Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Engineering circular RNA medicines

Abstract

Circular RNAs (circRNAs) are a group of RNA molecules prevalent across various organisms and tissues and characterized by a covalent loop structure. Their unique structure, lacking 5′ and 3′ ends, confers resistance to exonucleases, thereby enhancing their stability compared to linear RNAs. Since the early 2010s, the versatility of circRNAs have been highlighted in applications such as RNA aptamers, guide RNAs and, more recently, SARS-CoV-2 vaccines. Recent advances in rational design, as well as in vitro and in vivo synthesis techniques, underscore the potential for large-scale engineering and production of circRNAs, positioning them as promising candidates for stable and efficient RNA-based therapeutics with minimal immunogenicity. This Review summarizes the guiding principles behind circRNA engineering and development, with a focus on key design elements. We also provide an overview of circRNA advances in disease prevention and treatment. By emphasizing existing limitations and outlining future milestones, this Review offers a translational outlook on circRNAs as an emerging field in biomedicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Key components of engineered circRNAs for various purposes.
Fig. 2: In vitro generation of engineered circRNAs using ligation and the PIE system.
Fig. 3: In vivo generation of engineered circRNAs.

Similar content being viewed by others

References

  1. Crooke, S. T., Baker, B. F., Crooke, R. M. & Liang, X. H. Antisense technology: an overview and prospectus. Nat. Rev. Drug Discov. 20, 427–453 (2021).

    Article  MATH  Google Scholar 

  2. Xiong, Q. & Zhang, Y. Small RNA modifications: regulatory molecules and potential applications. J. Hematol. Oncol. 16, 64 (2023).

    Article  MATH  Google Scholar 

  3. Damase, T. R. et al. The limitless future of RNA therapeutics. Front. Bioeng. Biotech. 9, 628137 (2021).

    Article  MATH  Google Scholar 

  4. Zhou, J. & Rossi, J. Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug Discov. 16, 181–202 (2017).

    Article  MATH  Google Scholar 

  5. Zhou, J. & Rossi, J. J. Cell-type-specific, aptamer-functionalized agents for targeted disease therapy. Mol. Ther. Nucleic Acids 3, e169 (2014).

    Article  Google Scholar 

  6. Walsh, E. E. et al. Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates. N. Engl. J. Med. 383, 2439–2450 (2020).

    Article  MATH  Google Scholar 

  7. Zhu, Y., Zhu, L., Wang, X. & Jin, H. RNA-based therapeutics: an overview and prospectus. Cell Death Dis. 13, 644 (2022).

    Article  MATH  Google Scholar 

  8. Ji, P. et al. Expanded expression landscape and prioritization of circular RNAs in mammals. Cell Rep. 26, 3444–3460.e5 (2019).

    Article  MATH  Google Scholar 

  9. Wu, W., Zhao, F. & Zhang, J. circAtlas 3.0: a gateway to 3 million curated vertebrate circular RNAs based on a standardized nomenclature scheme. Nucleic Acids Res. 52, D52–D60 (2024).

    Article  Google Scholar 

  10. Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013).

    Article  Google Scholar 

  11. Hansen, T. B. et al. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388 (2013).

    Article  MATH  Google Scholar 

  12. Ashwal-Fluss, R. et al. circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell 56, 55–66 (2014).

    Article  Google Scholar 

  13. Li, Z. et al. Exon–intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 22, 256–264 (2015).

    Article  MATH  Google Scholar 

  14. Song, R. et al. A novel polypeptide encoded by the circular RNA ZKSCAN1 suppresses HCC via degradation of mTOR. Mol. Cancer 22, 16 (2023).

    Article  Google Scholar 

  15. Fan, H. N. et al. METTL14-mediated m(6)A modification of circORC5 suppresses gastric cancer progression by regulating miR-30c-2-3p/AKT1S1 axis. Mol. Cancer 21, 51 (2022).

    Article  Google Scholar 

  16. Du, J. et al. CircNFIB inhibits tumor growth and metastasis through suppressing MEK1/ERK signaling in intrahepatic cholangiocarcinoma. Mol. Cancer 21, 18 (2022).

    Article  Google Scholar 

  17. Zhao, Q. et al. Targeting mitochondria-located circRNA SCAR alleviates NASH via reducing mROS output. Cell 183, 76–93.e22 (2020).

    Article  Google Scholar 

  18. Huang, D. et al. Tumour circular RNAs elicit anti-tumour immunity by encoding cryptic peptides. Nature 625, 593–602 (2024).

    Article  MATH  Google Scholar 

  19. Wang, C. & Liu, H. Factors influencing degradation kinetics of mRNAs and half-lives of microRNAs, circRNAs, lncRNAs in blood in vitro using quantitative PCR. Sci. Rep 12, 7259 (2022).

    Article  MATH  Google Scholar 

  20. Nakamoto, K. et al. Chemically synthesized circular RNAs with phosphoramidate linkages enable rolling circle translation. Chem. Commun. 56, 6217–6220 (2020).

    Article  MATH  Google Scholar 

  21. Chen, C. Y. & Sarnow, P. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 268, 415–417 (1995).

    Article  Google Scholar 

  22. Beaudry, D. & Perreault, J. P. An efficient strategy for the synthesis of circular RNA molecules. Nucleic Acids Res. 23, 3064–3066 (1995).

    Article  MATH  Google Scholar 

  23. Wesselhoeft, R. A., Kowalski, P. S. & Anderson, D. G. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat. Commun. 9, 2629 (2018).

    Article  MATH  Google Scholar 

  24. Lee, K. H. et al. Efficient circular RNA engineering by end-to-end self-targeting and splicing reaction using Tetrahymena group I intron ribozyme. Mol. Ther. Nucleic Acids 33, 587–598 (2023).

    Article  MATH  Google Scholar 

  25. Chen, C. et al. A flexible, efficient, and scalable platform to produce circular RNAs as new therapeutics. Preprint at bioRxiv https://doi.org/10.1101/2022.05.31.494115 (2022).

  26. Unti, M. J. & Jaffrey, S. R. Highly efficient cellular expression of circular mRNA enables prolonged protein expression. Cell Chem. Biol. 31, 163–176.e5 (2024).

    Article  Google Scholar 

  27. Qu, S. et al. Circular RNA: a new star of noncoding RNAs. Cancer Lett. 365, 141–148 (2015).

    Article  MATH  Google Scholar 

  28. Jeck, W. R. & Sharpless, N. E. Detecting and characterizing circular RNAs. Nat. Biotechnol. 32, 453–461 (2014).

    Article  Google Scholar 

  29. Wang, X., Jian, W., Luo, Q. & Fang, L. CircSEMA4B inhibits the progression of breast cancer by encoding a novel protein SEMA4B-211aa and regulating AKT phosphorylation. Cell Death Dis. 13, 794 (2022).

    Article  Google Scholar 

  30. Zhang, J. et al. CircRAPGEF5 interacts with RBFOX2 to confer ferroptosis resistance by modulating alternative splicing of TFRC in endometrial cancer. Redox Biol. 57, 102493 (2022).

    Article  MATH  Google Scholar 

  31. Jackson, R. J., Hellen, C. U. & Pestova, T. V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 11, 113–127 (2010).

    Article  MATH  Google Scholar 

  32. Zhao, J. et al. IRESbase: a comprehensive database of experimentally validated internal ribosome entry sites. Genom. Proteom. Bioinf. 18, 129–139 (2020).

    Article  MATH  Google Scholar 

  33. Dresios, J., Chappell, S. A., Zhou, W. & Mauro, V. P. An mRNA–rRNA base-pairing mechanism for translation initiation in eukaryotes. Nat. Struct. Mol. Biol. 13, 30–34 (2006).

    Article  Google Scholar 

  34. Chen, C. K. et al. Structured elements drive extensive circular RNA translation. Mol. Cell 81, 4300–4318.e13 (2021).

    Article  MATH  Google Scholar 

  35. Lacerda, R., Menezes, J. & Romao, L. More than just scanning: the importance of cap-independent mRNA translation initiation for cellular stress response and cancer. Cell Mol. Life Sci. 74, 1659–1680 (2017).

    Article  Google Scholar 

  36. Godet, A. C. et al. IRES trans-acting factors, key actors of the stress response. Int. J. Mol. Sci. 20, 924 (2019).

    Article  MATH  Google Scholar 

  37. Chen, R. et al. Engineering circular RNA for enhanced protein production. Nat. Biotechnol. 41, 262–272 (2023).

    Article  MATH  Google Scholar 

  38. Kameda, S., Ohno, H. & Saito, H. Synthetic circular RNA switches and circuits that control protein expression in mammalian cells. Nucleic Acids Res. 51, e24 (2023).

    Article  MATH  Google Scholar 

  39. Ning, H. et al. Rational design of microRNA-responsive switch for programmable translational control in mammalian cells. Nat. Commun. 14, 7193 (2023).

    Article  MATH  Google Scholar 

  40. Yang, Y. et al. Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 27, 626–641 (2017).

    Article  MATH  Google Scholar 

  41. Csepany, T., Lin, A., Baldick, C. J. Jr. & Beemon, K. Sequence specificity of mRNA N6-adenosine methyltransferase. J. Biol. Chem. 265, 20117–20122 (1990).

    Article  Google Scholar 

  42. Harper, J. E., Miceli, S. M., Roberts, R. J. & Manley, J. L. Sequence specificity of the human mRNA N6-adenosine methylase in vitro. Nucleic Acids Res. 18, 5735–5741 (1990).

    Article  Google Scholar 

  43. Zhou, C. et al. Genome-wide maps of m6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs. Cell Rep. 20, 2262–2276 (2017).

    Article  MATH  Google Scholar 

  44. Zhao, J. et al. Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus. Nat. Commun. 10, 2300 (2019).

    Article  MATH  Google Scholar 

  45. Chen, Y. G. et al. N6-methyladenosine modification controls circular RNA immunity. Mol. Cell 76, 96–109.e9 (2019).

    Article  MATH  Google Scholar 

  46. Chen, J. et al. Pervasive functional translation of noncanonical human open reading frames. Science 367, 1140–1146 (2020).

    Article  MATH  Google Scholar 

  47. Ho-Xuan, H. et al. Comprehensive analysis of translation from overexpressed circular RNAs reveals pervasive translation from linear transcripts. Nucleic Acids Res. 48, 10368–10382 (2020).

    Article  MATH  Google Scholar 

  48. Jiang, Y., Chen, X. & Zhang, W. Overexpression-based detection of translatable circular RNAs is vulnerable to coexistent linear RNA byproducts. Biochem. Biophys. Res. Commun. 558, 189–195 (2021).

    Article  MATH  Google Scholar 

  49. Abe, N. et al. Rolling circle translation of circular RNA in living human cells. Sci. Rep. 5, 16435 (2015).

    Article  MATH  Google Scholar 

  50. Wen, S. Y., Qadir, J. & Yang, B. B. Circular RNA translation: novel protein isoforms and clinical significance. Trends Mol. Med. 28, 405–420 (2022).

    Article  MATH  Google Scholar 

  51. Dudekula, D. B. et al. CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol. 13, 34–42 (2016).

    Article  Google Scholar 

  52. AbouHaidar, M. G., Venkataraman, S., Golshani, A., Liu, B. & Ahmad, T. Novel coding, translation, and gene expression of a replicating covalently closed circular RNA of 220 nt. Proc. Natl Acad. Sci. USA 111, 14542–14547 (2014).

    Article  Google Scholar 

  53. Fan, X., Yang, Y., Chen, C. & Wang, Z. Pervasive translation of circular RNAs driven by short IRES-like elements. Nat. Commun. 13, 3751 (2022).

    Article  MATH  Google Scholar 

  54. Liu, L. et al. Engineering circularized mRNAs for the production of spider silk proteins. Appl. Env. Microb. 88, e0002822 (2022).

    Article  Google Scholar 

  55. Barbosa, C., Peixeiro, I. & Romao, L. Gene expression regulation by upstream open reading frames and human disease. PLoS Genet. 9, e1003529 (2013).

    Article  Google Scholar 

  56. Ryczek, N., Lys, A. & Makalowska, I. The functional meaning of 5′UTR in protein-coding genes. Int. J. Mol. Sci. 24, e24032976 (2023).

    Article  Google Scholar 

  57. Mayr, C. What are 3′ UTRs doing? Cold Spring Harb. Perspect. Biol. 11, a034728 (2019).

    Article  MATH  Google Scholar 

  58. Mitschka, S. & Mayr, C. Context-specific regulation and function of mRNA alternative polyadenylation. Nat. Rev. Mol. Cell Biol. 23, 779–796 (2022).

    Article  MATH  Google Scholar 

  59. Leppek, K., Das, R. & Barna, M. Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat. Rev. Mol. Cell Biol. 19, 158–174 (2018).

    Article  MATH  Google Scholar 

  60. Kozak, M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44, 283–292 (1986).

    Article  MATH  Google Scholar 

  61. Qu, L. et al. Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell 185, 1728–1744.e16 (2022).

    Article  MATH  Google Scholar 

  62. Holcik, M. & Liebhaber, S. A. Four highly stable eukaryotic mRNAs assemble 3′ untranslated region RNA–protein complexes sharing cis and trans components. Proc. Natl Acad. Sci. USA 94, 2410–2414 (1997).

    Article  Google Scholar 

  63. Carrieri, C. et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491, 454–457 (2012).

    Article  Google Scholar 

  64. Morales-Martinez, M. & Vega, M. I. Role of microRNA-7 (miR-7) in cancer physiopathology. Int. J. Mol. Sci. 23, e23169091 (2022).

    Article  Google Scholar 

  65. Abere, B. et al. Kaposi’s sarcoma-associated herpesvirus-encoded circrnas are expressed in infected tumor tissues and are incorporated into virions. mBio 11, e03027-19 (2020).

    Article  Google Scholar 

  66. Zhang, Y. et al. CircDYM ameliorates depressive-like behavior by targeting miR-9 to regulate microglial activation via HSP90 ubiquitination. Mol. Psychiatry 25, 1175–1190 (2020).

    Article  MATH  Google Scholar 

  67. Han, D. et al. Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology 66, 1151–1164 (2017).

    Article  MATH  Google Scholar 

  68. Wang, L. et al. Circular RNA hsa_circ_0008305 (circPTK2) inhibits TGF-β-induced epithelial-mesenchymal transition and metastasis by controlling TIF1γ in non-small cell lung cancer. Mol. Cancer 17, 140 (2018).

    Article  Google Scholar 

  69. Ye, F. et al. circFBXW7 inhibits malignant progression by sponging miR-197-3p and encoding a 185-aa protein in triple-negative breast cancer. Mol. Ther. Nucleic Acids 18, 88–98 (2019).

    Article  Google Scholar 

  70. Rossbach, O. Artificial circular RNA sponges targeting micrornas as a novel tool in molecular biology. Mol. Ther. Nucleic Acids 17, 452–454 (2019).

    Article  MATH  Google Scholar 

  71. Liu, X. et al. Synthetic circular RNA functions as a miR-21 sponge to suppress gastric carcinoma cell proliferation. Mol. Ther. Nucleic Acids 13, 312–321 (2018).

    Article  MATH  Google Scholar 

  72. Jost, I. et al. Functional sequestration of microRNA-122 from hepatitis C virus by circular RNA sponges. RNA Biol. 15, 1032–1039 (2018).

    MATH  Google Scholar 

  73. Muller, S. et al. Synthetic circular miR-21 RNA decoys enhance tumor suppressor expression and impair tumor growth in mice. NAR Cancer 2, zcaa014 (2020).

    Article  Google Scholar 

  74. Lavenniah, A. et al. Engineered circular RNA sponges act as miRNA inhibitors to attenuate pressure overload-induced cardiac hypertrophy. Mol. Ther. 28, 1506–1517 (2020).

    Article  Google Scholar 

  75. Jarlstad Olesen, M. T. & S Kristensen, L. Circular RNAs as microRNA sponges: evidence and controversies. Essays Biochem. 65, 685–696 (2021).

    Article  MATH  Google Scholar 

  76. Du, W. W. et al. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 44, 2846–2858 (2016).

    Article  MATH  Google Scholar 

  77. Liu, C. X. & Chen, L. L. Circular RNAs: characterization, cellular roles, and applications. Cell 185, 2016–2034 (2022).

    Article  MATH  Google Scholar 

  78. Chen, S. et al. circVAMP3 drives CAPRIN1 phase separation and inhibits hepatocellular carcinoma by suppressing c-Myc translation. Adv. Sci. 9, e2103817 (2022).

    Article  Google Scholar 

  79. Schreiner, S., Didio, A., Hung, L. H. & Bindereif, A. Design and application of circular RNAs with protein-sponge function. Nucleic Acids Res. 48, 12326–12335 (2020).

    Article  MATH  Google Scholar 

  80. Abdelmohsen, K. et al. Circular RNAs in monkey muscle: age-dependent changes. Aging 7, 903–910 (2015).

    Article  MATH  Google Scholar 

  81. Xu, X. et al. CircRNA inhibits DNA damage repair by interacting with host gene. Mol. Cancer 19, 128 (2020).

    Article  MATH  Google Scholar 

  82. Zhao, C. et al. CircFOXO3 protects against osteoarthritis by targeting its parental gene FOXO3 and activating PI3K/AKT-mediated autophagy. Cell Death Dis. 13, 932 (2022).

    Article  MATH  Google Scholar 

  83. Pfafenrot, C. et al. Inhibition of SARS-CoV-2 coronavirus proliferation by designer antisense-circRNAs. Nucleic Acids Res. 49, 12502–12516 (2021).

    Article  Google Scholar 

  84. Ren, S. et al. Efficient modulation of exon skipping via antisense circular RNAs. Res. China 6, 0045 (2023).

    Google Scholar 

  85. Wu, N. et al. Silencing mouse circular RNA circSlc8a1 by circular antisense cA-circSlc8a1 induces cardiac hepatopathy. Mol. Ther. 31, 1688–1704 (2023).

    Article  Google Scholar 

  86. Katrekar, D. et al. Efficient in vitro and in vivo RNA editing via recruitment of endogenous ADARs using circular guide RNAs. Nat. Biotechnol. 40, 938–945 (2022).

    Article  MATH  Google Scholar 

  87. Yi, Z. et al. Engineered circular ADAR-recruiting RNAs increase the efficiency and fidelity of RNA editing in vitro and in vivo. Nat. Biotechnol. 40, 946–955 (2022).

    Article  MATH  Google Scholar 

  88. Liang, R. et al. Prime editing using CRISPR–Cas12a and circular RNAs in human cells. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02095-x (2024).

    Article  Google Scholar 

  89. Obi, P. & Chen, Y. G. The design and synthesis of circular RNAs. Methods 196, 85–103 (2021).

    Article  MATH  Google Scholar 

  90. Beckert, B. & Masquida, B. Synthesis of RNA by in vitro transcription. Meth. Mol. Biol. 703, 29–41 (2011).

    Article  MATH  Google Scholar 

  91. Muller, S. & Appel, B. In vitro circularization of RNA. RNA Biol. 14, 1018–1027 (2017).

    Article  MATH  Google Scholar 

  92. Deana, A., Celesnik, H. & Belasco, J. G. The bacterial enzyme RppH triggers messenger RNA degradation by 5′ pyrophosphate removal. Nature 451, 355–358 (2008).

    Article  Google Scholar 

  93. Petkovic, S. & Muller, S. Synthesis and engineering of circular RNAs. Meth. Mol. Biol. 1724, 167–180 (2018).

    Article  MATH  Google Scholar 

  94. Dolinnaya, N. G., Sokolova, N. I., Ashirbekova, D. T. & Shabarova, Z. A. The use of BrCN for assembling modified DNA duplexes and DNA-RNA hybrids; comparison with water-soluble carbodiimide. Nucleic Acids Res. 19, 3067–3072 (1991).

    Article  Google Scholar 

  95. Lohman, G. J., Tabor, S. & Nichols, N. M. DNA ligases. Curr. Protoc. Mol. Biol. 94, 3.14.1–3.14.7 (2011).

    Article  Google Scholar 

  96. Nilsson, M., Antson, D. O., Barbany, G. & Landegren, U. RNA-templated DNA ligation for transcript analysis. Nucleic Acids Res. 29, 578–581 (2001).

    Article  Google Scholar 

  97. Bullard, D. R. & Bowater, R. P. Direct comparison of nick-joining activity of the nucleic acid ligases from bacteriophage T4. Biochem. J. 398, 135–144 (2006).

    Article  Google Scholar 

  98. Chen, H. et al. Preferential production of RNA rings by T4 RNA ligase 2 without any splint through rational design of precursor strand. Nucleic Acids Res. 48, e54 (2020).

    Article  MATH  Google Scholar 

  99. Zhao, N. N. et al. Construction of genetically encoded light-up RNA aptamers for label-free and ultrasensitive detection of circRNAs in cancer cells and tissues. Anal. Chem. 95, 8728–8734 (2023).

    Article  MATH  Google Scholar 

  100. Puttaraju, M. & Been, M. D. Group I permuted intron–exon (PIE) sequences self-splice to produce circular exons. Nucleic Acids Res. 20, 5357–5364 (1992).

    Article  MATH  Google Scholar 

  101. Umekage, S. & Kikuchi, Y. In vivo circular RNA production using a constitutive promoter for high-level expression. J. Biosci. Bioeng. 108, 354–356 (2009).

    Article  MATH  Google Scholar 

  102. Li, H. et al. Circular RNA cancer vaccines drive immunity in hard-to-treat malignancies. Theranostics 12, 6422–6436 (2022).

    Article  MATH  Google Scholar 

  103. Liu, C. X. et al. RNA circles with minimized immunogenicity as potent PKR inhibitors. Mol. Cell 82, 420–434.e6 (2022).

    Article  MATH  Google Scholar 

  104. Guo, S. K. et al. Therapeutic application of circular RNA aptamers in a mouse model of psoriasis. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02204-4 (2024).

    Article  Google Scholar 

  105. Qiu, Z. et al. Clean-PIE: a novel strategy for efficiently constructing precise circRNA with thoroughly minimized immunogenicity to direct potent and durable protein expression. Preprint at bioRxiv https://doi.org/10.1101/2022.06.20.496777 (2022).

    Article  Google Scholar 

  106. Smathers, C. M. & Robart, A. R. The mechanism of splicing as told by group II introns: ancestors of the spliceosome. Biochim. Biophys. Acta Gene Regul. Mech. 1862, 194390 (2019).

    Article  MATH  Google Scholar 

  107. Xu, L., Liu, T., Chung, K. & Pyle, A. M. Structural insights into intron catalysis and dynamics during splicing. Nature 624, 682–688 (2023).

    Article  MATH  Google Scholar 

  108. Rupert, P. B. & Ferre-D’Amare, A. R. Crystal structure of a hairpin ribozyme-inhibitor complex with implications for catalysis. Nature 410, 780–786 (2001).

    Article  Google Scholar 

  109. Chen, X. & Lu, Y. Circular RNA: biosynthesis in vitro. Front. Bioeng. Biotech. 9, 787881 (2021).

    Article  Google Scholar 

  110. Hieronymus, R. & Muller, S. Engineering of hairpin ribozyme variants for RNA recombination and splicing. Ann. NY Acad. Sci. 1447, 135–143 (2019).

    Article  MATH  Google Scholar 

  111. Hansen, C. E., Springstubbe, D., Müller, S. & Petkovic, S. in Circular RNAs Methods in Molecular Biology Vol. 12 (eds Dieterich, C. & Baudet, M.-L.) 209–226 (Springer, 2024).

  112. Fantoni, N. Z., El-Sagheer, A. H. & Brown, T. A hitchhiker’s guide to click-chemistry with nucleic acids. Chem. Rev. 121, 7122–7154 (2021).

    Article  MATH  Google Scholar 

  113. Kim, Y. S. et al. The RNA ligation method using modified splint DNAs significantly improves the efficiency of circular RNA synthesis. Anim. Cell Syst. 27, 208–218 (2023).

    Article  MATH  Google Scholar 

  114. Jaeger, L., Wright, M. C. & Joyce, G. F. A complex ligase ribozyme evolved in vitro from a group I ribozyme domain. Proc. Natl Acad. Sci. USA 96, 14712–14717 (1999).

    Article  MATH  Google Scholar 

  115. Wesselhoeft, R. A. et al. RNA circularization diminishes immunogenicity and can extend translation duration in vivo. Mol. Cell 74, 508–520.e4 (2019).

    Article  Google Scholar 

  116. Suzuki, H. et al. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res. 34, e63 (2006).

    Article  MATH  Google Scholar 

  117. Xiao, M. S. & Wilusz, J. E. An improved method for circular RNA purification using RNase R that efficiently removes linear RNAs containing G-quadruplexes or structured 3′ ends. Nucleic Acids Res. 47, 8755–8769 (2019).

    Article  MATH  Google Scholar 

  118. Abe, B. T., Wesselhoeft, R. A., Chen, R., Anderson, D. G. & Chang, H. Y. Circular RNA migration in agarose gel electrophoresis. Mol. Cell 82, 1768–1777.e3 (2022).

    Article  Google Scholar 

  119. Niu, D., Wu, Y. & Lian, J. Circular RNA vaccine in disease prevention and treatment. Signal Transduct. Target. Ther. 8, 341 (2023).

    Article  MATH  Google Scholar 

  120. Conn, S. J. et al. The RNA binding protein quaking regulates formation of circRNAs. Cell 160, 1125–1134 (2015).

    Article  MATH  Google Scholar 

  121. Li, X. et al. A unified mechanism for intron and exon definition and back-splicing. Nature 573, 375–380 (2019).

    Article  MATH  Google Scholar 

  122. Costello, A., Lao, N. T., Barron, N. & Clynes, M. Continuous translation of circularized mRNA improves recombinant protein titer. Metab. Eng. 52, 284–292 (2019).

    Article  Google Scholar 

  123. Schmidt, C. A., Giusto, J. D., Bao, A., Hopper, A. K. & Matera, A. G. Molecular determinants of metazoan tricRNA biogenesis. Nucleic Acids Res. 47, 6452–6465 (2019).

    Article  Google Scholar 

  124. Litke, J. L. & Jaffrey, S. R. Highly efficient expression of circular RNA aptamers in cells using autocatalytic transcripts. Nat. Biotechnol. 37, 667–675 (2019).

    Article  MATH  Google Scholar 

  125. Nielsen, A. F. et al. Best practice standards for circular RNA research. Nat. Meth. 19, 1208–1220 (2022).

    Article  MATH  Google Scholar 

  126. Daros, J. A. Production of circular recombinant RNA in Escherichia coli using viroid scaffolds. Meth. Mol. Biol. 2323, 99–107 (2021).

    Article  MATH  Google Scholar 

  127. Yuan, Q. et al. CircRNA DICAR as a novel endogenous regulator for diabetic cardiomyopathy and diabetic pyroptosis of cardiomyocytes. Signal Transduct. Target. Ther. 8, 99 (2023).

    Article  Google Scholar 

  128. Zhu, Y. et al. Circ-Ddx60 contributes to the antihypertrophic memory of exercise hypertrophic preconditioning. J. Adv. Res. 46, 113–121 (2023).

    Article  MATH  Google Scholar 

  129. Zhou, Z. et al. CircDYM attenuates microglial apoptosis via CEBPB/ZC3H4 axis in LPS-induced mouse model of depression. Int. J. Biol. Macromol. 254, 127922 (2024).

    Article  Google Scholar 

  130. Bulcha, J. T., Wang, Y., Ma, H., Tai, P. W. L. & Gao, G. Viral vector platforms within the gene therapy landscape. Signal Transduct. Target. Ther. 6, 53 (2021).

    Article  Google Scholar 

  131. Gao, Y., Wang, J. & Zhao, F. CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol. 16, 4 (2015).

    Article  MATH  Google Scholar 

  132. Gao, Y., Zhang, J. & Zhao, F. Circular RNA identification based on multiple seed matching. Brief. Bioinform. 19, 803–810 (2017).

    Article  MATH  Google Scholar 

  133. Amaya, L. et al. Pathways for macrophage uptake of cell-free circular RNAs. Mol. Cell 84, 2104–2118.e6 (2024).

    Article  MATH  Google Scholar 

  134. Ngo, L. H. et al. Nuclear export of circular RNA. Nature 627, 212–220 (2024).

    Article  MATH  Google Scholar 

  135. Cao, S. M. et al. Altered nucleocytoplasmic export of adenosine-rich circRNAs by PABPC1 contributes to neuronal function. Mol. Cell 84, 2304–2319.e8 (2024).

    Article  MATH  Google Scholar 

  136. Chaudhary, N., Weissman, D. & Whitehead, K. A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat. Rev. Drug Discov. 20, 817–838 (2021).

    Article  MATH  Google Scholar 

  137. Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines — a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261–279 (2018).

    Article  Google Scholar 

  138. Rosa, S. S., Prazeres, D. M. F., Azevedo, A. M. & Marques, M. P. C. mRNA vaccines manufacturing: challenges and bottlenecks. Vaccine 39, 2190–2200 (2021).

    Article  Google Scholar 

  139. Enuka, Y. et al. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 44, 1370–1383 (2016).

    Article  MATH  Google Scholar 

  140. Chen, Y. G. et al. Sensing self and foreign circular RNAs by intron identity. Mol. Cell 67, 228–238.e5 (2017).

    Article  MATH  Google Scholar 

  141. Seephetdee, C. et al. A circular mRNA vaccine prototype producing VFLIP-X spike confers a broad neutralization of SARS-CoV-2 variants by mouse sera. Antivir. Res. 204, 105370 (2022).

    Article  MATH  Google Scholar 

  142. Wan, J. et al. Circular RNA vaccines with long-term lymph node-targeting delivery stability after lyophilization induce potent and persistent immune responses. mBio 15, e0177523 (2024).

    Article  Google Scholar 

  143. Zhu, F. et al. Development of a novel circular mRNA vaccine of six protein combinations against Staphylococcus aureus. J. Biomol. Struct. Dyn. 41, 10525–10545 (2023).

    Article  MATH  Google Scholar 

  144. Amaya, L. et al. Circular RNA vaccine induces potent T cell responses. Proc. Natl Acad. Sci. USA 120, e2302191120 (2023).

    Article  Google Scholar 

  145. Vavilis, T. et al. mRNA in the context of protein replacement therapy. Pharmaceutics 15, 166 (2023).

    Article  MATH  Google Scholar 

  146. Perez-Garcia, C. G. et al. Development of an mRNA replacement therapy for phenylketonuria. Mol. Ther. Nucleic Acids 28, 87–98 (2022).

    Article  MATH  Google Scholar 

  147. Anttila, V. et al. Direct intramyocardial injection of VEGF mRNA in patients undergoing coronary artery bypass grafting. Mol. Ther. 31, 866–874 (2023).

    Article  MATH  Google Scholar 

  148. Zhang, M. et al. A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat. Commun. 9, 4475 (2018).

    Article  MATH  Google Scholar 

  149. Song, J. et al. A novel protein encoded by ZCRB1-induced circHEATR5B suppresses aerobic glycolysis of GBM through phosphorylation of JMJD5. J. Exp. Clin. Cancer Res. 41, 171 (2022).

    Article  Google Scholar 

  150. Schaff, L. R. & Mellinghoff, I. K. Glioblastoma and other primary brain malignancies in adults: a review. JAMA 329, 574–587, (2023).

    Article  MATH  Google Scholar 

  151. Liu, B. et al. Cytoskeleton remodeling mediated by circRNA-YBX1 phase separation suppresses the metastasis of liver cancer. Proc. Natl Acad. Sci. USA 120, e2220296120 (2023).

    Article  Google Scholar 

  152. Jiang, T. et al. A novel protein encoded by circMAPK1 inhibits progression of gastric cancer by suppressing activation of MAPK signaling. Mol. Cancer 20, 66 (2021).

    Article  MATH  Google Scholar 

  153. Wang, X. et al. CircURI1 interacts with hnRNPM to inhibit metastasis by modulating alternative splicing in gastric cancer. Proc. Natl Acad Sci USA 118, e2012881118 (2021).

    Article  Google Scholar 

  154. Zhang, Y. et al. CircDIDO1 inhibits gastric cancer progression by encoding a novel DIDO1-529aa protein and regulating PRDX2 protein stability. Mol. Cancer 20, 101 (2021).

    Article  MathSciNet  Google Scholar 

  155. Guo, Z., Zhang, Y., Xu, W., Zhang, X. & Jiang, J. Engineered exosome-mediated delivery of circDIDO1 inhibits gastric cancer progression via regulation of MiR-1307-3p/SOCS2 axis. J. Transl. Med. 20, 326 (2022).

    Article  Google Scholar 

  156. Hu, F. et al. Vimentin binds to a novel tumor suppressor protein, GSPT1-238aa, encoded by circGSPT1 with a selective encoding priority to halt autophagy in gastric carcinoma. Cancer Lett. 545, 215826 (2022).

    Article  Google Scholar 

  157. Wei, S. et al. The circRNA circPTPRA suppresses epithelial-mesenchymal transitioning and metastasis of NSCLC cells by sponging miR-96-5p. eBiomedicine 44, 182–193 (2019).

    Article  Google Scholar 

  158. Wang, T. et al. A novel protein encoded by circASK1 ameliorates gefitinib resistance in lung adenocarcinoma by competitively activating ASK1-dependent apoptosis. Cancer Lett. 520, 321–331 (2021).

    Article  Google Scholar 

  159. Feng, Z. et al. An in vitro-transcribed circular RNA targets the mitochondrial inner membrane cardiolipin to ablate EIF4G2+/PTBP1+ pan-adenocarcinoma. Nat. Cancer 5, 30–46 (2024).

    Article  Google Scholar 

  160. Chen, Q. et al. CircRNA cRAPGEF5 inhibits the growth and metastasis of renal cell carcinoma via the miR-27a-3p/TXNIP pathway. Cancer Lett. 469, 68–77 (2020).

    Article  Google Scholar 

  161. Li, F. et al. A peptide CORO1C-47aa encoded by the circular noncoding RNA circ-0000437 functions as a negative regulator in endometrium tumor angiogenesis. J. Biol. Chem. 297, 101182 (2021).

    Article  Google Scholar 

  162. Shen, X. et al. Hsa_circ_0000437 promotes pathogenesis of gastric cancer and lymph node metastasis. Oncogene 41, 4724–4735 (2022).

    Article  MATH  Google Scholar 

  163. Wang, C. et al. Characterization of distinct circular RNA signatures in solid tumors. Mol. Cancer 21, 63 (2022).

    Article  MATH  Google Scholar 

  164. Yan, L., Zheng, M. & Wang, H. CircularR. N. A. hsa_circ_0072309 inhibits proliferation and invasion of breast cancer cells via targeting miR-492. Cancer Manag. Res. 11, 1033–1041 (2019).

    Article  MATH  Google Scholar 

  165. Guo, X. et al. Circular RNA hsa_circ_0072309 inhibits the proliferation, invasion and migration of gastric cancer cells via inhibition of PI3K/AKT signaling by activating PPARγ/PTEN signaling. Mol. Med. Rep. 23, 349 (2021).

    Article  Google Scholar 

  166. Ji, J. et al. Downregulation of circLIFR exerts cancer-promoting effects on hepatocellular carcinoma in vitro. Front. Genet. 13, 986322 (2022).

    Article  Google Scholar 

  167. Zhang, H. et al. CircLIFR synergizes with MSH2 to attenuate chemoresistance via MutSalpha/ATM-p73 axis in bladder cancer. Mol. Cancer 20, 70 (2021).

    Article  Google Scholar 

  168. Zhang, X. Q., Song, Q. & Zeng, L. X. Circulating hsa_circ_0072309, acting via the miR-100/ACKR3 pathway, maybe a potential biomarker for the diagnosis, prognosis, and treatment of brain metastasis from non-small-cell lung cancer. Cancer Med. 12, 18005–18019 (2023).

    Article  Google Scholar 

  169. Zhang, J. et al. Comprehensive profiling of circular RNAs with nanopore sequencing and CIRI-long. Nat. Biotechnol. 39, 836–845 (2021).

    Article  MATH  Google Scholar 

  170. Xin, R. et al. isoCirc catalogs full-length circular RNA isoforms in human transcriptomes. Nat. Commun. 12, 266 (2021).

    Article  MATH  Google Scholar 

  171. Chu, Y. et al. A 5′ UTR language model for decoding untranslated regions of mRNA and function predictions. Nat. Mach. Intell. 6, 449–460 (2024).

    Article  MATH  Google Scholar 

  172. Sumi, S., Hamada, M. & Saito, H. Deep generative design of RNA family sequences. Nat. Meth. 21, 435–443 (2024).

    Article  MATH  Google Scholar 

  173. Loan Young, T., Chang Wang, K., James Varley, A. & Li, B. Clinical delivery of circular RNA: lessons learned from RNA drug development. Adv. Drug Deliv. Rev. 197, 114826 (2023).

    Article  Google Scholar 

  174. Wu, W., Zhang, J., Cao, X., Cai, Z. & Zhao, F. Exploring the cellular landscape of circular RNAs using full-length single-cell RNA sequencing. Nat. Commun. 13, 3242 (2022).

    Article  MATH  Google Scholar 

  175. Zhou, Z. et al. CIRI-deep enables single-cell and spatial transcriptomic analysis of circular RNAs with deep learning. Adv. Sci. 11, e2308115 (2024).

    Article  Google Scholar 

  176. Liu, C. X. et al. Structure and degradation of circular RNAs regulate PKR activation in innate immunity. Cell 177, 865–880.e21 (2019).

    Article  MATH  Google Scholar 

  177. Ren, L. et al. Mechanisms of circular RNA degradation. Commun. Biol. 5, 1355 (2022).

    Article  MATH  Google Scholar 

  178. Li, J. et al. A nanodrug system overexpressed circRNA_0001805 alleviates nonalcoholic fatty liver disease via miR-106a-5p/miR-320a and ABCA1/CPT1 axis. J. Nanobiotechnol. 19, 363 (2021).

    Article  Google Scholar 

  179. Xu, X. et al. Multifunctional envelope-type siRNA delivery nanoparticle platform for prostate cancer therapy. ACS Nano 11, 2618–2627 (2017).

    Article  MATH  Google Scholar 

  180. Zielonka, J. et al. Mitochondria-targeted triphenylphosphonium-based compounds: syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem. Rev. 117, 10043–10120 (2017).

    Article  MATH  Google Scholar 

  181. Gulati, S. et al. Metal–organic frameworks (MOFs) as effectual diagnostic and therapeutic tools for cancer. J. Mater. Chem. B 11, 6782–6801 (2023).

    Article  MATH  Google Scholar 

  182. Zhang, Y. et al. Exosomal circRNA as a novel potential therapeutic target for multiple myeloma-related peripheral neuropathy. Cell Signal. 78, 109872 (2021).

    Article  Google Scholar 

  183. Mao, G. et al. Exosome-transported circRNA_0001236 enhances chondrogenesis and suppress cartilage degradation via the miR-3677-3p/Sox9 axis. Stem Cell Res. Ther. 12, 389 (2021).

    Article  MATH  Google Scholar 

  184. Han, Y., Liu, Y., Zhang, B. & Yin, G. Exosomal circRNA 0001445 promotes glioma progression through miRNA-127-5p/SNX5 pathway. Aging 13, 13287–13299 (2021).

    Article  Google Scholar 

  185. Fan, L. et al. Exosome-based mitochondrial delivery of circRNA mSCAR alleviates sepsis by orchestrating macrophage activation. Adv. Sci. 10, e2205692 (2023).

    Article  Google Scholar 

  186. Zhang, J. et al. Therapeutic potential of exosomal circRNA derived from synovial mesenchymal cells via targeting circEDIL3/miR-485-3p/PIAS3/STAT3/VEGF functional module in rheumatoid arthritis. Int. J. Nanomed. 16, 7977–7994 (2021).

    Article  MATH  Google Scholar 

  187. Hansen, T. B. et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 30, 4414–4422 (2011).

    Article  MATH  Google Scholar 

  188. Pan, Z. et al. MicroRNA-1224 splicing circularRNA-Filip1l in an Ago2-dependent manner regulates chronic inflammatory pain via targeting Ubr5. J. Neurosci. 39, 2125–2143 (2019).

    Article  MATH  Google Scholar 

  189. Park, O. H. et al. Endoribonucleolytic cleavage of m6A-containing RNAs by RNase P/MRP complex. Mol. Cell 74, 494–507.e8 (2019).

    Article  MATH  Google Scholar 

  190. Zhang, L. et al. The role of N6-methyladenosine (m6A) modification in the regulation of circRNAs. Mol. Cancer 19, 105 (2020).

    Article  MATH  Google Scholar 

  191. Guo, Y. et al. Circ3823 contributes to growth, metastasis and angiogenesis of colorectal cancer: involvement of miR-30c-5p/TCF7 axis. Mol. Cancer 20, 93 (2021).

    Article  Google Scholar 

  192. Fischer, J. W., Busa, V. F., Shao, Y. & Leung, A. K. L. Structure-mediated RNA decay by UPF1 and G3BP1. Mol. Cell 78, 70–84.e6 (2020).

    Article  Google Scholar 

  193. Guo, Y. et al. A diet high in sugar and fat influences neurotransmitter metabolism and then affects brain function by altering the gut microbiota. Transl. Psychiatry 11, 328 (2021).

    Article  MATH  Google Scholar 

  194. Yang, L. et al. Extracellular vesicle-mediated delivery of circular RNA SCMH1 promotes functional recovery in rodent and nonhuman primate ischemic stroke models. Circulation 142, 556–574 (2020).

    Article  MATH  Google Scholar 

  195. Yang, Y. et al. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J. Natl Cancer Inst. 110, 304–315 (2018).

    Article  MATH  Google Scholar 

  196. Zhang, M. et al. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene 37, 1805–1814 (2018).

    Article  MATH  Google Scholar 

  197. Xia, X. et al. A novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent kinase-1. Mol. Cancer 18, 131 (2019).

    Article  Google Scholar 

  198. Liu, Z. et al. CircRNA-5692 inhibits the progression of hepatocellular carcinoma by sponging miR-328-5p to enhance DAB2IP expression. Cell Death Dis. 10, 900 (2019).

    Article  MATH  Google Scholar 

  199. Fang, J. et al. A novel circular RNA, circFAT1(e2), inhibits gastric cancer progression by targeting miR-548g in the cytoplasm and interacting with YBX1 in the nucleus. Cancer Lett. 442, 222–232 (2019).

    Article  Google Scholar 

  200. Zeng, W., Liu, Y., Li, W. T., Li, Y. & Zhu, J. F. CircFNDC3B sequestrates miR-937-5p to derepress TIMP3 and inhibit colorectal cancer progression. Mol. Oncol. 14, 2960–2984 (2020).

    Article  MATH  Google Scholar 

  201. Pan, Z. et al. A novel protein encoded by circFNDC3B inhibits tumor progression and EMT through regulating Snail in colon cancer. Mol. Cancer 19, 71 (2020).

    Article  MATH  Google Scholar 

  202. Liang, Z. X. et al. A novel NF-kappaB regulator encoded by circPLCE1 inhibits colorectal carcinoma progression by promoting RPS3 ubiquitin-dependent degradation. Mol. Cancer 20, 103 (2021).

    Article  Google Scholar 

  203. Wang, L. et al. A novel tumour suppressor protein encoded by circMAPK14 inhibits progression and metastasis of colorectal cancer by competitively binding to MKK6. Clin. Transl. Med. 11, e613 (2021).

    Article  Google Scholar 

  204. Garikipati, V. N. S. et al. Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis. Nat. Commun. 10, 4317 (2019).

    Article  MATH  Google Scholar 

  205. Peng, F. et al. circRNA_010383 acts as a sponge for miR-135a, and its downregulated expression contributes to renal fibrosis in diabetic nephropathy. Diabetes 70, 603–615 (2021).

    Article  MATH  Google Scholar 

  206. Liu, H. et al. Invasion-related circular RNA circFNDC3B inhibits bladder cancer progression through the miR-1178-3p/G3BP2/SRC/FAK axis. Mol. Cancer 17, 161 (2018).

    Article  Google Scholar 

  207. Lu, Q. et al. Circular RNA circSLC8A1 acts as a sponge of miR-130b/miR-494 in suppressing bladder cancer progression via regulating PTEN. Mol. Cancer 18, 111 (2019).

    Article  MATH  Google Scholar 

  208. Merrick, W. C. & Pavitt, G. D. Protein synthesis initiation in eukaryotic cells. Cold Spring Harb. Perspect. Biol. 10, a033092 (2018).

    Article  MATH  Google Scholar 

  209. Rozen, F. et al. Bidirectional RNA helicase activity of eucaryotic translation initiation factors 4A and 4F. Mol. Cell. Biol. 10, 1134–1144 (1990).

    MATH  Google Scholar 

  210. Johannes, G. & Sarnow, P. Cap-independent polysomal association of natural mRNAs encoding c-myc, BiP, and eIF4G conferred by internal ribosome entry sites. RNA 4, 1500–1513 (1998).

    Article  Google Scholar 

  211. Prevot, D., Darlix, J. L. & Ohlmann, T. Conducting the initiation of protein synthesis: the role of eIF4G. Biol. Cell 95, 141–156 (2003).

    Article  MATH  Google Scholar 

  212. Komar, A. A. & Hatzoglou, M. Cellular IRES-mediated translation: the war of ITAFs in pathophysiological states. Cell Cycle 10, 229–240 (2011).

    Article  MATH  Google Scholar 

  213. Lee, K. M., Chen, C. J. & Shih, S. R. Regulation mechanisms of viral IRES-driven translation. Trends Microbiol. 25, 546–561 (2017).

    Article  MATH  Google Scholar 

  214. Abdullah, S. W., Wu, J., Wang, X., Guo, H. & Sun, S. Advances and breakthroughs in IRES-directed translation and replication of picornaviruses. mBio 14, e0035823 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Key R&D Project (2021YFA1300500 and 2021YFA1302000) and the National Natural Science Foundation of China (32025009, 32130020 and 32200530).

Author information

Authors and Affiliations

Authors

Contributions

F.Z. conceived the project. X.C. and Z.C conducted the initial literature search. X.C., J.Z. and F.Z. wrote the manuscript synopsis. All authors contributed to writing and reviewing the manuscript.

Corresponding author

Correspondence to Fangqing Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Samie Jaffrey and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Cai, Z., Zhang, J. et al. Engineering circular RNA medicines. Nat Rev Bioeng 3, 270–287 (2025). https://doi.org/10.1038/s44222-024-00259-1

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44222-024-00259-1

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research