Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms and strategies for organ recovery

Abstract

Oxygen is essential for the viability of mammalian cells. Disruptions in circulation lead to a cessation of oxygen delivery, which causes decreased ATP production, intracellular acidosis and oedema. If blood flow is reintroduced, this initiates secondary cellular damage usually facilitating cell death. Nonetheless, such outcomes are not inevitable; cells from various organs have been recovered in vitro after extended periods without blood supply, with emerging technologies aimed at scaling up these findings. Perfusion systems, inspired by heart–lung machines, provide mechanical support by restoring circulation, regulating temperature, exchanging gases and modifying circulating perfusate with various pharmacological compounds. Together, perfusion systems and perfusates have mitigated cellular demise and recovered injured tissues, potentially revolutionizing resuscitation medicine and organ transplantation. This Review summarizes the biological mechanisms of cellular injury, perfusate modifications and mechanistic approaches for reinstating circulation, and offers perspectives on the future of organ and whole-body recovery.

Key points

  • Circulatory cessation causes detrimental metabolic changes in mammalian cells due to limited ATP and oxygen reserves, whereas restoring blood flow leads to even more pronounced secondary damage, termed ischaemia–reperfusion injury.

  • In vitro cultures first demonstrated that cell death is not inevitable as previously thought even hours after circulatory cessation, with viable cells successfully recovered from multiple organs.

  • Perfusion systems, inspired by heart–lung machines, use perfusates with blood or synthetic agents to restore circulation, support metabolism and recover compromised tissues.

  • Multimodal perfusion approaches substantially improve organs or whole-body recovery following prolonged circulatory cessation.

  • Perfusion systems with new perfusates are slowly being translated into clinical settings with approaches towards whole-body or isolated-organ recovery in resuscitation and transplant medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The cascade of molecular and cellular responses initiated by reduced blood flow or ischaemia and its reintroduction.
Fig. 2: Different cell-death pathways implicated in pathophysiology of ischaemia–reperfusion injury and their pharmacological targets.
Fig. 3: Pathophysiology of post-cardiac arrest syndrome.
Fig. 4: Approaches to modify the perfusate to promote cellular recovery.
Fig. 5: Perfusion system components and mechanistic approaches to organ recovery.
Fig. 6: Emerging strategies and technologies for organ recovery and reconditioning.

Similar content being viewed by others

References

  1. Hsia, C. C. W., Schmitz, A., Lambertz, M., Perry, S. F. & Maina, J. N. Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky. Compr. Physiol. 3, 849–915 (2013).

    Article  Google Scholar 

  2. Lee, P., Chandel, N. S. & Simon, M. C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat. Rev. Mol. Cell Biol. 21, 268–283 (2020). This article provides a great overview of molecular oxygen and its importance in cellular bioenergetics.

    Article  Google Scholar 

  3. Eltzschig, H. K. & Eckle, T. Ischemia and reperfusion—from mechanism to translation. Nat. Med. 17, 1391–1401 (2011).

    Article  Google Scholar 

  4. Neumar, R. W. et al. Post-cardiac arrest syndrome. Circulation 118, 2452–2483 (2008).

    Article  Google Scholar 

  5. Trump, B. F. & Harris, C. C. Human tissues in biomedical research. Hum. Pathol. 10, 245–248 (1979).

    Article  Google Scholar 

  6. Giwa, S. et al. The promise of organ and tissue preservation to transform medicine. Nat. Biotechnol. 35, 530–542 (2017). This article is one of the first to provide an estimate of a true organ need in the world and the impact that different organ preservation strategies would have on global healthcare.

    Article  Google Scholar 

  7. Orlando, G. & Keshavjee, S. Organ repair and regeneration: preserving organs in the regenerative medicine era (2021).

  8. Daniele, S. G. et al. Brain vulnerability and viability after ischaemia. Nat. Rev. Neurosci. 22, 553–572 (2021). This article is one of the first to provide a comprehensive overview of brain ischaemia and multimodal strategies for targeting various cellular mechanisms following ischaemic injury.

    Article  Google Scholar 

  9. Nasralla, D. et al. A randomized trial of normothermic preservation in liver transplantation. Nature 557, 50–56 (2018).

    Article  Google Scholar 

  10. Markmann, J. F. et al. Impact of portable normothermic blood-based machine perfusion on outcomes of liver transplant: the OCS liver protect randomized clinical trial. JAMA Surg. 157, 189–198 (2022).

    Article  Google Scholar 

  11. van Rijn, R. et al. Hypothermic machine perfusion in liver transplantation—a randomized trial. N. Engl. J. Med. 384, 1391–1401 (2021).

    Article  Google Scholar 

  12. Eshmuminov, D. et al. An integrated perfusion machine preserves injured human livers for 1 week. Nat. Biotechnol. 28, 189–198 (2020).

    Article  Google Scholar 

  13. Clavien, P. A. et al. Transplantation of a human liver following 3 days of ex situ normothermic preservation. Nat. Biotechnol. 40, 1610–1616 (2022). This study is first of its kind describing the ability to perfuse ex vivo human liver for 3 days and then transplant it with great outcome after 1-year of follow-up.

    Article  Google Scholar 

  14. Brasile, L. et al. Overcoming severe renal ischemia: the role of ex vivo warm perfusion. Transplantation 73, 897–901 (2002).

    Article  Google Scholar 

  15. Weissenbacher, A. et al. Twenty-four-hour normothermic perfusion of discarded human kidneys with urine recirculation. Am. J. Transplant. 19, 178–192 (2019).

    Article  Google Scholar 

  16. Hozain, A. E. et al. Xenogeneic cross-circulation for extracorporeal recovery of injured human lungs. Nat. Med. 26, 1102–1113 (2020).

    Article  Google Scholar 

  17. Ali, A. et al. Successful 3-day lung preservation using a cyclic normothermic ex vivo lung perfusion strategy. EBioMedicine 83, 104210 (2022).

    Article  Google Scholar 

  18. Mallea, J. M. et al. Remote ex vivo lung perfusion at a centralized evaluation facility. J. Heart Lung Transpl. 41, 1700–1711 (2022).

    Article  Google Scholar 

  19. Vrselja, Z. et al. Restoration of brain circulation and cellular functions hours post-mortem. Nature 568, 336–343 (2019). This study demonstrates that circulation and cellular functions can be restored 4 h after death in the large mammalian brain.

    Article  Google Scholar 

  20. Andrijevic, D. et al. Cellular recovery after prolonged warm ischaemia of the whole body. Nature 608, 405–412 (2022). This study demonstrates that circulation and cellular recovery across multiple vital organs can be achieved following 1 h of complete circulatory arrest in large mammals.

    Article  Google Scholar 

  21. Kalogeris, T., Baines, C. P., Krenz, M. & Korthuis, R. J. Cell biology of ischemia/reperfusion injury. Int. Rev. Cell Mol. Biol. 298, 229 (2012).

    Article  Google Scholar 

  22. Wu, M. Y. et al. Current mechanistic concepts in ischemia and reperfusion injury. Cell. Physiol. Biochem. 46, 1650–1667 (2018).

    Article  Google Scholar 

  23. Zhang, M. et al. Ischemia–reperfusion injury: molecular mechanisms and therapeutic targets. Signal Transduct. Target Ther. 9, 12 (2024). This review greatly summarizes a more molecular aspect of IRI and potential therapeutic targets.

    Article  Google Scholar 

  24. Chouchani, E. T. et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515, 431–435 (2014).

    Article  Google Scholar 

  25. Soares, R. O. S., Losada, D. M., Jordani, M. C., Évora, P. & Castro-E-Silva, O. Ischemia/reperfusion injury revisited: an overview of the latest pharmacological strategies. Int. J. Mol. Sci. 20, 5034 (2019).

    Article  Google Scholar 

  26. Auten, R. L. & Davis, J. M. Oxygen toxicity and reactive oxygen species: the devil is in the details. Pediatric Res. 66, 121–127 (2009).

    Article  Google Scholar 

  27. Beg, A. A. Endogenous ligands of Toll-like receptors: implications for regulating inflammatory and immune responses. Trends Immunol. 23, 509–512 (2002).

    Article  Google Scholar 

  28. Midwood, K. S. & Piccinini, A. M. DAMPening inflammation by modulating TLR signalling. Mediators Inflamm. 2010, 672395 (2010).

    Google Scholar 

  29. Devarajan, P. Update on mechanisms of ischemic acute kidney injury. J. Am. Soc. Nephrol. 17, 1503–1520 (2006).

    Article  Google Scholar 

  30. Li, L. et al. The chemokine receptors CCR2 and CX3CR1 mediate monocyte/macrophage trafficking in kidney ischemia–reperfusion injury. Kidney Int. 74, 1526–1537 (2008).

    Article  Google Scholar 

  31. Huen, S. C., Moecke, G. W. & Cantley, L. G. Macrophage-specific deletion of transforming growth factor-β1 does not prevent renal fibrosis after severe ischemia–reperfusion or obstructive injury. Am. J. Physiol. Ren. Physiol 305, 477–484 (2013).

    Article  Google Scholar 

  32. Bonavia, A. & Singbartl, K. A review of the role of immune cells in acute kidney injury. Pediatric Nephrol. 33, 1629–1639 (2018).

    Article  Google Scholar 

  33. Arumugam, T. V., Shiels, I. A., Woodruff, T. M., Neil Granger, D. & Taylor, S. M. The role of the complement system in ischemia–reperfusion injury. Shock 21, 401–409 (2004).

    Article  Google Scholar 

  34. Micó-Carnero, M. et al. A potential route to reduce ischemia/reperfusion injury in organ preservation. Cells 11, 2763 (2022).

    Article  Google Scholar 

  35. Vaseva, A. V. et al. p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149, 1536–1548 (2012).

    Article  Google Scholar 

  36. Yang, H. et al. p53–cyclophilin D mediates renal tubular cell apoptosis in ischemia–reperfusion-induced acute kidney injury. Am. J. Physiol. Ren. Physiol 317, F1311–F1317 (2019).

    Article  Google Scholar 

  37. Linkermann, A. et al. Two independent pathways of regulated necrosis mediate ischemia–reperfusion injury. Proc. Natl Acad. Sci. USA 110, 12024–12029 (2013).

    Article  Google Scholar 

  38. Fuchs, Y. & Steller, H. Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nat. Rev. Mol. Cell Biol. 16, 329–344 (2015). This article provides a great comprehensive overview of various cell death pathways.

    Article  Google Scholar 

  39. Liu, Y. et al. Research progress on the role of pyroptosis in myocardial ischemia–reperfusion injury. Cell 11, 3271 (2022).

    Article  Google Scholar 

  40. Zheng, Y., Xu, X., Chi, F. & Cong, N. Pyroptosis: a newly discovered therapeutic target for ischemia–reperfusion injury. Biomolecules 12, 1625 (2022).

    Article  Google Scholar 

  41. Pan, Y. et al. Targeting ferroptosis as a promising therapeutic strategy for ischemia–reperfusion injury. Antioxidants 11, 2196 (2022).

    Article  Google Scholar 

  42. Nolan, J. P. et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. A Scientific Statement from the International Liaison Committee on Resuscitation; the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; the Council on Stroke. Resuscitation 79, 350–379 (2008). This article is one of the first and most comprehensive reviews of PCAS.

    Article  Google Scholar 

  43. Jozwiak, M., Bougouin, W., Geri, G., Grimaldi, D. & Cariou, A. Post-resuscitation shock: recent advances in pathophysiology and treatment. Ann. Intensive Care 10, 1–11 (2020).

    Article  Google Scholar 

  44. Gando, S. & Wada, T. Disseminated intravascular coagulation in cardiac arrest and resuscitation. J. Thromb. Haemost. 17, 1205–1216 (2019).

    Article  Google Scholar 

  45. Rothman, S. M. & Olney, J. W. Glutamate and the pathophysiology of hypoxic–ischemic brain damage. Ann. Neurol. 19, 105–111 (1986).

    Article  Google Scholar 

  46. Hayman, E. G., Patel, A. P., Kimberly, W. T., Sheth, K. N. & Simard, J. M. Cerebral edema after cardiopulmonary resuscitation: a therapeutic target following cardiac arrest? Neurocrit Care 28, 276–287 (2018).

    Article  Google Scholar 

  47. Ames, A., Wright, R. L., Kowada, M., Thurston, J. M. & Majno, G. Cerebral ischemia. II. No-reflow phenomenon. Am. J. Pathol. 52, 437 (1968).

    Google Scholar 

  48. Del Zoppo, G. J. & Mabuchi, T. Cerebral microvessel responses to focal ischemia. J. Cereb. Blood Flow. Metab. 23, 879–894 (2003).

    Article  Google Scholar 

  49. Kagstrom, E., Smith, M. L. & Siesjo, B. K. Local cerebral blood flow in the recovery period following complete cerebral ischemia in the rat. J. Cereb. Blood Flow. Metab. 3, 170–182 (1983).

    Article  Google Scholar 

  50. Fischer, M. & Hossmann, K. A. No-reflow after cardiac arrest. Intensive Care Med. 21, 132–141 (1995). This article is one of the landmark studies on the no-reflow phenomenon after cardiac arrest.

    Article  Google Scholar 

  51. Greif, D. M. & Eichmann, A. Vascular biology: brain vessels squeezed to death. Nature 508, 50–51 (2014).

    Article  Google Scholar 

  52. Pulsinelli, W. A. Selective neuronal vulnerability: morphological and molecular characteristics. Prog. Brain Res. 63, 29–37 (1985).

    Article  Google Scholar 

  53. Jentzer, J. C., Chonde, M. D. & Dezfulian, C. Myocardial dysfunction and shock after cardiac arrest. Biomed. Res. Int. 2015, 314796 (2015).

    Article  Google Scholar 

  54. Chalkias, A. & Xanthos, T. Pathophysiology and pathogenesis of post-resuscitation myocardial stunning. Heart Fail. Rev. 17, 117–128 (2012).

    Article  Google Scholar 

  55. Hajjar, R. J. et al. Myofilament calcium regulation in human myocardium. Circulation 101, 1679–1685 (2000).

    Article  Google Scholar 

  56. Van Eyk, J. E. & Murphy, A. M. The role of troponin abnormalities as a cause for stunned myocardium. Coron. Artery Dis. http://journals.lww.com/coronary-artery (2001).

  57. Kloner, R. A., King, K. S. & Harrington, M. G. No-reflow phenomenon in the heart and brain. Am. J. Physiol. Heart Circ. Physiol 315, H550–H562 (2018).

    Article  Google Scholar 

  58. Ferenz, K. B. & Steinbicker, A. U. Artificial oxygen carriers—past, present and the future—a review of the most innovative and clinically relevant concepts. J. Pharmacol. Exp. Ther. 369, 300–310 (2019).

    Article  Google Scholar 

  59. Jahr, J. S., Guinn, N. R., Lowery, D. R., Shore-Lesserson, L. & Shander, A. Blood substitutes and oxygen therapeutics: a review. Anesth. Analg. 132, 119–129 (2021).

    Article  Google Scholar 

  60. Cao, M. et al. Hemoglobin-based oxygen carriers: potential applications in solid organ preservation. Front. Pharmacol. 12, 760215 (2021).

    Article  Google Scholar 

  61. Teh, E. S., Zal, F., Polard, V., Menasché, P. & Chambers, D. J. HEMO2life as a protective additive to Celsior solution for static storage of donor hearts prior to transplantation. Artif. Cells Nanomed. Biotechnol. 45, 717–722 (2017).

    Article  Google Scholar 

  62. Christoforidis, G. A. et al. Effect of early Sanguinate (PEGylated carboxyhemoglobin bovine) infusion on cerebral blood flow to the ischemic core in experimental middle cerebral artery occlusion. J. Neurointerv. Surg. 14, 1253–1257 (2021).

    Article  Google Scholar 

  63. Abuchowski, A. SANGUINATE (PEGylated carboxyhemoglobin bovine): mechanism of action and clinical update. Artif. Organs 41, 346–350 (2017).

    Article  Google Scholar 

  64. Mito, T. et al. Decreased damage from transient focal cerebral ischemia by transfusion of zero-link hemoglobin polymers in mouse. Stroke 40, 278–284 (2009).

    Article  Google Scholar 

  65. Reynolds, P. S., Barbee, R. W., Skaflen, M. D. & Ward, K. R. Low-volume resuscitation cocktail extends survival after severe hemorrhagic shock. Shock 28, 45–52 (2007).

    Article  Google Scholar 

  66. Paradis, N. A. Dose–response relationship between aortic infusions of polymerized bovine hemoglobin and return of circulation in a canine model of ventricular fibrillation and advanced cardiac life support. Crit. Care Med. 25, 476–483 (1997).

    Article  Google Scholar 

  67. Kaneda, T., Ku, K., Inoue, T., Onoe, M. & Oku, H. Postischemic reperfusion injury can be attenuated by oxygen tension control. Jpn. Circ. J. 65, 213–218 (2001).

    Article  Google Scholar 

  68. Taverne, Y. J. et al. Normalization of hemoglobin-based oxygen carrier-201 induced vasoconstriction: targeting nitric oxide and endothelin. J. Appl. Physiol. 122, 1227–1237 (2017).

    Article  Google Scholar 

  69. Jahr, J. S., MacKenzie, C., Pearce, L. B., Pitman, A. & Greenburg, A. G. HBOC-201 as an alternative to blood transfusion: efficacy and safety evaluation in a multicenter phase III trial in elective orthopedic surgery. J. Trauma. Injury Infect. Crit. Care 64, 1484–1497 (2008).

    Article  Google Scholar 

  70. Natanson, C., Kern, S. J., Lurie, P., Banks, S. M. & Wolfe, S. M. Cell-free hemoglobin-based blood substitutes and risk of myocardial infarction and death: a meta-analysis. JAMA 299, 2304–2312 (2008).

    Article  Google Scholar 

  71. Follette, D. M. et al. Reducing postischemic damage by temporary modification of reperfusate calcium, potassium, pH, and osmolarity. J. Thorac. Cardiovasc. Surg. 82, 221–238 (1981).

    Article  Google Scholar 

  72. Leaf, A. Cell swelling. Circulation 48, 455–458 (1973).

    Article  Google Scholar 

  73. Inan, N. et al. Effect of hydroxyethyl starch 130/0.4 on ischaemia/reperfusion in rabbit skeletal muscle. Eur. J. Anaesthesiol. 26, 160–165 (2009).

    Article  Google Scholar 

  74. Hahn, C. et al. Hypertonic saline infusion during resuscitation from out-of-hospital cardiac arrest: a matched-pair study from the German Resuscitation Registry. Resuscitation 85, 628–636 (2014).

    Article  Google Scholar 

  75. Mosbah, I. B. et al. Effects of polyethylene glycol and hydroxyethyl starch in University of Wisconsin preservation solution on human red blood cell aggregation and viscosity. Transpl. Proc. 38, 1229–1235 (2006).

    Article  Google Scholar 

  76. Hauet, T. et al. Polyethylene glycol reduces the inflammatory injury due to cold ischemia/reperfusion in autotransplanted pig kidneys. Kidney Int. 62, 654–667 (2002).

    Article  Google Scholar 

  77. Juarez-Moreno, K., Ayala, M. & Vazquez-Duhalt, R. Antioxidant capacity of poly(ethylene glycol) (PEG) as protection mechanism against hydrogen peroxide inactivation of peroxidases. Appl. Biochem. Biotechnol. 177, 1364–1373 (2015).

    Article  Google Scholar 

  78. Ge, W. et al. Effects of polyethylene glycol-20k on coronary perfusion pressure and postresuscitation myocardial and cerebral function in a rat model of cardiac arrest. J. Am. Heart Assoc. 9, e014232 (2020).

    Article  Google Scholar 

  79. Beyersdorf, F., Trummer, G., Benk, C. & Pooth, J.-S. Application of cardiac surgery techniques to improve the results of cardiopulmonary resuscitation after cardiac arrest: controlled automated reperfusion of the whole body. JTCVS Open 8, 47–52 (2021).

    Article  Google Scholar 

  80. Orrenius, S., Zhivotovsky, B. & Nicotera, P. Regulation of cell death: the calcium–apoptosis link. Nat. Rev. Mol. Cell Biol. 4, 552–565 (2003).

    Article  Google Scholar 

  81. Klein, H. H. et al. Treatment of reperfusion injury with intracoronary calcium channel antagonists and reduced coronary free calcium concentration in regionally ischemic, reperfused porcine hearts. J. Am. Coll. Cardiol. 13, 1395–1401 (1989).

    Article  Google Scholar 

  82. Pooth, J. S. et al. Effects of prolonged serum calcium suppression during extracorporeal cardiopulmonary resuscitation in pigs. Biomedicines 11, 2612 (2023).

    Article  Google Scholar 

  83. Kang, S. W. et al. Neuroprotective effects of magnesium-sulfate on ischemic injury mediated by modulating the release of glutamate and reduced of hyperreperfusion. Brain Res. 1371, 121–128 (2011).

    Article  Google Scholar 

  84. Gorelick, P. B. & Ruland, S. IMAGES and FAST-MAG: magnesium for acute ischaemic stroke. Lancet Neurol. 3, 330 (2004).

    Article  Google Scholar 

  85. Liu, B. et al. The role of magnesium in cardiac arrest. Front. Nutr. 11, 1387268 (2024).

    Article  Google Scholar 

  86. Ishaq, G. M. et al. Effects of α-tocopherol and ascorbic acid in the severity and management of traumatic brain injury in albino rats. J. Neurosci. Rural. Pract. 4, 292–297 (2013).

    Article  Google Scholar 

  87. Azari, O. et al. Protective effects of hydrocortisone, vitamin C and E alone or in combination against renal ischemia–reperfusion injury in rat. Iran. J. Pathol. 10, 272 (2015).

    Google Scholar 

  88. Hsu, C. C. & Wang, J. J. l-Ascorbic acid and ɑ-tocopherol attenuates liver ischemia–reperfusion induced of cardiac function impairment. Transpl. Proc. 44, 933–936 (2012).

    Article  Google Scholar 

  89. Anderson, M. F., Nilsson, M., Eriksson, P. S. & Sims, N. R. Glutathione monoethyl ester provides neuroprotection in a rat model of stroke. Neurosci. Lett. 354, 163–165 (2004).

    Article  Google Scholar 

  90. Kobayashi, H. et al. The effects of γ-glutamylcysteine ethyl ester, a prodrug of glutathione, on ischemia–reperfusion-induced liver injury in rats. Transplantation 54, 414–418 (1992).

    Article  Google Scholar 

  91. Tsai, M. S. et al. Combination of intravenous ascorbic acid administration and hypothermia after resuscitation improves myocardial function and survival in a ventricular fibrillation cardiac arrest model in the rat. Acad. Emerg. Med. 21, 257–265 (2014).

    Article  Google Scholar 

  92. Adlam, V. J. et al. Targeting an antioxidant to mitochondria decreases cardiac ischemia–reperfusion injury. FASEB J. 19, 1088–1095 (2005).

    Article  Google Scholar 

  93. Zinovkin, R. A. & Zamyatnin, A. A. Mitochondria-targeted drugs. Curr. Mol. Pharmacol. 12, 202–214 (2019).

    Article  Google Scholar 

  94. Murphy, M. P. & Hartley, R. C. Mitochondria as a therapeutic target for common pathologies. Nat. Rev. Drug. Discov. 17, 865–886 (2018).

    Article  Google Scholar 

  95. Matthews, R. T., Yang, L., Browne, S., Baik, M. & Beal, M. F. Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc. Natl Acad. Sci. USA 95, 8892–8897 (1998).

    Article  Google Scholar 

  96. Damian, M. S. et al. Coenzyme Q10 combined with mild hypothermia after cardiac arrest: a preliminary study. Circulation 110, 3011–3016 (2004).

    Article  Google Scholar 

  97. Dambrova, M., Zuurbier, C. J., Borutaite, V., Liepinsh, E. & Makrecka-Kuka, M. Energy substrate metabolism and mitochondrial oxidative stress in cardiac ischemia/reperfusion injury. Free. Radic. Biol. Med. 165, 24–37 (2021).

    Article  Google Scholar 

  98. Satomi, S. et al. Branched-chain amino acids-induced cardiac protection against ischemia/reperfusion injury. Life Sci. 245, 117368 (2020).

    Article  Google Scholar 

  99. Vreugdenhil, P. K., Marsh, D. C. & Southard, J. H. Comparison of isolated hepatocytes and tissue slices for study of liver hypothermic preservation/reperfusion injury. Cryobiology 33, 430–435 (1996).

    Article  Google Scholar 

  100. Schuster, H. et al. Protective effects of regulatory amino acids on ischaemia–reperfusion injury in the isolated perfused rat liver. Scand. J. Gastroenterol. 41, 1342–1349 (2006).

    Article  Google Scholar 

  101. Yu, Y. et al. Treatment with d-β-hydroxybutyrate protects heart from ischemia/reperfusion injury in mice. Eur. J. Pharmacol. 829, 121–128 (2018).

    Article  Google Scholar 

  102. Tajima, T. et al. β-Hydroxybutyrate attenuates renal ischemia–reperfusion injury through its anti-pyroptotic effects. Kidney Int. 95, 1120–1137 (2019).

    Article  Google Scholar 

  103. Ysebaert, D. K. et al. Effect of immunosuppression on damage, leukocyte infiltration, and regeneration after severe warm ischemia/reperfusion renal injury. Kidney Int. 64, 864–873 (2003).

    Article  Google Scholar 

  104. Pratschke, S. et al. Tacrolimus preconditioning of rat liver allografts impacts glutathione homeostasis and early reperfusion injury. J. Surg. Res. 176, 309–316 (2012).

    Article  Google Scholar 

  105. Cour, M. et al. Inhibition of mitochondrial permeability transition to prevent the post-cardiac arrest syndrome: a pre-clinical study. Eur. Heart J. 32, 226–235 (2011).

    Article  Google Scholar 

  106. Argaud, L. et al. Effect of cyclosporine in nonshockable out-of-hospital cardiac arrest: the CYRUS randomized clinical trial. JAMA Cardiol. 1, 557–565 (2016).

    Article  Google Scholar 

  107. Cunningham, C. A., Coppler, P. J. & Skolnik, A. B. The immunology of the post-cardiac arrest syndrome. Resuscitation 179, 116–123 (2022).

    Article  Google Scholar 

  108. Kazmi, S., Salehi-Pourmehr, H., Sadigh-Eteghad, S. & Farhoudi, M. The efficacy and safety of interleukin-1 receptor antagonist in stroke patients: a systematic review. J. Clin. Neurosci. 120, 120–128 (2024).

    Article  Google Scholar 

  109. Meyer, M. A. S. et al. Treatment effects of interleukin-6 receptor antibodies for modulating the systemic inflammatory response after out-of-hospital cardiac arrest (The IMICA Trial): a double-blinded, placebo-controlled, single-center, randomized, clinical trial. Circulation 143, 1841–1851 (2021).

    Article  Google Scholar 

  110. Penn, J. et al. Efficacy and safety of corticosteroids in cardiac arrest: a systematic review, meta-analysis and trial sequential analysis of randomized control trials. Crit. Care 27, 12 (2023).

    Article  Google Scholar 

  111. Yaoita, H., Ogawa, K., Maehara, K. & Maruyama, Y. Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation 97, 276–281 (1998).

    Article  Google Scholar 

  112. Koudstaal, S. et al. Necrostatin-1 alleviates reperfusion injury following acute myocardial infarction in pigs. Eur. J. Clin. Invest. 45, 150–159 (2015).

    Article  Google Scholar 

  113. Van Hout, G. P. J. et al. The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction. Eur. Heart J. 38, 828–836 (2017).

    Google Scholar 

  114. Zheng, G. et al. The selective NLRP3-inflammasome inhibitor MCC950 mitigates post-resuscitation myocardial dysfunction and improves survival in a rat model of cardiac arrest and resuscitation. Cardiovasc. Drugs Ther. 37, 423–433 (2023).

    Article  Google Scholar 

  115. Ni, J. et al. Hydrogen sulfide reduces pyroptosis and alleviates ischemia–reperfusion-induced acute kidney injury by inhibiting NLRP3 inflammasome. Life Sci. 284, 119466 (2021).

    Article  Google Scholar 

  116. Dhani, S., Zhao, Y. & Zhivotovsky, B. A long way to go: caspase inhibitors in clinical use. Cell Death Dis. 2021, 1–13 (2021).

    Google Scholar 

  117. Vereczki, V. et al. Normoxic resuscitation after cardiac arrest protects against hippocampal oxidative stress, metabolic dysfunction, and neuronal death. J. Cereb. Blood Flow. Metab. 26, 821–835 (2006).

    Article  Google Scholar 

  118. Shou, B. L. et al. Arterial oxygen and carbon dioxide tension and acute brain injury in extracorporeal cardiopulmonary resuscitation patients: analysis of the extracorporeal life support organization registry. J. Heart Lung Transplant. 42, 503–511 (2023).

    Article  Google Scholar 

  119. Dulla, C. G. et al. Adenosine and ATP link pCO2 to cortical excitability via pH. Neuron 48, 1011–1023 (2005).

    Article  Google Scholar 

  120. Bagul, A., Hosgood, S. A., Kaushik, M. & Nicholson, M. L. Carbon monoxide protects against ischemia–reperfusion injury in an experimental model of controlled nonheartbeating donor kidney. Transplantation 85, 576–581 (2008).

    Article  Google Scholar 

  121. McFarlane, L., Nelson, P., Dugbartey, G. J. & Sener, A. Pre-treatment of transplant donors with hydrogen sulfide to protect against warm and cold ischemia–reperfusion injury in kidney and other transplantable solid organs. Int. J. Mol. Sci. 24, 3518 (2023).

    Article  Google Scholar 

  122. Minamishima, S. et al. Hydrogen sulfide improves survival after cardiac arrest and cardiopulmonary resuscitation via a nitric oxide synthase 3-dependent mechanism in mice. Circulation 120, 888–896 (2009).

    Article  Google Scholar 

  123. Wang, P. et al. Carbon monoxide improves neurologic outcomes by mitochondrial biogenesis after global cerebral ischemia induced by cardiac arrest in rats. Int. J. Biol. Sci. 12, 1000 (2016).

    Article  Google Scholar 

  124. Derwall, M. et al. Hydrogen sulfide does not increase resuscitability in a porcine model of prolonged cardiac arrest. Shock 34, 190–195 (2010).

    Article  Google Scholar 

  125. Wollborn, J. et al. Carbon monoxide exerts functional neuroprotection after cardiac arrest using extracorporeal resuscitation in pigs. Crit. Care Med. 48, E299–E307 (2020).

    Article  Google Scholar 

  126. De Deken, J., Rex, S., Monbaliu, D., Pirenne, J. & Jochmans, I. The efficacy of noble gases in the attenuation of ischemia reperfusion injury: a systematic review and meta-analyses. Crit. Care Med. 44, e886–e896 (2016).

    Article  Google Scholar 

  127. Martens, A. et al. A porcine ex vivo lung perfusion model with maximal argon exposure to attenuate ischemia–reperfusion injury. Med. Gas. Res. 7, 28 (2017).

    Article  Google Scholar 

  128. Smith, S. F., Adams, T., Hosgood, S. A. & Nicholson, M. L. The administration of argon during ex vivo normothermic perfusion in an experimental model of kidney ischemia–reperfusion injury. J. Surg. Res. 218, 202–208 (2017).

    Article  Google Scholar 

  129. Laitio, R. et al. Effect of inhaled xenon on cerebral white matter damage in comatose survivors of out-of-hospital cardiac arrest: a randomized clinical trial. JAMA 315, 1120–1128 (2016).

    Article  Google Scholar 

  130. Hayashida, K. et al. Inhaled gases as therapies for post-cardiac arrest syndrome: a narrative review of recent developments. Front. Med. 7, 586229 (2021).

    Article  Google Scholar 

  131. Tamura, T. et al. Efficacy of inhaled hydrogen on neurological outcome following brain ischaemia during post-cardiac arrest care (HYBRID II): a multi-centre, randomised, double-blind, placebo-controlled trial. eClinicalMedicine 58, 101907 (2023).

    Article  Google Scholar 

  132. Lee, H. M., Choi, J. W. & Choi, M. S. Role of nitric oxide and protein S-nitrosylation in ischemia–reperfusion injury. Antioxidants 11, 57 (2021).

    Article  Google Scholar 

  133. Moncada, S. & Erusalimsky, J. D. Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat. Rev. Mol. Cell Biol. 3, 214–220 (2002).

    Article  Google Scholar 

  134. Bonfoco, E., Krainc, D., Ankarcrona, M., Nicotera, P. & Lipton, S. A. Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-d-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc. Natl Acad. Sci. USA 92, 7162–7166 (1995).

    Article  Google Scholar 

  135. Miyazaki, Y. & Ichinose, F. Nitric oxide in post-cardiac arrest syndrome. J. Cardiovasc. Pharmacol. 75, 508–515 (2020).

    Article  Google Scholar 

  136. Brücken, A. et al. Brief inhalation of nitric oxide increases resuscitation success and improves 7-day-survival after cardiac arrest in rats: a randomized controlled animal study. Crit. Care 19, 1–13 (2015).

    Article  Google Scholar 

  137. Derwall, M. et al. Inhaled nitric oxide improves transpulmonary blood flow and clinical outcomes after prolonged cardiac arrest: a large animal study. Crit. Care 19, 1–10 (2015).

    Article  Google Scholar 

  138. Patel, J. K. et al. Inhaled nitric oxide in adults with in-hospital cardiac arrest: a feasibility study. Nitric Oxide 115, 30–33 (2021).

    Article  Google Scholar 

  139. Rayego-Mateos, S. et al. The optimization of renal graft preservation temperature to mitigate cold ischemia–reperfusion injury in kidney transplantation. Int. J. Mol. Sci. 24, 567 (2022).

    Article  Google Scholar 

  140. Choi, H. A., Badjatia, N. & Mayer, S. A. Hypothermia for acute brain injury—mechanisms and practical aspects. Nat. Rev. Neurol. 2012, 214–222 (2012).

    Article  Google Scholar 

  141. Hägerdal, M., Harp, J. & Siesjö, B. K. Effect of hypothermia upon organ phosphates, glycolytic metabolites, citric acid cycle intermediates and associated amino acids in rat cerebral cortex. J. Neurochem. 24, 743–748 (1975).

    Article  Google Scholar 

  142. Kimura, A., Sakurada, S., Ohkuni, H., Todome, Y. & Kurata, K. Moderate hypothermia delays proinflammatory cytokine production of human peripheral blood mononuclear cells. Crit. Care Med. 30, 1499–1502 (2002).

    Article  Google Scholar 

  143. Van Breukelen, F., Krumschnabel, G. & Podrabsky, J. E. Vertebrate cell death in energy-limited conditions and how to avoid it: what we might learn from mammalian hibernators and other stress-tolerant vertebrates. Apoptosis 15, 386–399 (2010).

    Article  Google Scholar 

  144. Dankiewicz, J. et al. Hypothermia versus normothermia after out-of-hospital cardiac arrest. N. Engl. J. Med. 384, 2283–2294 (2021).

    Article  Google Scholar 

  145. Lascarrou, J.-B. et al. Targeted temperature management for cardiac arrest with nonshockable rhythm. N. Engl. J. Med. 381, 2327–2337 (2019).

    Article  Google Scholar 

  146. Moers, C. et al. Machine perfusion or cold storage in deceased-donor kidney transplantation. N. Engl. J. Med. 360, 1460–1461 (2009).

    Article  Google Scholar 

  147. Minor, T. & von Horn, C. Rewarming injury after cold preservation. Int. J. Mol. Sci. 20, 2059 (2019).

    Article  Google Scholar 

  148. Hosgood, S. A. et al. Normothermic machine perfusion versus static cold storage in donation after circulatory death kidney transplantation: a randomized controlled trial. Nat. Med. 29, 1511–1519 (2023).

    Article  Google Scholar 

  149. Zlatev, H., von Horn, C., Kaths, M., Paul, A. & Minor, T. Clinical use of controlled oxygenated rewarming of kidney grafts prior to transplantation by ex vivo machine perfusion. A pilot study. Eur. J. Clin. Invest. 52, e13691 (2022).

    Article  Google Scholar 

  150. Minor, T. et al. Controlled oxygenated rewarming as novel end‐ischemic therapy for cold stored liver grafts. A randomized controlled trial. Clin. Transl. Sci. 15, 2918 (2022).

    Article  Google Scholar 

  151. Tamari, Y., Lee-Sensiba, K., Leonard, E. F., Parnell, V. & Tortolani, A. J. The effects of pressure and flow on hemolysis caused by Bio-Medicus centrifugal pumps and roller pumps: guidelines for choosing a blood pump. J. Thorac. Cardiovasc. Surg. 106, 997–1007 (1993).

    Article  Google Scholar 

  152. Saczkowski, R., Maklin, M., Mesana, T., Boodhwani, M. & Ruel, M. Centrifugal pump and roller pump in adult cardiac surgery: a meta-analysis of randomized controlled trials. Artif. Organs 36, 668–676 (2012).

    Article  Google Scholar 

  153. Kreibich, M. et al. Improved outcome in an animal model of prolonged cardiac arrest through pulsatile high pressure controlled automated reperfusion of the whole body. Artif. Organs 42, 992–1000 (2018).

    Article  Google Scholar 

  154. Allen, B. S., Ko, Y., Buckberg, G. D. & Tan, Z. Studies of isolated global brain ischaemia: II. Controlled reperfusion provides complete neurologic recovery following 30 min of warm ischaemia—the importance of perfusion pressure. Eur. J. Cardiothorac. Surg. 41, 1147 (2012).

    Article  Google Scholar 

  155. Vincent, D. E. et al. Pulsatile ECMO: the future of mechanical circulatory support for severe cardiogenic shock. JACC Basic Transl. Sci. 9, 456–458 (2024).

    Article  Google Scholar 

  156. von Horn, C. & Minor, T. Isolated kidney perfusion: the influence of pulsatile flow. Scand. J. Clin. Lab. Invest. 78, 131–135 (2018).

    Article  Google Scholar 

  157. Tawa, P. et al. Continuous versus pulsatile flow in 24-hour vascularized composite allograft machine perfusion in swine: a pilot study. J. Surg. Res. 283, 1145–1153 (2023).

    Article  Google Scholar 

  158. Brüggenwirth, I. M. et al. A comparative study of single and dual perfusion during end-ischemic subnormothermic liver machine preservation. Transplant. Direct. 4, e400 (2018).

    Article  Google Scholar 

  159. Itoh, H. et al. Effect of the pulsatile extracorporeal membrane oxygenation on hemodynamic energy and systemic microcirculation in a piglet model of acute cardiac failure. Artif. Organs 40, 19–26 (2016).

    Article  Google Scholar 

  160. Betit, P. Technical advances in the field of ECMO. Respir. Care 63, 1162–1173 (2018).

    Article  Google Scholar 

  161. Murphy, G. S., Hessel, E. A. & Groom, R. C. Optimal perfusion during cardiopulmonary bypass: an evidence-based approach. Anesth. Analg. 108, 1394–1417 (2009).

    Article  Google Scholar 

  162. Boodram, S. & Evans, E. Use of leukocyte-depleting filters during cardiac surgery with cardiopulmonary bypass: a review. J. Extra Corpor. Technol. 40, 27 (2008).

    Article  Google Scholar 

  163. Naruka, V. et al. Use of cytokine filters during cardiopulmonary bypass: systematic review and meta-analysis. Heart Lung Circ. 31, 1493–1503 (2022).

    Article  Google Scholar 

  164. Iskender, I. et al. Cytokine filtration modulates pulmonary metabolism and edema formation during ex vivo lung perfusion. J. Heart Lung Transplant. 37, 283–291 (2018).

    Article  Google Scholar 

  165. Noda, K. et al. Targeting circulating leukocytes and pyroptosis during ex vivo lung perfusion improves lung preservation. Transplantation 101, 2841–2849 (2017).

    Article  Google Scholar 

  166. Huber, W., Zanner, R., Schneider, G., Schmid, R. & Lahmer, T. Assessment of regional perfusion and organ function: less and non-invasive techniques. Front. Med. 6, 50 (2019).

    Article  Google Scholar 

  167. Eshmuminov, D. & Clavien, P. A. Long-term dynamic ex vivo organ preservation. Nat. Rev. Gastroenterol. Hepatol. 20, 267–268 (2022).

    Article  Google Scholar 

  168. Eltzschig, H. K. Prolonging cellular life after hypoxic death. N. Engl. J. Med. 387, 2089–2091 (2022).

    Article  Google Scholar 

  169. Li, X. et al. Alleviation of ischemia–reperfusion injury in rat liver transplantation by induction of small interference RNA targeting Fas. Langenbecks Arch. Surg. 392, 345–351 (2007).

    Article  Google Scholar 

  170. Wu, Y., Liu, Y., Li, M., Liu, Z. & Gong, J. IRAK-4-shRNA prevents ischemia/reperfusion injury via different perfusion periods through the portal vein after liver transplantation in rat. Transpl. Proc. 48, 2803–2808 (2016).

    Article  Google Scholar 

  171. Gao, Q. et al. Gene therapy: will the promise of optimizing lung allografts become reality? Front. Immunol. https://doi.org/10.3389/fimmu.2022.931524 (2022).

  172. Cypel, M. et al. Functional repair of human donor lungs by IL-10 gene therapy. Sci. Transl. Med. 1, 4ra9 (2009).

    Article  Google Scholar 

  173. Daddi, N. et al. Recipient intramuscular cotransfection of naked plasmid transforming growth factor β1 and interleukin 10 ameliorates lung graft ischemia–reperfusion injury. J. Thorac. Cardiovasc. Surg. 124, 259–269 (2002).

    Article  Google Scholar 

  174. Brasile, L., Henry, N., Orlando, G. & Stubenitsky, B. Potentiating renal regeneration using mesenchymal stem cells. Transplantation 103, 307–313 (2019).

    Article  Google Scholar 

  175. Podestà, M. A., Remuzzi, G. & Casiraghi, F. Mesenchymal stromal cell therapy in solid organ transplantation. Front. Immunol. 11, 618243 (2021).

    Article  Google Scholar 

  176. Thompson, E. R. et al. Novel delivery of cellular therapy to reduce ischemia reperfusion injury in kidney transplantation. Am. J. Transplant. 21, 1402–1414 (2021).

    Article  Google Scholar 

  177. Lohmann, S. et al. Mesenchymal stromal cell treatment of donor kidneys during ex vivo normothermic machine perfusion: a porcine renal autotransplantation study. Am. J. Transplant. 21, 2348–2359 (2021).

    Article  Google Scholar 

  178. Hayashida, K. et al. Mitochondrial transplantation therapy for ischemia reperfusion injury: a systematic review of animal and human studies. J. Transl. Med. 19, 1–15 (2021).

    Article  Google Scholar 

  179. Guariento, A. et al. Autologous mitochondrial transplantation for cardiogenic shock in pediatric patients following ischemia–reperfusion injury. J. Thorac. Cardiovasc. Surg. 162, 992–1001 (2021).

    Article  Google Scholar 

  180. Hozain, A. E. et al. Multiday maintenance of extracorporeal lungs using cross-circulation with conscious swine. J. Thorac. Cardiovasc. Surg. 159, 1640 (2020).

    Article  Google Scholar 

  181. Wu, W. K. et al. Xenogeneic cross-circulation for physiological support and recovery of ex vivo human livers. Hepatology 78, 820–834 (2023).

    Article  Google Scholar 

  182. Montgomery, R. A., Mehta, S. A., Parent, B. & Griesemer, A. Next steps for the xenotransplantation of pig organs into humans. Nat. Med. 28, 1533–1536 (2022).

    Article  Google Scholar 

  183. Kiyohara, Y., Kampaktsis, P. N., Briasoulis, A. & Kuno, T. Extracorporeal membrane oxygenation-facilitated resuscitation in out-of-hospital cardiac arrest: a meta-analysis of randomized controlled trials. J. Cardiovasc. Med. 24, 414–419 (2023).

    Article  Google Scholar 

  184. Yannopoulos, D. et al. Advanced reperfusion strategies for patients with out-of-hospital cardiac arrest and refractory ventricular fibrillation (ARREST): a phase 2, single centre, open-label, randomised controlled trial. Lancet 396, 1807–1816 (2020).

    Article  Google Scholar 

  185. Trummer, G. et al. Treatment of refractory cardiac arrest by controlled reperfusion of the whole body: a multicenter, prospective observational study. J. Clin. Med. 13, 56 (2024).

    Article  Google Scholar 

  186. Belohlavek, J. et al. Effect of intra-arrest transport, extracorporeal cardiopulmonary resuscitation, and immediate invasive assessment and treatment on functional neurologic outcome in refractory out-of-hospital cardiac arrest: a randomized clinical trial. JAMA 327, 737 (2022).

    Article  Google Scholar 

  187. Suverein, M. M. et al. Early extracorporeal CPR for refractory out-of-hospital cardiac arrest. N. Engl. J. Med. 388, 299–309 (2023).

    Article  Google Scholar 

  188. Raphalen, J. H. et al. Kidneys recovered from brain dead cardiac arrest patients resuscitated with ECPR show similar one-year graft survival compared to other donors. Resuscitation 190, 109883 (2023).

    Article  Google Scholar 

  189. James, L. et al. Donation after circulatory death heart transplantation using normothermic regional perfusion: the NYU protocol. JTCVS Tech. 17, 111 (2023).

    Article  Google Scholar 

  190. Wall, A. E. et al. The American Society of Transplant Surgeons consensus statement on normothermic regional perfusion. Transplantation 108, 312–318 (2024).

    Article  Google Scholar 

  191. Johnston, C. J. C., Sherif, A. E. & Oniscu, G. C. Transplantation of discarded livers: the complementary role of normothermic regional perfusion. Nat. Commun. 12, 4471 (2021).

    Article  Google Scholar 

  192. De Beule, J. et al. A systematic review and meta-analyses of regional perfusion in donation after circulatory death solid organ transplantation. Transpl. Int. 34, 2046–2060 (2021).

    Article  Google Scholar 

  193. Smith, D. E. et al. Early experience with donation after circulatory death heart transplantation using normothermic regional perfusion in the United States. J. Thorac. Cardiovasc. Surg. 164, 557–568.e1 (2022).

    Article  Google Scholar 

  194. Schemmer, P. et al. Transplanting marginal organs in the era of modern machine perfusion and advanced organ monitoring. Front. Immunol. 1, 631 (2020).

    Google Scholar 

  195. Kaths, J. M. et al. Continuous normothermic ex vivo kidney perfusion improves graft function in donation after circulatory death pig kidney transplantation. Transplantation 101, 754 (2017).

    Article  Google Scholar 

  196. Czigany, Z. et al. Hypothermic oxygenated machine perfusion reduces early allograft injury and improves post-transplant outcomes in extended criteria donation liver transplantation from donation after brain death: results from a multicenter randomized controlled trial (HOPE ECD-DBD). Ann. Surg. 274, 705–712 (2021).

    Article  Google Scholar 

  197. Risbey, C. W. G. & Pulitano, C. Normothermic ex vivo machine perfusion for liver transplantation: a systematic review of progress in humans. J. Clin. Med. 12, 3718 (2023).

    Article  Google Scholar 

  198. Ardehali, A. et al. Ex-vivo perfusion of donor hearts for human heart transplantation (PROCEED II): a prospective, open-label, multicentre, randomised non-inferiority trial. Lancet 385, 2577–2584 (2015).

    Article  Google Scholar 

  199. Cypel, M. et al. Normothermic ex vivo lung perfusion in clinical lung transplantation. N. Engl. J. Med. 364, 1431–1440 (2011).

    Article  Google Scholar 

  200. Warnecke, G. et al. Normothermic ex-vivo preservation with the portable Organ Care System Lung device for bilateral lung transplantation (INSPIRE): a randomised, open-label, non-inferiority, phase 3 study. Lancet Respir. Med. 6, 357–367 (2018).

    Article  Google Scholar 

  201. Langmuur, S. J. J. et al. Normothermic ex situ heart perfusion with the organ care system for cardiac transplantation: a meta-analysis. Transplantation 106, 1745–1753 (2022).

    Article  Google Scholar 

  202. Trummer, G., Benk, C. & Beyersdorf, F. Controlled automated reperfusion of the whole body after cardiac arrest. J. Thorac. Dis. 11, S1464 (2019).

    Article  Google Scholar 

  203. Taunyane, I. C. et al. Preserved brain morphology after controlled automated reperfusion of the whole body following normothermic circulatory arrest time of up to 20 minutes. Eur. J. Cardiothorac. Surg. 50, 1025–1034 (2016).

    Article  Google Scholar 

  204. Croome, K. P. Introducing machine perfusion into routine clinical practice for liver transplantation in the United States: the moment has finally come. J. Clin. Med. 12, 909 (2023).

    Article  Google Scholar 

  205. Parente, A. et al. Trends and obstacles to implement dynamic perfusion concepts for clinical liver transplantation: results from a global web-based survey. J. Clin. Med. 12, 3765 (2023).

    Article  Google Scholar 

  206. Suverein, M. M. et al. Ethics of ECPR research. Resuscitation 169, 136–142 (2021).

    Article  Google Scholar 

  207. American College of Physicians. Ethics, determination of death, and organ transplantation in normothermic regional perfusion (NRP) with controlled donation after circulatory determination of death (cDCD): American College of Physicians Statement of Concern; https://www.acponline.org/acp_policy/policies/ethics_determination_of_death_and_organ_transplantation_in_nrp_2021.pdf (2021).

  208. Parent, B., Caplan, A., Moazami, N. & Montgomery, R. A. Response to American College of Physician’s statement on the ethics of transplant after normothermic regional perfusion. Am. J. Transplant. 22, 1307–1310 (2022).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conceptualization of the article, data search and discussion of content. The initial draft of the manuscript was authored by D.A., with contributions from all co-authors. D.A. and A.S. were responsible for the generation of all figures. Subsequently, all authors reviewed and edited the manuscript prior to its submission.

Corresponding author

Correspondence to Nenad Sestan.

Ethics declarations

Competing interests

N.S. is a co-founder of Bexorg, in which he holds equity and serves on the board. R.A.M. has received research funds from Lung Biotechnology, a wholly owned subsidiary of United Therapeutics Corporation, PBC; serves on the advisory board of eGenesis; and has been a strategic advisor for Recombinetics. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Korkut Uygun, who co-reviewed with Raphaela Bento; Peter Friend, who co-reviewed with Richard Dumbill; Constantin Coussios, who co-reviewed with Tamsyn Clark; and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrijevic, D., Spajic, A., Hameed, I. et al. Mechanisms and strategies for organ recovery. Nat Rev Bioeng 3, 596–611 (2025). https://doi.org/10.1038/s44222-025-00293-7

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44222-025-00293-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research