Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Single-molecule protein sequencing with nanopores

Abstract

Protein sequencing and the identification of post-translational modifications are key to understanding cellular signalling pathways and metabolic processes in health and disease. Nanopores, that is, nanometre-sized holes in a membrane, were previously put to use for DNA and RNA sequencing, offering single-molecule sensitivity and long read lengths. This prompted efforts to engineer nanopores for the high-throughput sequencing of peptides and proteins. In this Review, we discuss research towards single-molecule protein sequencing using biological nanopores, investigating how their sensitivity allows the discrimination of all 20 amino acids. We outline how fingerprinting of proteins is facilitated by using motor proteins and electro-osmotic flow to promote the slow translocation of proteins through nanopores. Moreover, we examine applications of nanopores to the identification of post-translational modifications, highlighting the potential of this technology for fundamental and clinical proteomic studies. Finally, we outline the advantages and limitations of nanopore systems for protein sequencing and the challenges that remain to be overcome for realizing de novo nanopore protein sequencing.

Key points

  • Twenty individual amino acids can be distinguished by biological nanopores.

  • Nanopores allow the discrimination of single-amino acid substitutions within proteins.

  • Electro-osmotic flow allows uncharged and heterogeneously charged proteins to translocate through nanopores.

  • Motor proteins reduce protein translocation speed, resulting in high-resolution signals.

  • Various post-translational modifications and their locations can be identified with nanopores.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nanopore-based protein sequencing.
Fig. 2: Single amino acids can be discriminated using nanopores.
Fig. 3: Strategies to introduce electroosmotic flow in nanopores.
Fig. 4: Motor enzymes can control protein translocation speed.
Fig. 5: Detection of post-translational modifications with nanopores.

Similar content being viewed by others

References

  1. Kasianowicz, J. J., Brandin, E., Branton, D. & Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA 93, 13770–13773 (1996).

    Article  Google Scholar 

  2. Akeson, M., Branton, D., Kasianowicz, J. J., Brandin, E. & Deamer, D. W. Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys. J. 77, 3227–3233 (1999).

    Article  Google Scholar 

  3. Meller, A., Nivon, L., Brandin, E., Golovchenko, J. & Branton, D. Rapid nanopore discrimination between single polynucleotide molecules. Proc. Natl Acad. Sci. USA 97, 1079–1084 (2000).

    Article  Google Scholar 

  4. Deamer, D. W. & Branton, D. Characterization of nucleic acids by nanopore analysis. Acc. Chem. Res. 35, 817–825 (2002).

    Article  MATH  Google Scholar 

  5. Deamer, D., Akeson, M. & Branton, D. Three decades of nanopore sequencing. Nat. Biotechnol. 34, 518–524 (2016).

    Article  Google Scholar 

  6. Wang, Y., Zhao, Y., Bollas, A., Wang, Y. & Au, K. F. Nanopore sequencing technology, bioinformatics and applications. Nat. Biotechnol. 39, 1348–1365 (2021).

    Article  MATH  Google Scholar 

  7. Chen, P. et al. Portable nanopore-sequencing technology: trends in development and applications. Front. Microbiol. 14, 1043967 (2023).

    Article  Google Scholar 

  8. Dorey, A. & Howorka, S. Nanopore DNA sequencing technologies and their applications towards single-molecule proteomics. Nat. Chem. 16, 314–334 (2024).

    Article  MATH  Google Scholar 

  9. Clarke, J. et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol. 4, 265–270 (2009).

    Article  MATH  Google Scholar 

  10. Cockroft, S. L., Chu, J., Amorin, M. & Ghadiri, M. R. A single-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution. J. Am. Chem. Soc. 130, 818–820 (2008).

    Article  Google Scholar 

  11. Kumar, S. et al. PEG-labeled nucleotides and nanopore detection for single molecule DNA sequencing by synthesis. Sci. Rep. 2, 684 (2012).

    Article  MATH  Google Scholar 

  12. Manrao, E. A. et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase. Nat. Biotechnol. 30, 349–353 (2012).

    Article  Google Scholar 

  13. Cherf, G. M. et al. Automated forward and reverse ratcheting of DNA in a nanopore at 5-Å precision. Nat. Biotechnol. 30, 344–348 (2012).

    Article  Google Scholar 

  14. Branton, D. et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146–1153 (2008).

    Article  MATH  Google Scholar 

  15. Nivala, J., Marks, D. B. & Akeson, M. Unfoldase-mediated protein translocation through an α-hemolysin nanopore. Nat. Biotechnol. 31, 247–250 (2013).

    Article  Google Scholar 

  16. Nivala, J., Mulroney, L., Li, G., Schreiber, J. & Akeson, M. Discrimination among protein variants using an unfoldase-coupled nanopore. ACS Nano 8, 12365–12375 (2014).

    Article  Google Scholar 

  17. Wei, X. et al. Engineering biological nanopore approaches toward protein sequencing. ACS Nano 17, 16369–16395 (2023).

    Article  Google Scholar 

  18. Pugh, G. C., Burns, J. R. & Howorka, S. Comparing proteins and nucleic acids for next-generation biomolecular engineering. Nat. Rev. Chem. 2, 113–130 (2018).

    Article  MATH  Google Scholar 

  19. Huo, M.-Z., Li, M.-Y., Ying, Y.-L. & Long, Y.-T. Is the volume exclusion model practicable for nanopore protein sequencing? Anal. Chem. 93, 11364–11369 (2021).

    Article  MATH  Google Scholar 

  20. Jayasinghe, L. & Wallace, J. E. Mutant pore. US patent 11186868 B2 (2021).

  21. Aebersold, R. et al. How many human proteoforms are there? Nat. Chem. Biol. 14, 206–214 (2018).

    Article  MATH  Google Scholar 

  22. Mallick, P. & Kuster, B. Proteomics: a pragmatic perspective. Nat. Biotechnol. 28, 695–709 (2010).

    Article  MATH  Google Scholar 

  23. Polasky, D. A., Yu, F., Teo, G. C. & Nesvizhskii, A. I. Fast and comprehensive N- and O-glycoproteomics analysis with MSFragger-Glyco. Nat. Methods 17, 1125–1132 (2020).

    Article  Google Scholar 

  24. Daly, L. A., Clarke, C. J., Po, A., Oswald, S. O. & Eyers, C. E. Considerations for defining +80 Da mass shifts in mass spectrometry-based proteomics: phosphorylation and beyond. Chem. Commun. 59, 11484–11499 (2023).

    Article  Google Scholar 

  25. Xu, T., Wang, Q., Wang, Q. & Sun, L. Mass spectrometry-intensive top-down proteomics: an update on technology advancements and biomedical applications. Anal. Methods 16, 4664–4682 (2024).

    Article  MATH  Google Scholar 

  26. Nicholson, J. A nanopore distance away from next-generation protein sequencing. Chem 8, 17–19 (2022).

    Article  MATH  Google Scholar 

  27. Motone, K. & Nivala, J. Not if but when nanopore protein sequencing meets single-cell proteomics. Nat. Methods 20, 336–338 (2023).

    Article  Google Scholar 

  28. Dekker, C. Solid-state nanopores. Nat. Nanotechnol. 2, 209–215 (2007).

    Article  MATH  Google Scholar 

  29. Mayer, S. F., Cao, C. & Dal Peraro, M. Biological nanopores for single-molecule sensing. iScience 25, 104145 (2022).

    Article  Google Scholar 

  30. Plesa, C. et al. Fast translocation of proteins through solid state nanopores. Nano Lett. 13, 658–663 (2013).

    Article  MATH  Google Scholar 

  31. Restrepo-Pérez, L., Joo, C. & Dekker, C. Paving the way to single-molecule protein sequencing. Nat. Nanotechnol. 13, 786–796 (2018).

    Article  MATH  Google Scholar 

  32. Xue, L. et al. Solid-state nanopore sensors. Nat. Rev. Mater. 5, 931–951 (2020).

    Article  MATH  Google Scholar 

  33. Wang, H., Tang, H., Qiu, X. & Li, Y. Solid-state glass nanopipettes: functionalization and applications. Chem. Eur. J. 30, e202400281 (2024).

    Article  Google Scholar 

  34. Chou, Y.-C., Masih Das, P., Monos, D. S. & Drndić, M. Lifetime and stability of silicon nitride nanopores and nanopore arrays for ionic measurements. ACS Nano 14, 6715–6728 (2020).

    Article  Google Scholar 

  35. Graf, M. et al. Fabrication and practical applications of molybdenum disulfide nanopores. Nat. Protoc. 14, 1130–1168 (2019).

    Article  MATH  Google Scholar 

  36. Wilson, J., Sloman, L., He, Z. & Aksimentiev, A. Graphene nanopores for protein sequencing. Adv. Funct. Mater. 26, 4830–4838 (2016).

    Article  MATH  Google Scholar 

  37. Thomsen, R. P. et al. A large size-selective DNA nanopore with sensing applications. Nat. Commun. 10, 5655 (2019).

    Article  MATH  Google Scholar 

  38. Tripathi, P. et al. Electrical unfolding of cytochrome c during translocation through a nanopore constriction. Proc. Natl Acad. Sci. USA 118, e2016262118 (2021).

    Article  Google Scholar 

  39. Xing, Y., Dorey, A., Jayasinghe, L. & Howorka, S. Highly shape- and size-tunable membrane nanopores made with DNA. Nat. Nanotechnol. 17, 708–713 (2022).

    Article  MATH  Google Scholar 

  40. Bošković, F. & Keyser, U. F. Nanopore microscope identifies RNA isoforms with structural colours. Nat. Chem. 14, 1258–1264 (2022).

    Article  MATH  Google Scholar 

  41. Wang, F. et al. MoS2 nanopore identifies single amino acids with sub-1 Dalton resolution. Nat. Commun. 14, 2895 (2023).

    Article  MATH  Google Scholar 

  42. Shen, Q. et al. Functionalized DNA-origami-protein nanopores generate large transmembrane channels with programmable size-selectivity. J. Am. Chem. Soc. 145, 1292–1300 (2023).

    Article  MATH  Google Scholar 

  43. Fragasso, A., Schmid, S. & Dekker, C. Comparing current noise in biological and solid-state nanopores. ACS Nano 14, 1338–1349 (2020).

    Article  Google Scholar 

  44. Mohammadi, M. M. & Bavi, O. DNA sequencing: an overview of solid-state and biological nanopore-based methods. Biophys. Rev. 14, 99–110 (2021).

    Article  MATH  Google Scholar 

  45. Alfaro, J. A. et al. The emerging landscape of single-molecule protein sequencing technologies. Nat. Methods 18, 604–617 (2021).

    Article  MATH  Google Scholar 

  46. Yu, L. et al. Unidirectional single-file transport of full-length proteins through a nanopore. Nat. Biotechnol. 41, 1130–1139 (2023).

    Article  MATH  Google Scholar 

  47. Martin-Baniandres, P. et al. Enzyme-less nanopore detection of post-translational modifications within long polypeptides. Nat. Nanotechnol. 18, 1335–1340 (2023).

    Article  MATH  Google Scholar 

  48. Sauciuc, A., Morozzo della Rocca, B., Tadema, M. J., Chinappi, M. & Maglia, G. Translocation of linearized full-length proteins through an engineered nanopore under opposing electrophoretic force. Nat. Biotechnol. 42, 1275–1281 (2024).

    Article  Google Scholar 

  49. Brinkerhoff, H., Kang, A. S. W., Liu, J., Aksimentiev, A. & Dekker, C. Multiple rereads of single proteins at single-amino acid resolution using nanopores. Science 374, 1509–1513 (2021).

    Article  Google Scholar 

  50. Chen, Z. et al. Controlled movement of ssDNA conjugated peptide through Mycobacterium smegmatis porin A (MspA) nanopore by a helicase motor for peptide sequencing application. Chem. Sci. 12, 15750–15756 (2021).

    Article  Google Scholar 

  51. Yan, S. et al. Single molecule ratcheting motion of peptides in a Mycobacterium smegmatis porin A (MspA) nanopore. Nano Lett. 21, 6703–6710 (2021).

    Article  MATH  Google Scholar 

  52. Motone, K. et al. Multi-pass, single-molecule nanopore reading of long protein strands. Nature 633, 662–669 (2024).

    Article  MATH  Google Scholar 

  53. Meller, A., Nivon, L. & Branton, D. Voltage-driven DNA translocations through a nanopore. Phys. Rev. Lett. 86, 3435–3438 (2001).

    Article  Google Scholar 

  54. Butler, T. Z., Pavlenok, M., Derrington, I. M., Niederweis, M. & Gundlach, J. H. Single-molecule DNA detection with an engineered MspA protein nanopore. Proc. Natl Acad. Sci. USA 105, 20647–20652 (2008).

    Article  Google Scholar 

  55. Derrington, I. M. et al. Subangstrom single-molecule measurements of motor proteins using a nanopore. Nat. Biotechnol. 33, 1073–1075 (2015).

    Article  MATH  Google Scholar 

  56. Ensslen, T., Sarthak, K., Aksimentiev, A. & Behrends, J. C. Resolving isomeric posttranslational modifications using a biological nanopore as a sensor of molecular shape. J. Am. Chem. Soc. 144, 16060–16068 (2022).

    Article  Google Scholar 

  57. Song, L. et al. Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science 274, 1859–1865 (1996).

    Article  MATH  Google Scholar 

  58. Iacovache, I. et al. Cryo-EM structure of aerolysin variants reveals a novel protein fold and the pore-formation process. Nat. Commun. 7, 12062 (2016).

    Article  MATH  Google Scholar 

  59. Faller, M., Niederweis, M. & Schulz, G. E. The structure of a mycobacterial outer-membrane channel. Science 303, 1189–1192 (2004).

    Article  MATH  Google Scholar 

  60. Goyal, P. et al. Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG. Nature 516, 250–253 (2014).

    Article  MATH  Google Scholar 

  61. Zhang, M. et al. Real-time detection of 20 amino acids and discrimination of pathologically relevant peptides with functionalized nanopore. Nat. Methods 21, 609–618 (2024).

    Article  MATH  Google Scholar 

  62. Wang, K. et al. Unambiguous discrimination of all 20 proteinogenic amino acids and their modifications by nanopore. Nat. Methods 21, 92–101 (2024).

    Article  Google Scholar 

  63. Zhou, W., Qiu, H., Guo, Y. & Guo, W. Molecular insights into distinct detection properties of α-hemolysin, MspA, CsgG, and aerolysin nanopore sensors. J. Phys. Chem. B 124, 1611–1618 (2020).

    MATH  Google Scholar 

  64. Crnković, A., Srnko, M. & Anderluh, G. Biological nanopores: engineering on demand. Life 11, 27 (2021).

    Article  Google Scholar 

  65. Huang, G., Voet, A. & Maglia, G. FraC nanopores with adjustable diameter identify the mass of opposite-charge peptides with 44 dalton resolution. Nat. Commun. 10, 835 (2019).

    Article  Google Scholar 

  66. Pavlenok, M., Yu, L., Herrmann, D., Wanunu, M. & Niederweis, M. Control of subunit stoichiometry in single-chain MspA nanopores. Biophys. J. 121, 742–754 (2022).

    Article  Google Scholar 

  67. Ouldali, H. et al. Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore. Nat. Biotechnol. 38, 176–181 (2020).

    Article  MATH  Google Scholar 

  68. Piguet, F. et al. Identification of single amino acid differences in uniformly charged homopolymeric peptides with aerolysin nanopore. Nat. Commun. 9, 966 (2018).

    Article  MATH  Google Scholar 

  69. Baaken, G. et al. High-resolution size-discrimination of single nonionic synthetic polymers with a highly charged biological nanopore. ACS Nano 9, 6443–6449 (2015).

    Article  MATH  Google Scholar 

  70. Chavis, A. E. et al. Single molecule nanopore spectrometry for peptide detection. ACS Sens. 2, 1319–1328 (2017).

    Article  MATH  Google Scholar 

  71. Delahaye, C. & Nicolas, J. Sequencing DNA with nanopores: troubles and biases. PLoS ONE 16, e0257521 (2021).

    Article  MATH  Google Scholar 

  72. Zhang, Y. et al. Peptide sequencing based on host–guest interaction-assisted nanopore sensing. Nat. Methods 21, 102–109 (2024).

    Article  MATH  Google Scholar 

  73. Peeters, J. M., Hazendonk, T. G., Beuvery, E. C. & Tesser, G. I. Comparison of four bifunctional reagents for coupling peptides to proteins and the effect of the three moieties on the immunogenicity of the conjugates. J. Immunol. Methods 120, 133–143 (1989).

    Article  MATH  Google Scholar 

  74. Zhang, L. et al. Photoredox-catalyzed decarboxylative C-terminal differentiation for bulk- and single-molecule proteomics. ACS Chem. Biol. 16, 2595–2603 (2021).

    Article  MATH  Google Scholar 

  75. De Rosa, L., Di Stasi, R., Romanelli, A. & D’Andrea, L. D. Exploiting protein N-terminus for site-specific bioconjugation. Molecules 26, 3521 (2021).

    Article  MATH  Google Scholar 

  76. Afshar Bakshloo, M. et al. Polypeptide analysis for nanopore-based protein identification. Nano Res. 15, 9831–9842 (2022).

    Article  MATH  Google Scholar 

  77. Boukhet, M. et al. Probing driving forces in aerolysin and α-hemolysin biological nanopores: electrophoresis versus electroosmosis. Nanoscale 8, 18352–18359 (2016).

    Article  Google Scholar 

  78. Li, M. & Muthukumar, M. Electro-osmotic flow in nanoconfinement: solid-state and protein nanopores. J. Chem. Phys. 160, 084905 (2024).

    Article  Google Scholar 

  79. Wen, C., Schmid, S. & Dekker, C. Understanding electrophoresis and electroosmosis in nanopore sensing with the help of the nanopore electro-osmotic trap. ACS Nano 18, 20449–20458 (2024).

    Article  Google Scholar 

  80. Liu, Y. et al. Machine learning assisted simultaneous structural profiling of differently charged proteins in a Mycobacterium smegmatis porin A (MspA) electroosmotic trap. J. Am. Chem. Soc. 144, 757–768 (2022).

    Article  MATH  Google Scholar 

  81. Mehrafrooz, B. et al. Electro-osmotic flow generation via a sticky ion action. ACS Nano 18, 17521–17533 (2024).

    Article  Google Scholar 

  82. Sauciuc, A. et al. Blobs form during the single-file transport of proteins across nanopores. Proc. Natl Acad. Sci. USA 121, e2405018121 (2024).

    Article  Google Scholar 

  83. Baldelli, M. et al. Controlling electroosmosis in nanopores without altering the nanopore sensing region. Adv. Mater. 36, 2401761 (2024).

    Article  MATH  Google Scholar 

  84. Gu, L.-Q., Cheley, S. & Bayley, H. Electroosmotic enhancement of the binding of a neutral molecule to a transmembrane pore. Proc. Natl Acad. Sci. USA 100, 15498–15503 (2003).

