Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Sustainable production of chemicals by algorithm-assisted (bio)synthesis

Abstract

Although research on computer-assisted planning of organic chemical syntheses dates back to the 1960s, it has only been in recent years that algorithms became powerful enough to autonomously design complete pathways, both in retrosynthetic and forward directions. Some of these modern programmes can plan chemically correct routes to complex targets and multiple such designs have now been validated by experiment. With chemical correctness secured, the next frontier for machines is to help design syntheses that are green (for example, in terms of conditions applied), sustainable (in terms of resources used) or circular (for example, in terms of waste feedstocks being revalorized). This Perspective argues that several parts of this challenge can benefit from close collaboration between synthetic chemists and bioengineers — for instance, to design better metrics of the environmental impact of syntheses or to develop algorithms with which to delineate the substrate scope of enzymatic transformations. Computers able to plan efficient and greener routes combining chemical and enzymatic steps will have a powerful and lasting impact on the production of fine chemicals.

Key points

  • Advances in reaction network theory and artificial intelligence have already enabled the development of several fully automated synthetic planners.

  • In terms of strictly chemical aspects, the best algorithms are currently on par with human experts. Moreover, they surpass humans in their ability to score syntheses against multiple criteria at once.

  • Multiparametric evaluation is important to prioritize syntheses that meet the demands of greenness and sustainability.

  • Bringing more enzymes into organic synthesis is a largely unmet need of the fine-chemical industry and yet another opportunity where chemistry, bioengineering and artificial intelligence can productively collaborate on algorithms to approximate the substrate scope of enzymes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Backward and forward computer-assisted synthesis.
Fig. 2: A small fragment of a network of algorithmically designed syntheses of drugs sourced from waste substrates.
Fig. 3: Degradations of quinine into smaller but value-added chemicals.

Similar content being viewed by others

References

  1. Brown, D. G. & Boström, J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J. Med. Chem. 59, 4443–4458 (2016).

    Article  Google Scholar 

  2. Kennedy, S. H., Dherange, B. D., Berger, K. J. & Levin, M. D. Skeletal editing through direct nitrogen deletion of secondary amines. Nature 593, 223–227 (2021).

    Article  Google Scholar 

  3. Wang, J. Z., Lyon, W. L. & MacMillan, D. W. C. Alkene dialkylation by triple radical sorting. Nature 628, 104–109 (2024).

    Article  Google Scholar 

  4. Murphy, M. A. Early industrial roots of green chemistry and the history of the BHC ibuprofen process invention and its quality connection. Found. Chem. 20, 121–165 (2018).

    Article  Google Scholar 

  5. Hoyos, P., Pace, V. & Alcántara, A. R. Biocatalyzed synthesis of statins: a sustainable strategy for the preparation of valuable drugs. Catalysts 9, 260 (2019).

    Article  Google Scholar 

  6. European Chemical Agency. Chemicals in a circular economy https://chemicalsinourlife.echa.europa.eu/chemicals-in-a-circular-economy (2020).

  7. European Commission. A new circular economy plan for a cleaner and more competitive europe https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1583933814386&uri=COM:2020:98:FIN (2020).

  8. Neslen, A. EU abandons promise to ban toxic chemicals in consumer products. The Guardian https://www.theguardian.com/environment/2023/oct/16/eu-abandons-promise-ban-toxic-chemicals-consumer-products (16 October 2023).

  9. Stahel, W. R. Circular economy. Nature 531, 435–438 (2016).

    Article  Google Scholar 

  10. Winans, K., Kendall, A. & Deng, H. The history and current applications of the circular economy concept. Renew. Sust. Ener. Rev. 68, 825–833 (2017).

    Article  Google Scholar 

  11. Keijer, T., Bakker, V. & Slootweg, J. C. Circular chemistry to enable a circular economy. Nat. Chem. 11, 190–195 (2019).

    Article  Google Scholar 

  12. Kümmerer, K., Clark, J. H. & Zuin, V. G. Rethinking chemistry for a circular economy. Science 367, 369–370 (2020).

    Article  Google Scholar 

  13. Kümmerer, K. Sustainable chemistry: a future guiding principle. Angew. Chem. Int. Ed. Engl. 56, 16420–16421 (2017).

    Article  Google Scholar 

  14. Mutlu, H. & Barner, L. Getting the terms right: green, sustainable, or circular chemistry? Macromol. Chem. Phys. 223, 2200111 (2022).

    Article  Google Scholar 

  15. Poliakoff, M., Fitzpatrick, J. M., Farren, T. R. & Anastas, P. T. Green chemistry: science and politics of change. Science 297, 807–810 (2002).

    Article  Google Scholar 

  16. Anastas, P. T. & Warner, J. Green Chemistry: Theory and Practice (Oxford University Press, 1998).

  17. Anastas, P. T. in: Benign by Design. ACS Symposium Series Ch 1 (eds Anastas, P. T. & Farris, C. A.) (American Chemical Society, 1994).

  18. Hutzinger, O. The greening of chemistry — is it sustainable? Environ. Sci. Pollut. Res. 6, 123 (1999).

    Article  Google Scholar 

  19. Fantke, P. et al. Transition to sustainable chemistry through digitalization. Chem 7, 2866–2882 (2021).

    Article  Google Scholar 

  20. Szymkuć, S. et al. Computer‐assisted synthetic planning: the end of the beginning. Angew. Chem. Int. Ed. Engl. 55, 5904–5937 (2016).

    Article  Google Scholar 

  21. Mikulak-Klucznik, B. et al. Computational planning of the synthesis of complex natural products. Nature 588, 83–88 (2020).

    Article  Google Scholar 

  22. Klucznik, T. et al. Efficient syntheses of diverse, medicinally relevant targets planned by computer and executed in the laboratory. Chem 4, 522–532 (2018).

    Article  Google Scholar 

  23. Lin, Y., Zhang, R., Wang, D. & Cernak, T. Computer-aided key step generation in alkaloid total synthesis. Science 379, 453–457 (2023).

    Article  Google Scholar 

  24. Coley, C. W. et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science 365, eaax1566 (2019).

    Article  Google Scholar 

  25. Levin, I. et al. Merging enzymatic and synthetic chemistry with computational synthesis planning. Nat. Commun. 13, 7747 (2022).

    Article  Google Scholar 

  26. Sankaranarayanan, K., Klavs, F. & Jensen, K. F. Computer-assisted multistep chemoenzymatic retrosynthesis using a chemical synthesis planner. Chem. Sci. 14, 6467–6475 (2023).

    Article  Google Scholar 

  27. Gao, W., Mercado, R. & Coley, C. W. Amortized tree generation for bottom-up synthesis planning and synthesizable molecular design. Preprint at https://doi.org/10.48550/arXiv.2110.06389 (2021).

  28. Joung, J. F. et al. Reproducing reaction mechanisms with machine learning models trained on a large‐scale mechanistic dataset. Angew. Chem. Int. Ed. Engl. 63, e202411296 (2024).

    Google Scholar 

  29. Genheden, S. et al. AiZynthFinder: a fast, robust and flexible open-source software for retrosynthetic planning. J. Cheminformatics 12, 70 (2020).

    Article  Google Scholar 

  30. Shields, J. D. et al. AiZynth impact on medicinal chemistry practice at AstraZeneca. RSC Med. Chem. 15, 1085–1095 (2024).

    Article  Google Scholar 

  31. Wołos, A. et al. Synthetic connectivity, emergence, and self-regeneration in the network of prebiotic chemistry. Science 369, eaaw1955 (2020).

    Article  Google Scholar 

  32. Wołos, A. et al. Computer-designed repurposing of chemical wastes into drugs. Nature 604, 668–676 (2022).

    Article  Google Scholar 

  33. Żądło-Dobrowolska, A. et al. Computational synthesis design for controlled degradation and revalorization. Nat. Synth. 3, 643–654 (2024).

    Article  Google Scholar 

  34. Klucznik, T. et al. Computational prediction of complex cationic rearrangement outcomes. Nature 625, 508–515 (2024).

    Google Scholar 

  35. Roszak, R., Gadina, L., Wołos, A. et al. Systematic, computational discovery of multicomponent and one-pot reactions. Nat. Commun. 15, 10285 (2024).

    Article  Google Scholar 

  36. Strieth-Kalthoff, F. et al. Artificial intelligence for retrosynthetic planning needs both data and expert knowledge. J. Am. Chem. Soc. 146, 11005–11017 (2024).

    Google Scholar 

  37. Mikulak-Klucznik, B., Klucznik, T., Beker, W., Moskal, M. & Grzybowski, B. A. Catalyst: curtailing the scalable supply of fentanyl by using chemical AI. Chem 10, 1319–1326 (2024).

    Article  Google Scholar 

  38. CAS. CAS SciFinder Discovery Platform™ https://www.cas.org/solutions/cas-scifinder-discovery-platform/cas-scifinder/synthesis-planning (accessed 2024).

  39. Elsevier. Reaxys predictive retrosynthesis accelerates retrosynthetic analysis https://www.elsevier.com/products/reaxys/predictive-retrosynthesis (accessed 2024).

  40. Finnigan, W. et al. RetroBioCat as a computer-aided synthesis planning tool for biocatalytic reactions and cascades. Nat. Catal. 4, 98–104 (2021).

    Article  Google Scholar 

  41. Liu, X., Li, H. & Zhao, H. Chemoenzymatic synthesis planning by evaluating the synthetic potential in biocatalysis and chemocatalysis. Preprint at https://doi.org/10.26434/chemrxiv-2024-hnl71 (2024).

  42. Zeng, T., Jin, Z., Zheng, S., Yu, T. & Wu, R. Developing BioNavi for hybrid retrosynthesis planning. JACS Au 4, 2492–2502 (2024).

    Article  Google Scholar 

  43. Segler, M. H. S., Preuss, M. & Waller, M. P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555, 604–610 (2018).

    Article  Google Scholar 

  44. Liu, B. et al. Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS Cent. Sci. 3, 1103–1113 (2017).

    Article  Google Scholar 

  45. Schwaller, P. et al. Predicting retrosynthetic pathways using transformer-based models and a hyper-graph exploration strategy. Chem. Sci. 11, 3316–3325 (2020).

    Article  Google Scholar 

  46. Corey, E. J. & Wipke, W. T. Computer-assisted design of complex organic syntheses. Science 166, 178–192 (1969).

    Article  Google Scholar 

  47. Gelernter, H. L. et al. Empirical explorations of SYNCHEM. Science 197, 1041–1049 (1977).

    Article  Google Scholar 

  48. Hanessian, S., Franco, J. & Larouche, B. The psychobiological basis of heuristic synthesis planning — man, machine and the Chiron approach. Pure Appl. Chem. 62, 1887–1910 (1990).

    Article  Google Scholar 

  49. Hendrickson, J. B. Systematic synthesis design. 6. Yield analysis and convergency. J. Am. Chem. Soc. 99, 5439–5450 (1977).

    Article  Google Scholar 

  50. Corey, E. J. Robert Robinson Lecture. Retrosynthetic thinking — essentials and examples. Chem. Soc. Rev. 17, 111–133 (1988).

    Article  Google Scholar 

  51. Corey, E. J. & Cheng, X.-M. The Logic of Chemical Synthesis (Wiley, 1989).

  52. Grzybowski, B. A., Badowski, T., Molga, T., Molga, K. & Szymkuć, S. Network search algorithms and scoring functions for advanced-level computerized synthesis planning. Wiley Interdiscip. Rev. Comput. Mol. Sci. 13, e1630 (2023).

    Article  Google Scholar 

  53. Badowski, T., Molga, K. & Grzybowski, B. A. Selection of cost-effective yet chemically diverse pathways from the networks of computer-generated retrosynthetic plans. Chem. Sci. 10, 4640–4651 (2019).

    Article  Google Scholar 

  54. Kowalik, M. et al. Parallel optimization of synthetic pathways within the network of organic chemistry. Angew. Chem. Int. Ed. Engl. 51, 7928–7932 (2012).

    Article  Google Scholar 

  55. Trost, B. M. Atom economy. A challenge for organic synthesis. Angew. Chem. Int. Ed. Engl. 34, 259–281 (1995).

    Article  Google Scholar 

  56. Borovika, A. et al. The PMI Predictor app to enable green-by-design chemical synthesis. Nat. Sustain. 2, 1034–1040 (2019).

    Article  Google Scholar 

  57. Andraos, J. Relationships between step and cumulative PMI and E-factors: implications on estimating material efficiency with respect to charting synthesis optimization strategies. Green Process. Synth. 8, 324–336 (2019).

    Article  Google Scholar 

  58. Adams, J. P. et al. Development of GSK’s reagent guides — embedding sustainability into reagent selection. Green Chem. 15, 1542 (2013).

    Article  Google Scholar 

  59. Henderson, R. K., Hill, A. P., Redman, A. M. & Sneddon, H. F. Development of GSK’s acid and base selection guides. Green Chem. 17, 945–949 (2015).

    Article  Google Scholar 

  60. Henderson, R. K. et al. Expanding GSK’s solvent selection guide — embedding sustainability into solvent selection starting at medicinal chemistry. Green Chem. 13, 854 (2011).

    Article  Google Scholar 

  61. Gu, X. et al. Application of transition-metal catalysis, biocatalysis, and flow chemistry as state-of-the-art technologies in the synthesis of LCZ696. J. Org. Chem. 85, 6844–6853 (2020).

    Article  Google Scholar 

  62. Cybulski, O., Quintana, C., Siek, M. & Grzybowski, B. A. Stirring‐controlled synthesis of ultrastable, fluorescent silver nanoclusters. Small 20, 2400306 (2024).

    Article  Google Scholar 

  63. Novick, S. J. et al. Engineering an amine transaminase for the efficient production of a chiral sacubitril precursor. ACS Catal. 6, 3762–3770 (2021).

    Article  Google Scholar 

  64. Richard, A. M. et al. The Tox21 10K compound library: collaborative chemistry advancing toxicology. Chem. Res. Toxicol. 34, 189–216 (2021).

    Article  Google Scholar 

  65. Schmidt, M. & Pei, L. Synthetic toxicology: where engineering meets biology and toxicology. Toxicol. Sci. 120, S2024–S2224 (2011).

    Article  Google Scholar 

  66. Huang, R. et al. Tox21 challenge to build predictive models of nuclear receptor and stress response pathways as mediated by exposure to environmental chemicals and drugs. Front. Environ. Sci. 3, 85 (2016).

    Article  Google Scholar 

  67. Hemmerich, J. & Ecker, G. F. In Silico toxicology: from structure–activity relationships towards deep learning and adverse outcome pathways. Wiley Interdiscip. Rev. Comput. Mol. Sci. 10, e1475 (2020).

    Article  Google Scholar 

  68. Sheldon, R. A. The E factor 25 years on: the rise of green chemistry and sustainability. Green Chem. 19, 18–43 (2017).

    Article  Google Scholar 

  69. Guinée, J. Handbook on Life Cycle Assessment (Springer, 2002).

  70. Aggarwal, N. et al. Microbial engineering strategies to utilize waste feedstock for sustainable bioproduction. Nat. Rev. Bioeng. 2, 155–174 (2024).

    Article  Google Scholar 

  71. Thatcher, G. R. J. & Weldon, H. NO problem for nitroglycerin: organic nitrate chemistry and therapy. Chem. Soc. Rev. 27, 331–337 (1998).

    Article  Google Scholar 

  72. Shimizu, S. et al. Pyridine and pyridine derivatives. Ullmanns Encycl. Indust. Chem. https://doi.org/10.1002/14356007.a22_399 (2000).

    Article  Google Scholar 

  73. Greenlee, M. L. et al. Antifungal agents. WO Patent 2010019203A1 (2010).

  74. Pramanik, C. et al. Commercial manufacturing of propofol: simplifying the isolation process and control on related substances. Org. Proc. Res. Dev. 18, 152–156 (2014).

    Article  Google Scholar 

  75. Markham, A. Mobocertinib: first approval. Drugs 81, 2069–2074 (2021).

    Article  Google Scholar 

  76. Andrews, S. W. et al. 2-Aryl- and 2-heteroaryl-substituted 2-pyridazin-3(2H)-one compounds as inhibitors of FGFR tyrosine kinases. US Patent 10766881B2 (2020).

  77. Metcalf, B. et al. Discovery of GBT440, an orally bioavailable R-State stabilizer of sickle cell hemoglobin. ACS Med. Chem. Lett. 8, 321–326 (2017).

    Article  Google Scholar 

  78. Gil, J. J. F. et al. Process and intermediates for the preparation of voxelotor. US Patent 20220073493A1 (2022).

  79. Zhang, Y., Qi, M. Y., Tang, Z. R. & Xu, Y. J. Photoredox-catalyzed plastic waste conversion: nonselective degradation versus selective synthesis. ACS Catal. 13, 3575–3590 (2023).

    Article  Google Scholar 

  80. Sobol, Ł., Dyjakon, A. & Soukup, K. Dioxins and furans in biochars, hydrochars and torreficates produced by thermochemical conversion of biomass: a review. Environ. Chem. Lett. 21, 2225–2249 (2023).

    Article  Google Scholar 

  81. Jehanno, C. et al. Critical advances and future opportunities in upcycling commodity polymers. Nature 603, 803–814 (2022).

    Article  Google Scholar 

  82. Coates, G. W. & Getzler, Y. D. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 5, 501–516 (2020).

    Article  Google Scholar 

  83. Zhang, F. et al. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science 370, 437–441 (2020).

    Article  Google Scholar 

  84. Trang, B. et al. Low-temperature mineralization of perfluorocarboxylic acids. Science 377, 839–845 (2022).

    Article  Google Scholar 

  85. He, J., Ritalahti, K. M., Yang, K. L., Koenigsberg, S. S. & Löffler, F. E. Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 424, 62–65 (2003).

    Article  Google Scholar 

  86. Liang, X. et al. Highly efficient NaNO2‐catalyzed destruction of trichlorophenol using molecular oxygen. Angew. Chem. Int. Ed. Engl. 44, 5520–5523 (2005).

    Article  Google Scholar 

  87. Kumamaru, T. et al. Enhanced degradation of polychlorinated biphenyls by directed evolution of biphenyl dioxygenase. Nat. Biotechnol. 16, 663–666 (1998).

    Article  Google Scholar 

  88. Meunier, B. Catalytic degradation of chlorinated phenols. Science 296, 270–271 (2002).

    Article  Google Scholar 

  89. Smith, B. M. Catalytic methods for the destruction of chemical warfare agents under ambient conditions. Chem. Soc. Rev. 37, 470–478 (2008).

    Article  Google Scholar 

  90. Rathi, B. S. & Kumar, P. S. Sustainable approach on the biodegradation of azo dyes: a short review. Curr. Opin. Green Sustain. Chem. 33, 100578 (2022).

    Article  Google Scholar 

  91. Antonetti, C., Licursi, D., Fulignati, S., Valentini, G. & Raspolli Galletti, A. M. New frontiers in the catalytic synthesis of levulinic acid: from sugars to raw and waste biomass as starting feedstock. Catalysts 6, 196 (2016).

    Article  Google Scholar 

  92. Liu, F. et al. Continuously processing waste lignin into high-value carbon nanotube fibers. Nat. Commun. 13, 5755 (2022).

    Article  Google Scholar 

  93. Sun, Z., Balint, F., de Santi, A., Saravanakumar, E. & Barta, K. Bright side of lignin depolymerization: toward new platform chemicals. Chem. Rev. 118, 614–678 (2018).

    Article  Google Scholar 

  94. Lee, K., Jing, Y., Wang, Y. & Yan, N. A unified view on catalytic conversion of biomass and waste plastics. Nat. Rev. Chem. 6, 635–652 (2022).

    Article  Google Scholar 

  95. Zhou, X. et al. Discovery of novel inhibitors of human phosphoglycerate dehydrogenase by activity-directed combinatorial chemical synthesis strategy. Bioorg. Chem. 115, 105159 (2021).

    Article  Google Scholar 

  96. Surivet, J. P. et al. Design, synthesis, and characterization of novel tetrahydropyran-based bacterial topoisomerase inhibitors with potent anti-gram-positive activity. J. Med. Chem. 56, 7396–7415 (2013).

    Article  Google Scholar 

  97. Agouridas, C. et al. Synthesis and antibacterial activity of ketolides (6-O-methyl-3-oxoerythromycin derivatives): a new class of antibacterials highly potent against macrolide-resistant and -susceptible respiratory pathogens. J. Med. Chem. 41, 4080–4100 (1998).

    Article  Google Scholar 

  98. GlaxoSmithKline Beecham P. L. C. Nitrogen-containing bicyclic heterocycles for use as antibacterials. WO Patent 2003/87098 (2003).

  99. Sheldon, R. A. & Woodley, J. M. Role of biocatalysis in sustainable chemistry. Chem. Rev. 118, 801–838 (2018).

    Article  Google Scholar 

  100. Abdelraheem, E. M. M., Busch, H., Hanefeld, U. & Tonin, F. Biocatalysis explained: from pharmaceutical to bulk chemical production. React. Chem. Eng. 4, 1878–1894 (2019).

    Article  Google Scholar 

  101. Wu, S., Snajdrova, R., Moore, J. C., Baldenius, K. & Bornscheuer, U. Biocatalysis: enzymatic synthesis for industrial applications. Angew. Chem. Int. Ed. Engl. 60, 88–119 (2020).

    Article  Google Scholar 

  102. Fryszkowska, A. & Devine, P. N. Biocatalysis in drug discovery and development. Curr. Opin. Chem. Biol. 55, 151–160 (2020).

    Article  Google Scholar 

  103. Savile, C. K. et al. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329, 305–309 (2010).

    Article  Google Scholar 

  104. Huffman, M. A. et al. Design of an in vitro biocatalytic cascade for the manufacture of islatravir. Science 366, 1255–1259 (2019).

    Article  Google Scholar 

  105. Li, J., Amatuni, A. & Renata, H. Recent advances in the chemoenzymatic synthesis of bioactive natural products. Curr. Opin. Chem. Biol. 55, 111–118 (2020).

    Article  Google Scholar 

  106. Stout, C. N., Wasfy, N. M., Chen, F. & Renata, H. Charting the evolution of chemoenzymatic strategies in the syntheses of complex natural products. J. Am. Chem. Soc. 145, 18161–18181 (2023).

    Article  Google Scholar 

  107. Casini, A. et al. A pressure test to make 10 molecules in 90 days: external evaluation of methods to engineer biology. J. Am. Chem. Soc. 140, 4302–4316 (2018).

    Article  Google Scholar 

  108. Sokolova, N., Peng, B. & Haslinger, K. Design and engineering of artificial biosynthetic pathways — where do we stand and where do we go? FEBS Lett. 597, 2897–2907 (2023).

    Article  Google Scholar 

  109. Maggiora, G., Vogt, M., Stumpfe, D. & Bajorath, J. Molecular similarity in medicinal chemistry. J. Med. Chem. 57, 3186–3204 (2013).

    Article  Google Scholar 

  110. Stumpfe, D., Hu, H. & Bajorath, J. Advances in exploring activity cliffs. J. Comp. Aid. Mol. Des. 34, 929–942 (2020).

    Article  Google Scholar 

  111. Martin, Y. C., Kofron, J. L. & Traphagen, L. M. Do structurally similar molecules have similar biological activity? J. Med. Chem. 45, 4350–4358 (2002).

    Article  Google Scholar 

  112. Probst, D. et al. Biocatalysed synthesis planning using data-driven learning. Nat. Commun. 13, 964 (2022).

    Article  Google Scholar 

  113. Sankaranarayanan, K. et al. Similarity based enzymatic retrosynthesis. Chem. Sci. 13, 6039–6053 (2022).

    Article  Google Scholar 

  114. Delépine, B., Duigou, T., Carbonell, P. & Faulon, J.-L. RetroPath2.0: a retrosynthesis workflow for metabolic engineers. Metab. Eng. 45, 158–170 (2018).

    Article  Google Scholar 

  115. Kim, D. I., Chae, T. U., Kim, H. U., Jang, W. D. & Lee, S. Y. Microbial production of multiple short-chain primary amines via retrobiosynthesis. Nat. Commun. 12, 173 (2021).

    Article  Google Scholar 

  116. Cho, A., Yun, H., Park, J. H., Lee, S. Y. & Park, S. Prediction of novel synthetic pathways for the production of desired chemicals. BMC Syst. Biol. 4, 35 (2010).

    Article  Google Scholar 

  117. Lang, M., Stelzer, M. & Schomburg, D. BKM-react, an integrated biochemical reaction database. BMC Biochem. 12, 42 (2011).

    Article  Google Scholar 

  118. Chang, A. et al. BRENDA, the ELIXIR core data resource in 2021: new developments and updates. Nucleic Acids Res. 49, D498–D508 (2021).

    Article  Google Scholar 

  119. Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article  Google Scholar 

  120. Karp, P. D. et al. The BioCyc collection of microbial genomes and metabolic pathways. Brief. Bioinforma. 20, 1085–1093 (2019).

    Article  Google Scholar 

  121. Wittig, U. et al. SABIO-RK-database for biochemical reaction kinetics. Nucleic Acids Res. 40, D790–D796 (2012).

    Article  Google Scholar 

  122. Sun, D. et al. EnzyMine: a comprehensive database for enzyme function annotation with enzymatic reaction chemical feature. Database 2023, baaa065 (2023).

    Article  Google Scholar 

  123. Mou, Z. et al. Machine learning-based prediction of enzyme substrate scope: application to bacterial nitrilases. Proteins Struct. Funct. Bioinf. 89, 336–347 (2021).

    Article  Google Scholar 

  124. Yang, M. et al. Functional and informatics analysis enables glycosyltransferase activity prediction. Nat. Chem. Biol. 14, 1109–1117 (2018).

    Article  Google Scholar 

  125. Kroll, A. et al. A general model to predict small molecule substrates of enzymes based on machine and deep learning. Nat. Commun. 14, 2787 (2023).

    Article  Google Scholar 

  126. Beker, W., Gajewska, E. P., Badowski, T. & Grzybowski, B. A. Prediction of major regio-, site-, and diastereoisomers in Diels-Alder reactions by using machine-learning: the importance of physically meaningful descriptors. Angew. Chem. Int. Ed. Engl. 58, 4515–4519 (2019).

    Article  Google Scholar 

  127. Moskal, M., Beker, W., Szymkuć, S. & Grzybowski, B. A. Scaffold-directed face selectivity machine-learned from vectors of non-covalent interactions. Angew. Chem. Int. Ed. Engl. 2021, 15230–15235 (2021).

    Article  Google Scholar 

  128. Kearnes, S. M. et al. The open reaction database. J. Am. Chem. Soc. 143, 18820–18826 (2021).

    Article  Google Scholar 

  129. Angello, N. H. et al. Closed-loop optimization of general reaction conditions for heteroaryl Suzuki-Miyaura coupling. Science 378, 399–405 (2022).

    Article  MathSciNet  Google Scholar 

  130. Granda, J. M., Donina, L., Dragone, V., Long, D. L. & Cronin, L. Controlling an organic synthesis robot with machine learning to search for new reactivity. Nature 559, 377–381 (2018).

    Article  Google Scholar 

  131. Rohrbach, S. et al. Digitization and validation of a chemical synthesis literature database in the ChemPU. Science 377, 172–180 (2022).

    Article  Google Scholar 

  132. Lin, S. et al. Mapping the dark space of chemical reactions with extended nanomole synthesis and MALDI-TOF MS. Science 361, eaar6236 (2018).

    Article  Google Scholar 

  133. Slattery, A. et al. Automated self-optimization, intensification, and scale-up of photocatalysis in flow. Science 383, eadj1817 (2024).

    Article  Google Scholar 

  134. Szymanski, N. J. et al. An autonomous laboratory for the accelerated synthesis of novel materials. Nature 624, 86–91 (2023).

    Article  Google Scholar 

  135. Mahjour, B., Shen, Y. & Cernak, T. Ultrahigh-throughput experimentation for information-rich chemical synthesis. ACC Chem. Res. 54, 2337–2346 (2021).

    Article  Google Scholar 

  136. Mayr, A. et al. Large-scale comparison of machine learning methods for drug target prediction on ChEMBL. Chem. Sci. 9, 5441–5451 (2018).

    Article  Google Scholar 

  137. Stokes, J. M. et al. A Deep Learning approach to antibiotic discovery. Cell 180, P688–702.E13 (2020).

    Article  Google Scholar 

  138. Krishna, R. et al. Generalized biomolecular modeling and design with RoseTTAFold all-atom. Science 384, eadl2528 (2024).

    Article  Google Scholar 

  139. Gallou, F., Gröger, H. & Lipshutz, B. H. Status check: biocatalysis; it’s use with and without chemocatalysis. How does the fine chemicals industry view this area? Green Chem. 25, 6092–6107 (2023).

    Article  Google Scholar 

  140. Lowe, D. Predicting new small molecule binders. Science https://www.science.org/content/blog-post/predicting-new-small-molecule-binders (2024).

  141. Quigley, I. BELKA results suggest computers can memorize, but not create, drugs. Leash https://leashbio.substack.com/p/belka-results-suggest-computers-can (2024).

  142. Wang, X., Quinn, D., Moody, T. S. & Huang, M. ALDELE: all-purpose deep learning toolkits for predicting the biocatalytic activities of enzymes. J. Chem. Inf. Model. 64, 3123–3139 (2024).

    Article  Google Scholar 

  143. Robinson, S. L., Smith, M. D., Richman, J. E., Aukema, K. G. & Wackett, L. P. Machine learning-based prediction of activity and substrate specificity for OleA enzymes in the thiolase superfamily. Synth. Biol. 5, ysaa004 (2020).

    Article  Google Scholar 

  144. Xing, H. et al. High-throughput prediction of enzyme promiscuity based on substrate–product pairs. Brief. Bioinform. 25, bbae089 (2024).

    Article  Google Scholar 

  145. Lyu, J. et al. Ultra-large library docking for discovering new chemotypes. Nature 566, 224–229 (2019).

    Article  Google Scholar 

  146. Fink, E. A. et al. Structure-based discovery of nonopioid analgesics acting through the α2A-adrenergic receptor. Science 377, eabn7065 (2022).

    Article  Google Scholar 

  147. Sadybekov, A. A. et al. Synthon-based ligand discovery in virtual libraries of over 11 billion compounds. Nature 601, 452–459 (2022).

    Article  Google Scholar 

  148. Buttenschoen, M., Morris, G. M. & Deane, C. M. PoseBusters: AI-based docking methods fail to generate physically valid poses or generalise to novel sequences. Chem. Sci. 15, 3130–3139 (2024).

    Article  Google Scholar 

  149. Luescher, M. U. & Gallou, F. Interactions of multiple metrics and environmental indicators to assess processes, detect environmental hotspots, and guide future development. Green Chem. 26, 5239–5252 (2024).

    Article  Google Scholar 

  150. Lica, E. et al. The need to integrate mass- and energy-based metrics with life cycle impacts for sustainable chemicals manufacture. Green Chem. 26, 9300–9309 (2024).

    Article  Google Scholar 

  151. Luescher, M. U., Gallou, F. & Lipshutz, B. H. The impact of earth-abundant metals as a replacement for Pd in cross coupling reactions. Chem. Sci. 15, 9016–9025 (2024).

    Article  Google Scholar 

Download references

Acknowledgements

B.A.G., N.O. and E.L. were supported by the Institute for Basic Science, Korea (project code IBS-R020-D1). A.Ż.-D. acknowledges support from the National Center of Science, NCN, Poland (award SONATA 2020/39/D/ST4/01890).

Author information

Authors and Affiliations

Authors

Contributions

B.A.G. wrote the manuscript with the help of other co-authors.

Corresponding author

Correspondence to Bartosz A. Grzybowski.

Ethics declarations

Competing interests

B.A.G. is a stakeholder of Allchemy, Inc.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Vânia Zeidler and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Biosecure act: https://www.pharmaceutical-technology.com/analyst-comment/biosecure-act-wuxi-drugs-us-market/

Living Foundries: https://www.darpa.mil/news-events/2021-12-08

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grzybowski, B.A., Żądło-Dobrowolska, A., Onishchenko, N. et al. Sustainable production of chemicals by algorithm-assisted (bio)synthesis. Nat Rev Bioeng 3, 791–803 (2025). https://doi.org/10.1038/s44222-025-00312-7

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44222-025-00312-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing