineering of CAR T cells by signaling domain shuffling and single-cell sequencing. Nat. Commun. 13, 6555 (2022).

    Article  Google Scholar 

  155. Di Stasi, A. et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N. Engl. J. Med. 365, 1673–1683 (2011).

    Article  Google Scholar 

  156. Weinberg, B. H. et al. Large-scale design of robust genetic circuits with multiple inputs and outputs for mammalian cells. Nat. Biotechnol. 35, 453–462 (2017).

    Article  Google Scholar 

  157. Zhu, R., Del Rio-Salgado, J. M., Garcia-Ojalvo, J. & Elowitz, M. B. Synthetic multistability in mammalian cells. Science 375, eabg9765 (2022).

    Article  Google Scholar 

  158. Irving, M., Lanitis, E., Migliorini, D., Ivics, Z. & Guedan, S. Choosing the right tool for genetic engineering: clinical lessons from chimeric antigen receptor-T cells. Hum. Gene Ther. 32, 1044–1058 (2021).

    Article  Google Scholar 

  159. Fraietta, J. A. et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 558, 307–312 (2018).

    Article  Google Scholar 

  160. Nobles, C. L. et al. CD19-targeting CAR T cell immunotherapy outcomes correlate with genomic modification by vector integration. J. Clin. Invest. 130, 673–685 (2020).

    Article  Google Scholar 

  161. Rodrigues, A. F., Alves, P. M. & Coroadinha, A. in Viral Gene Therapy (ed. Xu, K.) 15–40 (IntechOpen, 2011).

  162. Ye, L. et al. AAV-mediated delivery of a Sleeping Beauty transposon and an mRNA-encoded transposase for the engineering of therapeutic immune cells. Nat. Biomed. Eng. 8, 132–148 (2024).

    Article  Google Scholar 

  163. Fiorenza, S., Ritchie, D. S., Ramsey, S. D., Turtle, C. J. & Roth, J. A. Value and affordability of CAR T-cell therapy in the United States. Bone Marrow Transpl. 55, 1706–1715 (2020).

    Article  Google Scholar 

  164. Marin, D. et al. Safety, efficacy and determinants of response of allogeneic CD19-specific CAR-NK cells in CD19+ B cell tumors: a phase 1/2 trial. Nat. Med. 30, 772–784 (2024).

    Article  Google Scholar 

  165. Bachanova, V. et al. Safety and efficacy of FT596, a first-in-class, multi-antigen targeted, off-the-shelf, iPSC-derived CD19 CAR NK cell therapy in relapsed/refractory B-cell lymphoma. Blood 138, 823 (2021).

    Article  Google Scholar 

  166. Cichocki, F., van der Stegen, S. J. C. & Miller, J. S. Engineered and banked iPSCs for advanced NK- and T-cell immunotherapies. Blood 141, 846–855 (2023).

    Article  Google Scholar 

  167. Iriguchi, S. et al. A clinically applicable and scalable method to regenerate T-cells from iPSCs for off-the-shelf T-cell immunotherapy. Nat. Commun. 12, 430 (2021).

    Article  Google Scholar 

  168. Dai, X. et al. Massively parallel knock-in engineering of human T cells. Nat. Biotechnol. 41, 1239–1255 (2023).

    Article  Google Scholar 

  169. Shy, B. R. et al. High-yield genome engineering in primary cells using a hybrid ssDNA repair template and small-molecule cocktails. Nat. Biotechnol. 41, 521–531 (2023).

    Article  Google Scholar 

  170. Zhang, X. et al. Harnessing eukaryotic retroelement proteins for transgene insertion into human safe-harbor loci. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02137-y (2024).

    Article  Google Scholar 

  171. Mahata, B. et al. Compact engineered human mechanosensitive transactivation modules enable potent and versatile synthetic transcriptional control. Nat. Methods 20, 1716–1728 (2023).

    Article  Google Scholar 

  172. Agarwal, S. et al. In vivo generation of CAR T cells selectively in human CD4+ lymphocytes. Mol. Ther. 28, 1783–1794 (2020).

    Article  Google Scholar 

  173. Hamilton, J. R. et al. In vivo human T cell engineering with enveloped delivery vehicles. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02085-z (2024).

    Article  Google Scholar 

  174. Greco, F. V., Pandi, A., Erb, T. J., Grierson, C. S. & Gorochowski, T. E. Harnessing the central dogma for stringent multi-level control of gene expression. Nat. Commun. 12, 1738 (2021).

    Article  Google Scholar 

  175. Zhang, C. et al. Synthetic gene circuit-based assay with multilevel switch enables background-free and absolute quantification of circulating tumor DNA. Research 6, 0217 (2023).

    Article  Google Scholar 

  176. Macarthur, B. D., Ma’ayan, A. & Lemischka, I. R. Systems biology of stem cell fate and cellular reprogramming. Nat. Rev. Mol. Cell Biol. 10, 672–681 (2009).

    Article  Google Scholar 

  177. O’Shaughnessy, E. C., Palani, S., Collins, J. J. & Sarkar, C. A. Tunable signal processing in synthetic MAP kinase cascades. Cell 144, 119–131 (2011).

    Article  Google Scholar 

  178. Bashor, C. J. et al. Complex signal processing in synthetic gene circuits using cooperative regulatory assemblies. Science 364, 593–597 (2019).

    Article  Google Scholar 

  179. Pedone, E. et al. A tunable dual-input system for on-demand dynamic gene expression regulation. Nat. Commun. 10, 4481 (2019).

    Article  Google Scholar 

  180. Qian, Y., Huang, H. H., Jimenez, J. I. & Del Vecchio, D. Resource competition shapes the response of genetic circuits. ACS Synth. Biol. 6, 1263–1272 (2017).

    Article  Google Scholar 

  181. Tycko, J. et al. Development of compact transcriptional effectors using high-throughput measurements in diverse contexts. Preprint at bioRxiv https://doi.org/10.1101/2023.05.12.540558 (2023).

  182. Wang, H., Ye, H., Xie, M., Daoud El-Baba, M. & Fussenegger, M. Cosmetics-triggered percutaneous remote control of transgene expression in mice. Nucleic Acids Res. 43, e91 (2015).

    Article  Google Scholar 

  183. Emami, K. H. & Carey, M. A synergistic increase in potency of a multimerized VP16 transcriptional activation domain. EMBO J. 11, 5005–5012 (1992).

    Article  Google Scholar 

  184. Christie, M. et al. Structural biology and regulation of protein import into the nucleus. J. Mol. Biol. 428, 2060–2090 (2016).

    Article  Google Scholar 

  185. Cautain, B., Hill, R., de Pedro, N. & Link, W. Components and regulation of nuclear transport processes. FEBS J. 282, 445–462 (2015).

    Article  Google Scholar 

  186. Piraner, D. I., Abedi, M. H., Moser, B. A., Lee-Gosselin, A. & Shapiro, M. G. Tunable thermal bioswitches for in vivo control of microbial therapeutics. Nat. Chem. Biol. 13, 75–80 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The authors disclose support for this work from the European Research Council (grant number 785800) and from the Swiss National Science Foundation (NCCR Molecular Systems Engineering).

Author information

Authors and Affiliations

Authors

Contributions

A.P.T. and M.F. wrote the manuscript.

Corresponding author

Correspondence to Martin Fussenegger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Hirohide Saito; Nisheth Reddy, who co-reviewed with Wendell Lim; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira, A.P., Fussenegger, M. Synthetic macromolecular switches for precision control of therapeutic cell functions. Nat Rev Bioeng 2, 1005–1022 (2024). https://doi.org/10.1038/s44222-024-00235-9

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44222-024-00235-9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research