    Article  Google Scholar 

  85. Nova, I. C. et al. Investigating asymmetric salt profiles for nanopore DNA sequencing with biological porin MspA. PLoS ONE 12, e0181599 (2017).

    Article  Google Scholar 

  86. Nova, I. C. et al. Detection of phosphorylation post-translational modifications along single peptides with nanopores. Nat. Biotechnol. 42, 710–714 (2023).

    Article  MATH  Google Scholar 

  87. Craig, J. M. et al. Determining the effects of DNA sequence on Hel308 helicase translocation along single-stranded DNA using nanopore tweezers. Nucleic Acids Res. 47, 2506–2513 (2019).

    Article  MATH  Google Scholar 

  88. Bhattacharya, S., Yoo, J. & Aksimentiev, A. Water mediates recognition of DNA sequence via ionic current blockade in a biological nanopore. ACS Nano 10, 4644–4651 (2016).

    Article  Google Scholar 

  89. Katsikis, P. D., Ishii, K. J. & Schliehe, C. Challenges in developing personalized neoantigen cancer vaccines. Nat. Rev. Immunol. 24, 213–227 (2024).

    Article  Google Scholar 

  90. Yewdell, J. W. MHC class I immunopeptidome: past, present, and future. Mol. Cell. Proteom. 21, 100230 (2022).

    Article  Google Scholar 

  91. Boparai, J. K. & Sharma, P. K. Mini review on antimicrobial peptides, sources, mechanism and recent applications. Protein Pept. Lett. 27, 4–16 (2020).

    Article  MATH  Google Scholar 

  92. Koch, C. et al. Nanopore sequencing of DNA-barcoded probes for highly multiplexed detection of microRNA, proteins and small biomarkers. Nat. Nanotechnol. 18, 1483–1491 (2023).

    Article  MATH  Google Scholar 

  93. Jain, M., Olsen, H. E., Paten, B. & Akeson, M. The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 17, 239 (2016).

    Article  Google Scholar 

  94. Zhang, S. et al. Bottom-up fabrication of a proteasome–nanopore that unravels and processes single proteins. Nat. Chem. 13, 1192–1199 (2021).

    Article  MATH  Google Scholar 

  95. Barkow, S. R., Levchenko, I., Baker, T. A. & Sauer, R. T. Polypeptide translocation by the AAA+ ClpXP protease machine. Chem. Biol. 16, 605–612 (2009).

    Article  Google Scholar 

  96. Cordova, J. C. et al. Stochastic but highly coordinated protein unfolding and translocation by the ClpXP proteolytic machine. Cell 158, 647–658 (2014).

    Article  MATH  Google Scholar 

  97. Flynn, J. M. et al. Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis. Proc. Natl Acad. Sci. USA 98, 10584–10589 (2001).

    Article  MATH  Google Scholar 

  98. Deribe, Y. L., Pawson, T. & Dikic, I. Post-translational modifications in signal integration. Nat. Struct. Mol. Biol. 17, 666–672 (2010).

    Article  MATH  Google Scholar 

  99. El Kennani, S., Crespo, M., Govin, J. & Pflieger, D. Proteomic analysis of histone variants and their PTMs: strategies and pitfalls. Proteomes 6, 29 (2018).

    Article  Google Scholar 

  100. Park, J. S. et al. Brain somatic mutations observed in Alzheimer’s disease associated with aging and dysregulation of tau phosphorylation. Nat. Commun. 10, 3090 (2019).

    Article  MATH  Google Scholar 

  101. Costa, A. F., Campos, D., Reis, C. A. & Gomes, C. Targeting glycosylation: a new road for cancer drug discovery. Trends Cancer 6, 757–766 (2020).

    Article  Google Scholar 

  102. Restrepo-Pérez, L., Wong, C. H., Maglia, G., Dekker, C. & Joo, C. Label-free detection of post-translational modifications with a nanopore. Nano Lett. 19, 7957–7964 (2019).

    Article  Google Scholar 

  103. Lucas, F. L. R. et al. The manipulation of the internal hydrophobicity of FraC nanopores augments peptide capture and recognition. ACS Nano 15, 9600–9613 (2021).

    Article  MATH  Google Scholar 

  104. Rajkovic, A. et al. Cyclic rhamnosylated elongation factor P establishes antibiotic resistance in Pseudomonas aeruginosa. mBio 6, e00823-15 (2015).

    Article  Google Scholar 

  105. Versloot, R. C. A. et al. Quantification of protein glycosylation using nanopores. Nano Lett. 22, 5357–5364 (2022).

    Article  MATH  Google Scholar 

  106. Li, S. et al. T232K/K238Q aerolysin nanopore for mapping adjacent phosphorylation sites of a single tau peptide. Small Methods 4, 2000014 (2020).

    Article  Google Scholar 

  107. Afshar Bakshloo, M. et al. Discrimination between alpha-synuclein protein variants with a single nanometer-scale pore. ACS Chem. Neurosci. 14, 2517–2526 (2023).

    Article  MATH  Google Scholar 

  108. Cao, C. et al. Deep learning-assisted single-molecule detection of protein post-translational modifications with a biological nanopore. ACS Nano 18, 1504–1515 (2024).

    Article  MATH  Google Scholar 

  109. Cao, C. et al. Aerolysin nanopores decode digital information stored in tailored macromolecular analytes. Sci. Adv. 6, eabc2661 (2020).

    Article  Google Scholar 

  110. Liu, J. & Aksimentiev, A. Molecular determinants of current blockade produced by peptide transport through a nanopore. ACS Nanosci. Au 4, 21–29 (2024).

    Article  MATH  Google Scholar 

  111. Chen, X. et al. Resolving sulfation posttranslational modifications on a peptide hormone using nanopores. ACS Nano 18, 28999–29007 (2024).

    Article  Google Scholar 

  112. Niu, H. et al. Direct mapping of tyrosine sulfation states in native peptides by nanopore. Nat. Chem. Biol. https://doi.org/10.1038/s41589-024-01734-x (2024).

  113. Franks, A., Airoldi, E. & Slavov, N. Post-transcriptional regulation across human tissues. PLoS Comput. Biol. 13, e1005535 (2017).

    Article  Google Scholar 

  114. Sinitcyn, P. et al. MaxDIA enables library-based and library-free data-independent acquisition proteomics. Nat. Biotechnol. 39, 1563–1573 (2021).

    Article  MATH  Google Scholar 

  115. Cox, J. Prediction of peptide mass spectral libraries with machine learning. Nat. Biotechnol. 41, 33–43 (2023).

    Article  MATH  Google Scholar 

  116. Deslignière, E. et al. Ultralong transients enhance sensitivity and resolution in Orbitrap-based single-ion mass spectrometry. Nat. Methods 21, 619–622 (2024).

    Article  Google Scholar 

  117. Ye, Z. et al. One-Tip enables comprehensive proteome coverage in minimal cells and single zygotes. Nat. Commun. 15, 2474 (2024).

    Article  MATH  Google Scholar 

  118. Daly, L. A. et al. Custom workflow for the confident identification of sulfotyrosine-containing peptides and their discrimination from phosphopeptides. J. Proteome Res. 22, 3754–3772 (2023).

    Article  MATH  Google Scholar 

  119. Schjoldager, K. T., Narimatsu, Y., Joshi, H. J. & Clausen, H. Global view of human protein glycosylation pathways and functions. Nat. Rev. Mol. Cell Biol. 21, 729–749 (2020).

    Article  Google Scholar 

  120. Bagdonaite, I. et al. Glycoproteomics. Nat. Rev. Methods Primers 2, 48 (2022).

    Article  Google Scholar 

  121. Reed, B. D. et al. Real-time dynamic single-molecule protein sequencing on an integrated semiconductor device. Science 378, 186–192 (2022).

    Article  MATH  Google Scholar 

  122. Filius, M. et al. Full-length single-molecule protein fingerprinting. Nat. Nanotechnol. 19, 652–659 (2024).

    Article  Google Scholar 

  123. Castro-Wallace, S. L. et al. Nanopore DNA sequencing and genome assembly on the international space station. Sci. Rep. 7, 18022 (2017).

    Article  Google Scholar 

  124. Quick, J. et al. Real-time, portable genome sequencing for Ebola surveillance. Nature 530, 228–232 (2016).

    Article  MATH  Google Scholar 

  125. Yu, L. et al. Stable polymer bilayers for protein channel recordings at high guanidinium chloride concentrations. Biophys. J. 120, 1537–1541 (2021).

    Article  MATH  Google Scholar 

  126. Vreeker, E. et al. Hybrid lipid-block copolymer membranes enable stable reconstitution of a wide range of nanopores and robust sampling of serum. Preprint at bioRxiv https://doi.org/10.1101/2024.05.16.594548 (2024).

  127. Lutz, I. D. et al. Top-down design of protein architectures with reinforcement learning. Science 380, 266–273 (2023).

    Article  MATH  Google Scholar 

  128. Xu, C. et al. Computational design of transmembrane pores. Nature 585, 129–134 (2020).

    Article  MATH  Google Scholar 

  129. Notin, P., Rollins, N., Gal, Y., Sander, C. & Marks, D. Machine learning for functional protein design. Nat. Biotechnol. 42, 216–228 (2024).

    Article  Google Scholar 

  130. Eisenstein, M. Seven technologies to watch in 2024. Nature 625, 844–848 (2024).

    Article  MATH  Google Scholar 

  131. de Lannoy, C., Lucas, F. L. R., Maglia, G. & de Ridder, D. In silico assessment of a novel single-molecule protein fingerprinting method employing fragmentation and nanopore detection. iScience 24, 103202 (2021).

    Article  Google Scholar 

  132. Afshar Bakshloo, M. et al. Nanopore-based protein identification. J. Am. Chem. Soc. 144, 2716–2725 (2022).

    Article  MATH  Google Scholar 

  133. Cao, C. et al. Mapping the sensing spots of aerolysin for single oligonucleotides analysis. Nat. Commun. 9, 2823 (2018).

    Article  MATH  Google Scholar 

  134. Wu, J., Yamashita, T., Hamilton, A. D., Thompson, S. & Luo, J. Single-molecule nanopore dielectrophoretic trapping of α-synuclein with lipid membranes. Cell Rep. Phys. Sci. 4, 101243 (2023).

    Article  Google Scholar 

  135. Bošković, F. et al. Simultaneous identification of viruses and viral variants with programmable DNA nanobait. Nat. Nanotechnol. 18, 290–298 (2023).

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We thank B. Albada, E. Bertosin, E. van der Sluis and L. Yu for a critical reading of the manuscript. This work was supported by funding from the Dutch Research Council (NWO) project NWO-I680 (SMPS), European Research Council Advanced Grant 883684 and US National Institutes of Health National Human Genome Research Institute project HG012544-01.

Author information

Authors and Affiliations

Authors

Contributions

J.R. and X.C. surveyed the literature for this article. All authors contributed to writing the manuscript. C.D. supervised the work.

Corresponding author

Correspondence to Cees Dekker.

Ethics declarations

Competing interests

C.D. is named inventor on a patent on protein sequencing with nanopores, which is licensed to Oxford Nanopore Technologies. Beyond that, the authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Abdelghani Oukhaled and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ritmejeris, J., Chen, X. & Dekker, C. Single-molecule protein sequencing with nanopores. Nat Rev Bioeng 3, 303–316 (2025). https://doi.org/10.1038/s44222-024-00260-8

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44222-024-00260-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing