Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Polyethylene glycol immunogenicity in nanomedicine

Abstract

Polyethylene glycol (PEG) endows nanomedicines with stealth properties, reducing interactions with immune cells, prolonging blood circulation and stabilizing lipid-based formulations. However, anti-PEG antibodies, either pre-existing or induced by PEGylated medicines and vaccines, might adversely affect the safety and efficacy of nanomedicines by altering nanocarrier biodistribution, inducing unwanted inflammatory responses, destabilizing lipid formulations and causing hypersensitivity reactions. Therefore, the effect of PEG immunogenicity on nanomedicines should be critically assessed, and alternative approaches explored. In this Review, we first discuss PEG immunogenicity and the sources, detection and effects of anti-PEG antibodies. We then highlight strategies to address PEG immunogenicity, including the adjustment of dosing, routes and timing of nanomedicine administration, competition with high-molecular-mass PEG, engineering strategies to improve stealth effects of PEG and the design of complement inhibitors to reduce opsonization. In addition, we examine approaches for the design of PEG-free stealth nanomedicines, such as the use of alternative polymers, protein nanocages and biomimetic particles cloaked with cell membranes, serum components or bioactive molecules to prevent immune system recognition. Finally, we explore the application of anti-PEG antibodies in the creation of artificial cell receptors, reloadable hydrogels and bispecific antibodies for targeted delivery of PEGylated therapeutics.

Key points

  • Polyethylene glycol (PEG) is commonly incorporated in preclinical and clinical nanomedicines.

  • Immune responses to PEG depend on the immunogenicity of the nanomedicine cargo.

  • Anti-PEG antibodies have been detected in the circulation of individuals, albeit at low concentrations in the majority of people.

  • A small population of individuals have high levels of anti-PEG antibodies and might thus be at risk of loss of treatment efficacy of nanomedicines and development of hypersensitivity reactions.

  • Strategies to reduce PEG immunogenicity have mainly been tested in animal models thus far and remain to be clinically validated.

  • Standardization of assays and experimental testing of PEG and its alternatives will accelerate the identification of clinically useful solutions to PEG immunogenicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anti-polyethylene glycol antibodies.
Fig. 2: Measurement of anti-PEG antibody responses in humans.
Fig. 3: Points of intervention and engineering strategies to address PEG immunogenicity in nanomedicines.
Fig. 4: Polyethylene glycol alternatives.

Similar content being viewed by others

References

  1. Davis, F. F. The origin of pegnology. Adv. Drug Deliv. Rev. 54, 457–458 (2002).

    Article  Google Scholar 

  2. Gao, Y., Joshi, M., Zhao, Z. & Mitragotri, S. PEGylated therapeutics in the clinic. Bioeng. Transl. Med. 9, e10600 (2024).

    Article  Google Scholar 

  3. Arturson, P., Laakso, T. & Edman, P. Acrylic microspheres in vivo IX: blood elimination kinetics and organ distribution of microparticles with different surface characteristics. J. Pharm. Sci. 72, 1415–1420 (1983).

    Article  Google Scholar 

  4. Klibanov, A. L., Maruyama, K., Torchilin, V. P. & Huang, L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 268, 235–237 (1990).

    Article  Google Scholar 

  5. López-Estevez, A. M., Gref, R. & Alonso, M. J. A journey through the history of PEGylated drug delivery nanocarriers. Drug Deliv. Transl. Res. 14, 1–6 (2024).

    Article  Google Scholar 

  6. Suk, J. S., Xu, Q., Kim, N., Hanes, J. & Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 99, 28–51 (2016).

    Article  Google Scholar 

  7. Walkey, C. D., Olsen, J. B., Guo, H., Emili, A. & Chan, W. C. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 134, 2139–2147 (2012).

    Article  Google Scholar 

  8. Du, X. J. et al. Regulating the surface poly(ethylene glycol) density of polymeric nanoparticles and evaluating its role in drug delivery in vivo. Biomaterials 69, 1–11 (2015).

    Article  Google Scholar 

  9. Chen, B.-M. et al. Measurement of pre-existing IgG and IgM antibodies against polyethylene glycol in healthy individuals. Anal. Chem. 88, 10661–10666 (2016). This article reports detailed assay validation and measurement of pre-existing anti-PEG antibodies in a large cohort of healthy donors.

    Article  Google Scholar 

  10. Yang, Q. et al. Analysis of pre-existing IgG and IgM antibodies against polyethylene glycol (PEG) in the general population. Anal. Chem. 88, 11804–11812 (2016).

    Article  Google Scholar 

  11. Ju, Y. et al. Anti-PEG antibodies boosted in humans by SARS-CoV-2 lipid nanoparticle mRNA vaccine. ACS Nano 16, 11769–11780 (2022). This article reports that COVID 19 mRNA vaccines can increase the concentrations of both anti-PEG IgG and IgM antibodies.

    Article  Google Scholar 

  12. Chen, B. M., Cheng, T. L. & Roffler, S. R. Polyethylene glycol immunogenicity: theoretical, clinical, and practical aspects of anti-polyethylene glycol antibodies. ACS Nano 15, 14022–14048 (2021). This review discusses PEG immunogenicity and anti-PEG antibodies.

    Article  Google Scholar 

  13. Bavli, Y. et al. Anti-PEG antibodies before and after a first dose of Comirnaty® (mRNA-LNP-based SARS-CoV-2 vaccine). J. Control. Rel. 354, 316–322 (2023).

    Article  Google Scholar 

  14. Tenchov, R., Sasso, J. M. & Zhou, Q. A. PEGylated lipid nanoparticle formulations: immunological safety and efficiency perspective. Bioconjug. Chem. 34, 941–960 (2023).

    Article  Google Scholar 

  15. Fu, J., Wu, E., Li, G., Wang, B. & Zhan, C. Anti-PEG antibodies: current situation and countermeasures. Nano Today 55, 102163 (2024).

    Article  Google Scholar 

  16. Gaballa, S. A. et al. Treatment-induced and pre-existing anti-PEG antibodies: prevalence, clinical implications, and future perspectives. J. Pharm. Sci. 113, 555–578 (2024).

    Article  Google Scholar 

  17. Simberg, D. & Moghimi, S. M. Anti-poly (ethylene glycol)(PEG) antibodies: from where are we coming and where are we going. J. Nanotheranos. 5, 99–103 (2024).

    Article  Google Scholar 

  18. Lee, C.-C. et al. Structural basis of polyethylene glycol recognition by antibody. J. Biomed. Sci. 27, 1–13 (2020).

    Article  Google Scholar 

  19. Huckaby, J. T. et al. Structure of an anti-PEG antibody reveals an open ring that captures highly flexible PEG polymers. Commun. Chem. 3, 124 (2020).

    Article  Google Scholar 

  20. Nguyen, M.-T. T. et al. Structural determination of an antibody that specifically recognizes polyethylene glycol with a terminal methoxy group. Commun. Chem. 5, 88 (2022).

    Article  Google Scholar 

  21. Su, Y. C. et al. Conditional internalization of PEGylated nanomedicines by PEG engagers for triple negative breast cancer therapy. Nat. Commun. 8, 15507 (2017). This article reports that pre-targeting bispecific PEG engagers to cancer cells can enhance internalization and efficacy of PEGylated nanomedicines.

    Article  Google Scholar 

  22. Chang, T.-C., Chen, B.-M., Wu, J.-Y., Cheng, T.-L. & Roffler, S. Impact of anti-PEG antibody affinity on accelerated blood clearance of pegylated epoetin beta in mice. Biomed. Pharmacother. 146, 112502 (2022).

    Article  Google Scholar 

  23. Hsiao, C. Y. et al. Engineering a high-affinity anti-methoxy poly(ethylene glycol) (mPEG) antibody for sensitive immunosensing of mPEGylated therapeutics and mPEG molecules. Bioconjug. Chem. 33, 2180–2188 (2022).

    Article  Google Scholar 

  24. Su, Y. C., Chen, B. M., Chuang, K. H., Cheng, T. L. & Roffler, S. R. Sensitive quantification of PEGylated compounds by second-generation anti-poly(ethylene glycol) monoclonal antibodies. Bioconjug. Chem. 21, 1264–1270 (2010).

    Article  Google Scholar 

  25. Mima, Y., Hashimoto, Y., Shimizu, T., Kiwada, H. & Ishida, T. Anti-PEG IgM is a major contributor to the accelerated blood clearance of polyethylene glycol-conjugated protein. Mol. Pharm. 12, 2429–2435 (2015).

    Article  Google Scholar 

  26. Kozma, G. T. et al. Pseudo-anaphylaxis to polyethylene glycol (PEG)-coated liposomes: roles of anti-PEG IgM and complement activation in a porcine model of human infusion reactions. ACS Nano 13, 9315–9324 (2019).

    Article  Google Scholar 

  27. Moghimi, S. M. et al. Perspectives on complement and phagocytic cell responses to nanoparticles: from fundamentals to adverse reactions. J. Control. Rel. 356, 115–129 (2023).

    Article  Google Scholar 

  28. Liu, Y. et al. The strategy used by naïve anti-PEG antibodies to capture flexible and featureless PEG chains. J. Control. Rel. 380, 396–403 (2025).

    Article  Google Scholar 

  29. Povsic, T. J. et al. Pre-existing anti-PEG antibodies are associated with severe immediate allergic reactions to pegnivacogin, a PEGylated aptamer. J. Allergy Clin. Immunol. 138, 1712–1715 (2016).

    Article  Google Scholar 

  30. Sellaturay, P., Nasser, S., Islam, S., Gurugama, P. & Ewan, P. W. Polyethylene glycol (PEG) is a cause of anaphylaxis to the Pfizer/BioNTech mRNA COVID‐19 vaccine. Clin. Exp. Allergy 51, 861 (2021).

    Article  Google Scholar 

  31. Chen, B.-M. et al. Liposomes with low levels of grafted poly(ethylene glycol) remain susceptible to destabilization by anti-poly(ethylene glycol) antibodies. ACS Nano 18, 22122–22138 (2024).

    Article  Google Scholar 

  32. Chen, E. et al. Premature drug release from polyethylene glycol (PEG)-coated liposomal doxorubicin via formation of the membrane attack complex. ACS Nano 14, 7808–7822 (2020).

    Article  Google Scholar 

  33. Li, Y. et al. Complement opsonization of nanoparticles: differences between humans and preclinical species. J. Control. Rel. 338, 548–556 (2021).

    Article  Google Scholar 

  34. Chen, W.-A. et al. Antibodies against poly (ethylene glycol) activate innate immune cells and induce hypersensitivity reactions to PEGylated nanomedicines. ACS Nano 17, 5757–5772 (2023). This article reports the mechanism of hypersensitivity reactions induced by anti-PEG IgG antibodies against nanomedicines.

    Article  Google Scholar 

  35. Warren, C. M. et al. Assessment of allergic and anaphylactic reactions to mRNA COVID-19 vaccines with confirmatory testing in a US regional health system. JAMA Netw. Open 4, e2125524 (2021).

    Article  Google Scholar 

  36. Troelnikov, A. et al. Basophil reactivity to BNT162b2 is mediated by PEGylated lipid nanoparticles in patients with PEG allergy. J. Allergy Clin. Immunol. 148, 91–95 (2021).

    Article  Google Scholar 

  37. Mouri, M. et al. Serum polyethylene glycol-specific IgE and IgG in patients with hypersensitivity to COVID-19 mRNA vaccines. Allergol. Int. 71, 512–519 (2022).

    Article  Google Scholar 

  38. Kan, A. K. C., Chiang, V., Ip, W. K., Au, E. Y. & Li, P. H. Anti‐polyethylene glycol (PEG) antibody isotypes may predict PEG‐associated allergy and COVID‐19 protection among patients with history of suspected COVID‐19 vaccine allergy. Clin. Transl. Allergy 13, e12284 (2023).

    Article  Google Scholar 

  39. Prussin, C. & Metcalfe, D. D. IgE, mast cells, basophils, and eosinophils. J. Allergy Clin. Immunol. 111, S486–S494 (2003).

    Article  Google Scholar 

  40. Zhou, Z.-H. et al. Anti-PEG IgE in anaphylaxis associated with polyethylene glycol. J. Allergy Clin. Immunol. Pract. 9, 1731–1733.e3 (2021).

    Article  Google Scholar 

  41. Pabst, O. New concepts in the generation and functions of IgA. Nat. Rev. Immunol. 12, 821–832 (2012).

    Article  Google Scholar 

  42. Lubich, C. et al. The mystery of antibodies against polyethylene glycol (PEG) — what do we know? Pharm. Res. 33, 2239–2249 (2016).

    Article  Google Scholar 

  43. Deuker, M. F., Mailänder, V., Morsbach, S. & Landfester, K. Anti-PEG antibodies enriched in the protein corona of PEGylated nanocarriers impact the cell uptake. Nanoscale Horiz. 8, 1377–1385 (2023).

    Article  Google Scholar 

  44. Ibrahim, M. et al. Investigation of anti-PEG antibody response to PEG-containing cosmetic products in mice. J. Control. Rel. 354, 260–267 (2023).

    Article  Google Scholar 

  45. Chang, C.-J. et al. A genome-wide association study identifies a novel susceptibility locus for the immunogenicity of polyethylene glycol. Nat. Commun. 8, 522 (2017).

    Article  Google Scholar 

  46. Ishida, T., Wang, X., Shimizu, T., Nawata, K. & Kiwada, H. PEGylated liposomes elicit an anti-PEG IgM response in a T cell-independent manner. J. Control. Rel. 122, 349–355 (2007).

    Article  Google Scholar 

  47. Shen, L. et al. Free PEG suppresses anaphylaxis to PEGylated nanomedicine in swine. ACS Nano 18, 8733–8744 (2024). This article reports that free PEG can help block hypersensitivity reactions caused by anti-PEG antibodies in a large animal model.

    Article  Google Scholar 

  48. Stavnsbjerg, C. et al. Accelerated blood clearance and hypersensitivity by PEGylated liposomes containing TLR agonists. J. Control. Rel. 342, 337–344 (2022).

    Article  Google Scholar 

  49. Guerrini, G. et al. Monitoring anti-PEG antibodies level upon repeated lipid nanoparticle-based COVID-19 vaccine administration. Int. J. Mol. Sci. 23, 8838 (2022).

    Article  Google Scholar 

  50. Kozma, G. T. et al. Role of anti-polyethylene glycol (PEG) antibodies in the allergic reactions to PEG-containing COVID-19 vaccines: evidence for immunogenicity of PEG. Vaccine 41, 4561–4570 (2023).

    Article  Google Scholar 

  51. Li, Y. et al. Optimized enzyme-linked immunosorbent assay for anti-PEG antibody detection in healthy donors and patients treated with PEGylated liposomal doxorubicin. Mol. Pharm. 21, 3053–3060 (2024).

    Article  Google Scholar 

  52. Moghimi, S. M. The effect of methoxy-PEG chain length and molecular architecture on lymph node targeting of immuno-PEG liposomes. Biomaterials 27, 136–144 (2006).

    Article  Google Scholar 

  53. Reddy, S. T. et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat. Biotechnol. 25, 1159–1164 (2007).

    Article  Google Scholar 

  54. Nakamura, T. et al. The effect of size and charge of lipid nanoparticles prepared by microfluidic mixing on their lymph node transitivity and distribution. Mol. Pharm. 17, 944–953 (2020).

    Article  Google Scholar 

  55. Lee, Y. et al. Development of lipid nanoparticle formulation for the repeated administration of mRNA therapeutics. Biomater. Res. 28, 0017 (2024).

    Article  Google Scholar 

  56. Kavita, U., Miller, W., Ji, Q. C. & Pillutla, R. C. A fit-for-purpose method for the detection of human antibodies to surface-exposed components of BMS-986263, a lipid nanoparticle-based drug product containing a siRNA drug substance. AAPS J. 21, 1–13 (2019).

    Article  Google Scholar 

  57. Lin, Y. C. et al. Accelerated clearance by antibodies against methoxy PEG depends on pegylation architecture. J. Control. Rel. 354, 354–367 (2023).

    Article  Google Scholar 

  58. Li, Z. et al. Development of anti-PEG IgG/IgM/IgE ELISA assays for profiling anti-PEG immunoglobulin response in PEG-sensitized individuals and patients with alpha-gal allergy. J. Control. Rel. 366, 342–348 (2024).

    Article  Google Scholar 

  59. Pengo, V., Biasiolo, A., Bison, E., Chantarangkul, V. & Tripodi, A. Antiphospholipid antibody ELISAs: survey on the performance of clinical laboratories assessed by using lyophilized affinity-purified IgG with anticardiolipin and anti-β2-glycoprotein I activity. Thromb. Res. 120, 127–133 (2007).

    Article  Google Scholar 

  60. Moghimi, S. M., Simberg, D., Skotland, T., Yaghmur, A. & Hunter, A. C. The interplay between blood proteins, complement, and macrophages on nanomedicine performance and responses. J. Pharmacol. Exp. Ther. 370, 581–592 (2019).

    Article  Google Scholar 

  61. Moghimi, S. M., Simberg, D., Papini, E. & Farhangrazi, Z. S. Complement activation by drug carriers and particulate pharmaceuticals: principles, challenges and opportunities. Adv. Drug Deliv. Rev. 157, 83–95 (2020).

    Article  Google Scholar 

  62. Vu, V. P. et al. Immunoglobulin deposition on biomolecule corona determines complement opsonization efficiency of preclinical and clinical nanoparticles. Nat. Nanotechnol. 14, 260–268 (2019).

    Article  Google Scholar 

  63. Li, Y. et al. Inhibition of acute complement responses towards bolus-injected nanoparticles using targeted short-circulating regulatory proteins. Nat. Nanotechnol. 19, 246–254 (2024). This article reports the design of recombinant complement inhibitors to improve nanomedicine efficacy and safety.

    Article  Google Scholar 

  64. Li, Y. et al. Nanoparticle-binding immunoglobulins predict variable complement responses in healthy and diseased cohorts. ACS Nano 18, 28649–28658 (2024).

    Article  Google Scholar 

  65. Mak, T. W. & Saunders, M. E. The Immune Response: Basic and Clinical Principles (Academic Press, 2005).

  66. Pedersen, M. B. et al. Curvature of synthetic and natural surfaces is an important target feature in classical pathway complement activation. J. Immunol. 184, 1931–1945 (2010).

    Article  Google Scholar 

  67. Feinstein, A., Richardson, N. & Taussig, M. I. Immunoglobulin flexibility in complement activation. Immunol. Today 7, 169–174 (1986).

    Article  Google Scholar 

  68. Lachmann, P. J. Looking back on the alternative complement pathway. Immunobiology 223, 519–523 (2018).

    Article  Google Scholar 

  69. Nagayama, S., Ogawara, K.-I, Fukuoka, Y., Higaki, K. & Kimura, T. Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics. Int. J. Pharm. 342, 215–221 (2007).

    Article  Google Scholar 

  70. Aragnol, D. & Leserman, L. D. Immune clearance of liposomes inhibited by an anti-Fc receptor antibody in vivo. Proc. Natl Acad. Sci. USA 83, 2699–2703 (1986).

    Article  Google Scholar 

  71. Ishida, T. et al. Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J. Control. Rel. 112, 15–25 (2006).

    Article  Google Scholar 

  72. Ishida, T. & Kiwada, H. Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes. Int. J. Pharm. 354, 56–62 (2008).

    Article  Google Scholar 

  73. Lin, S. et al. Reexamining in vivo fate of paclitaxel-loaded polymeric micelles. Nano Today 56, 102255 (2024).

    Article  Google Scholar 

  74. Hsieh, Y. C. et al. Pre-existing anti-polyethylene glycol antibody reduces the therapeutic efficacy and pharmacokinetics of PEGylated liposomes. Theranostics 8, 3164–3175 (2018).

    Article  Google Scholar 

  75. Chang, T. C. et al. Both IgM and IgG antibodies against polyethylene glycol can alter the biological activity of methoxy polyethylene glycol-epoetin beta in mice. Pharmaceutics 12, 15 (2019).

    Article  Google Scholar 

  76. Omata, D. et al. Effect of anti-PEG antibody on immune response of mRNA-loaded lipid nanoparticles. Mol. Pharm. 21, 5672–5680 (2024).

    Article  Google Scholar 

  77. Yang, M. et al. Effects of PEG antibodies on in vivo performance of LNP-mRNA vaccines. Int. J. Pharm. 650, 123695 (2024).

    Article  Google Scholar 

  78. Liu, Y.-L. et al. Impact of pre-existing anti-polyethylene glycol antibodies on the pharmacokinetics and efficacy of a COVID-19 mRNA vaccine (Comirnaty) in vivo. Biomater. Res. 28, 0112 (2024).

    Article  Google Scholar 

  79. Senti, M. E. et al. Anti-PEG antibodies compromise the integrity of PEGylated lipid-based nanoparticles via complement. J. Control. Rel. 341, 475–486 (2022).

    Article  Google Scholar 

  80. Chanan-Khan, A. et al. Complement activation following first exposure to pegylated liposomal doxorubicin (Doxil®): possible role in hypersensitivity reactions. Ann. Oncol. 14, 1430–1437 (2003).

    Article  Google Scholar 

  81. Semple, S. C. et al. Immunogenicity and rapid blood clearance of liposomes containing polyethylene glycol–lipid conjugates and nucleic acid. J. Pharmacol. Exp. Ther. 312, 1020–1026 (2005).

    Article  Google Scholar 

  82. Judge, A., McClintock, K., Phelps, J. R. & MacLachlan, I. Hypersensitivity and loss of disease site targeting caused by antibody responses to PEGylated liposomes. Mol. Ther. 13, 328–337 (2006).

    Article  Google Scholar 

  83. Kikuchi, Y. & Kaplan, A. P. A role for C5a in augmenting IgG-dependent histamine release from basophils in chronic urticaria. J. Allergy Clin. Immunol. 109, 114–118 (2002).

    Article  Google Scholar 

  84. El-Lati, S. G., Church, M. K. & Dahinden, C. A. Complement peptides C3a- and C5a-induced mediator release from dissociated human skin mast cells. J. Invest. Dermatol. 102, 803–806 (1994).

    Article  Google Scholar 

  85. Guo, R.-F. & Ward, P. A. Role of C5a in inflammatory responses. Annu. Rev. Immunol. 23, 821–852 (2005).

    Article  Google Scholar 

  86. Szebeni, J. Complement activation-related pseudoallergy: a stress reaction in blood triggered by nanomedicines and biologicals. Mol. Immunol. 61, 163–173 (2014).

    Article  Google Scholar 

  87. Kozma, G. T., Shimizu, T., Ishida, T. & Szebeni, J. Anti-PEG antibodies: properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals. Adv. Drug. Deliv. Rev. 154, 163–175 (2020).

    Article  Google Scholar 

  88. Jönsson, F. et al. An IgG-induced neutrophil activation pathway contributes to human drug-induced anaphylaxis. Sci. Transl. Med. 11, eaat1479 (2019).

    Article  Google Scholar 

  89. Vultaggio, A. et al. Manifestations of antidrug antibodies response: hypersensitivity and infusion reactions. J. Interferon Cytokine Res. 34, 946–952 (2014).

    Article  Google Scholar 

  90. Weber, F. et al. First infusion reactions are mediated by FcγRIIIb and neutrophils. Pharm. Res. 35, 1–11 (2018).

    Article  Google Scholar 

  91. Jönsson, F. et al. Mouse and human neutrophils induce anaphylaxis. J. Clin. Invest. 121, 1484–1496 (2011).

    Article  Google Scholar 

  92. Moghimi, S. M. & Simberg, D. Translational gaps in animal models of human infusion reactions to nanomedicines. Nanomedicine 13, 973–975 (2018).

    Article  Google Scholar 

  93. Ong, G. L. & Mattes, M. J. Mouse strains with typical mammalian levels of complement activity. J. Immunol. Methods 125, 147–158 (1989).

    Article  Google Scholar 

  94. Beutier, H. et al. Platelets expressing IgG receptor FcγRIIA/CD32A determine the severity of experimental anaphylaxis. Sci. Immunol. 3, eaan5997 (2018).

    Article  Google Scholar 

  95. Li, S. et al. Voluntary‐opsonization‐enabled precision nanomedicines for inflammation treatment. Adv. Mater. 33, 2006160 (2021).

    Article  Google Scholar 

  96. Armstrong, R. A. Alzheimer’s disease and the eye. J. Optom. 2, 103–111 (2009).

    Article  Google Scholar 

  97. Lipsky, P. E. et al. Pegloticase immunogenicity: the relationship between efficacy and antibody development in patients treated for refractory chronic gout. Arthritis Res. Ther. 16, 1–8 (2014).

    Article  Google Scholar 

  98. Gupta, S. et al. Association of immune response with efficacy and safety outcomes in adults with phenylketonuria administered pegvaliase in phase 3 clinical trials. eBioMedicine 37, 366–373 (2018).

    Article  Google Scholar 

  99. Takata, H. et al. Anti-PEG IgM production induced by PEGylated liposomes as a function of administration route. J. Control. Rel. 360, 285–292 (2023). This article demonstrates the effect of administration routes on the production of anti-PEG antibodies induced by PEGylated liposomes.

    Article  Google Scholar 

  100. Grenier, P., Chenard, V. & Bertrand, N. The mechanisms of anti-PEG immune response are different in the spleen and the lymph nodes. J. Control. Rel. 353, 611–620 (2023).

    Article  Google Scholar 

  101. Münter, R., Christensen, E., Andresen, T. L. & Larsen, J. B. Studying how administration route and dose regulates antibody generation against LNPs for mRNA delivery with single-particle resolution. Mol. Ther. Methods Clin. Dev. 29, 450–459 (2023).

    Article  Google Scholar 

  102. Kagan, L. et al. The role of the lymphatic system in subcutaneous absorption of macromolecules in the rat model. Eur. J. Pharm. Biopharm. 67, 759–765 (2007).

    Article  Google Scholar 

  103. Wang, H. et al. Polyethylene glycol (PEG)-associated immune responses triggered by clinically relevant lipid nanoparticles in rats. npj Vaccines 8, 169 (2023).

    Article  Google Scholar 

  104. Kent, S. J. et al. Blood distribution of SARS-CoV-2 lipid nanoparticle mRNA vaccine in humans. ACS Nano 18, 27077–27089 (2024).

    Article  Google Scholar 

  105. Shiraishi, K. et al. Exploring the relationship between anti-PEG IgM behaviors and PEGylated nanoparticles and its significance for accelerated blood clearance. J. Control. Rel. 234, 59–67 (2016).

    Article  Google Scholar 

  106. McSweeney, M. D. et al. Overcoming anti-PEG antibody mediated accelerated blood clearance of PEGylated liposomes by pre-infusion with high molecular weight free PEG. J. Control. Rel. 311, 138–146 (2019).

    Article  Google Scholar 

  107. McSweeney, M. D. et al. Pre-treatment with high molecular weight free PEG effectively suppresses anti-PEG antibody induction by PEG-liposomes in mice. J. Control. Rel. 329, 774–781 (2021).

    Article  Google Scholar 

  108. Rudmann, D. G., Alston, J. T., Hanson, J. C. & Heidel, S. High molecular weight polyethylene glycol cellular distribution and PEG-associated cytoplasmic vacuolation is molecular weight dependent and does not require conjugation to proteins. Toxicol. Pathol. 41, 970–983 (2013).

    Article  Google Scholar 

  109. Fletcher, A. M. et al. Adverse vacuolation in multiple tissues in cynomolgus monkeys following repeat-dose administration of a PEGylated protein. Toxicol. Lett. 317, 120–129 (2019).

    Article  Google Scholar 

  110. Chiang, V. et al. Polyethylene glycol allergy: risks of skin testing and complement-mediated anaphylaxis. J. Investig. Allergol. Clin. Immunol. 71–73 (2023).

  111. Hamad, I., Hunter, A., Szebeni, J. & Moghimi, S. M. Poly (ethylene glycol)s generate complement activation products in human serum through increased alternative pathway turnover and a MASP-2-dependent process. Mol. Immunol. 46, 225–232 (2008).

    Article  Google Scholar 

  112. Liu, M. et al. Branched PEG-modification: a new strategy for nanocarriers to evade of the accelerated blood clearance phenomenon and enhance anti-tumor efficacy. Biomaterials 283, 121415 (2022).

    Article  Google Scholar 

  113. Liu, M. et al. ‘Y-type’ PEG modified liposomes could eliminate the accelerated blood clearance (ABC) phenomenon and improved tumor therapy. Appl. Mater. Today 32, 101853 (2023).

    Article  Google Scholar 

  114. Maiti, D., Yokoyama, M. & Shiraishi, K. Impact of the hydrophilicity of poly (sarcosine) on poly (ethylene glycol)(PEG) for the suppression of anti-PEG antibody binding. ACS Omega 9, 34577–34588 (2024).

    Article  Google Scholar 

  115. Xu, H., Wang, K. Q., Deng, Y. H. & Chen, D. W. Effects of cleavable PEG-cholesterol derivatives on the accelerated blood clearance of PEGylated liposomes. Biomaterials 31, 4757–4763 (2010).

    Article  Google Scholar 

  116. Suzuki, T. et al. PEG shedding-rate-dependent blood clearance of PEGylated lipid nanoparticles in mice: faster PEG shedding attenuates anti-PEG IgM production. Int. J. Pharm. 588, 119792 (2020).

    Article  Google Scholar 

  117. Sui, D. et al. Cleavable-branched polymer-modified liposomes reduce accelerated blood clearance and enhance photothermal therapy. ACS Appl. Mater. Interfaces 15, 32110–32120 (2023).

    Article  Google Scholar 

  118. Pannuzzo, M. et al. Overcoming nanoparticle-mediated complement activation by surface PEG pairing. Nano Lett. 20, 4312–4321 (2020).

    Article  Google Scholar 

  119. Tian, Y. et al. Engineering poly (ethylene glycol) nanoparticles for accelerated blood clearance inhibition and targeted drug delivery. J. Am. Chem. Soc. 144, 18419–18428 (2022).

    Article  Google Scholar 

  120. Frey, H., Matthes, R. & Dreier, P. Poly (ethylene glycol) having c1 to c3-alkyloxymethyl side chains, bioconjugates thereof, process for its preparation and its use. US patent 20240317934A1 (2024). This patent reports the engineering of PEG to decrease its intrinsic immune recognition.

  121. Sands, E. et al. Tolerogenic nanoparticles mitigate the formation of anti-drug antibodies against pegylated uricase in patients with hyperuricemia. Nat. Commun. 13, 272 (2022). This article reports immune modulation of the immune system to control PEG immunogenicity.

    Article  Google Scholar 

  122. Meszaros, T. et al. Factor H inhibits complement activation induced by liposomal and micellar drugs and the therapeutic antibody rituximab in vitro. Nanomedicine 12, 1023–1031 (2016).

    Article  Google Scholar 

  123. Wang, Z. et al. Combating complement’s deleterious effects on nanomedicine by conjugating complement regulatory proteins to nanoparticles. Adv. Mater. 34, 2107070 (2022).

    Article  Google Scholar 

  124. Park, J. H. et al. Cloaking silica nanoparticles with functional protein coatings for reduced complement activation and cellular uptake. ACS Nano 14, 11950–11961 (2020).

    Article  Google Scholar 

  125. Duong, B. H. et al. Decoration of T-independent antigen with ligands for CD22 and Siglec-G can suppress immunity and induce B cell tolerance in vivo. J. Exp. Med. 207, 173 (2010).

    Article  Google Scholar 

  126. Macauley, M. S. et al. Antigenic liposomes displaying CD22 ligands induce antigen-specific B cell apoptosis. J. Clin. Invest. 123, 3074–3083 (2013).

    Article  Google Scholar 

  127. Qian, H. et al. Recent advances on next generation of polyzwitterion-based nano-vectors for targeted drug delivery. J. Control. Rel. 343, 492–505 (2022).

    Article  Google Scholar 

  128. Overby, C., Park, S., Summers, A. & Benoit, D. S. W. Zwitterionic peptides: tunable next-generation stealth nanoparticle modifications. Bioact. Mater. 27, 113–124 (2023).

    Google Scholar 

  129. Banskota, S. et al. Genetically encoded stealth nanoparticles of a zwitterionic polypeptide–paclitaxel conjugate have a wider therapeutic window than Abraxane in multiple tumor models. Nano Lett. 20, 2396–2409 (2020).

    Article  Google Scholar 

  130. Jackson, M. A. et al. Zwitterionic nanocarrier surface chemistry improves siRNA tumor delivery and silencing activity relative to polyethylene glycol. ACS Nano 11, 5680–5696 (2017). This article demonstrates the potential of zwitterionic polymers as PEG alternatives for the creation of stealth nanomedicines.

    Article  Google Scholar 

  131. Lee, J. et al. Ultrastable and redispersible zwitterionic bottlebrush micelles for drug delivery. ACS Appl. Mater. Interfaces 16, 55118–55129 (2024).

    Google Scholar 

  132. Moitra, P. et al. Context-responsive nanoparticle derived from synthetic zwitterionic ionizable phospholipids in targeted CRISPR/Cas9 therapy for basal-like breast cancer. ACS Nano 18, 9199–9220 (2024).

    Article  Google Scholar 

  133. Zhang, Z., Sun, H., Giannino, J., Wu, Y. & Cheng, C. Biodegradable zwitterionic polymers as PEG alternatives for drug delivery. J. Polym. Sci. 62, 2231–2250 (2024).

    Article  Google Scholar 

  134. Najmina, M. et al. A stealthiness evaluation of main chain carboxybetaine polymer modified into liposome. Pharmaceutics 16, 1271 (2024).

    Article  Google Scholar 

  135. Sanchez, A. et al. Substituting poly(ethylene glycol) lipids with poly(2-ethyl-2-oxazoline) lipids improves lipid nanoparticle repeat dosing. Adv. Healthc. Mater. 13, e2304033 (2024).

    Article  Google Scholar 

  136. Rajesh, S. et al. Lipidic poly (2-oxazoline)s as PEG replacement steric stabilisers for cubosomes. J. Colloid Sci. 623, 1142–1150 (2022).

    Article  Google Scholar 

  137. Tavano, R. et al. C1q-mediated complement activation and C3 opsonization trigger recognition of stealth poly (2-methyl-2-oxazoline)-coated silica nanoparticles by human phagocytes. ACS Nano 12, 5834–5847 (2018).

    Article  Google Scholar 

  138. Hoogenboom, R. & Schlaad, H. Thermoresponsive poly (2-oxazoline)s, polypeptoids, and polypeptides. Polym. Chem. 8, 24–40 (2017).

    Article  Google Scholar 

  139. Kang, D. D. et al. Engineering LNPs with polysarcosine lipids for mRNA delivery. Bioact. Mater. 37, 86–93 (2024).

    Google Scholar 

  140. Bayraktutan, H. et al. Polysarcosine functionalised cationic polyesters efficiently deliver self-amplifying mRNA. Polym. Chem. 15, 1862–1876 (2024).

    Article  Google Scholar 

  141. Yao, X., Qi, C., Sun, C., Huo, F. & Jiang, X. Poly (ethylene glycol) alternatives in biomedical applications. Nano Today 48, 101738 (2023).

    Article  Google Scholar 

  142. Hara, E. et al. Pharmacokinetic change of nanoparticulate formulation ‘Lactosome’ on multiple administrations. Int. Immunopharmacol. 14, 261–266 (2012).

    Article  Google Scholar 

  143. Negwer, I. et al. Monitoring drug nanocarriers in human blood by near-infrared fluorescence correlation spectroscopy. Nat. Commun. 9, 5306 (2018).

    Article  Google Scholar 

  144. Shay, T. et al. Conservation and divergence in the transcriptional programs of the human and mouse immune systems. Proc. Natl Acad. Sci. USA 110, 2946–2951 (2013).

    Article  Google Scholar 

  145. Berger, M. et al. Poly (vinyl pyrrolidone) derivatives as PEG alternatives for stealth, non-toxic and less immunogenic siRNA-containing lipoplex delivery. J. Control. Rel. 361, 87–101 (2023).

    Article  Google Scholar 

  146. Wu, L.-P. et al. Dendrimer end-terminal motif-dependent evasion of human complement and complement activation through IgM hitchhiking. Nat. Commun. 12, 4858 (2021).

    Article  Google Scholar 

  147. Janaszewska, A. et al. Pyrrolidone modification prevents PAMAM dendrimers from activation of pro-inflammatory signaling pathways in human monocytes. Mol. Pharm. 15, 12–20 (2018).

    Article  Google Scholar 

  148. Axioti, E. et al. Glycerol- and diglycerol-based polyesters: evaluation of backbone alterations upon nano-formulation performance. Colloids Surf. B Biointerfaces 236, 113828 (2024).

    Article  Google Scholar 

  149. Hoang Thi, T. T. et al. The importance of poly (ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation. Polymers 12, 298 (2020).

    Article  Google Scholar 

  150. Soshee, A., Zürcher, S., Spencer, N. D., Halperin, A. & Nizak, C. General in vitro method to analyze the interactions of synthetic polymers with human antibody repertoires. Biomacromolecules 15, 113–121 (2014).

    Article  Google Scholar 

  151. Hulugalla, K. et al. Glycopolymeric nanoparticles enrich less immunogenic protein coronas, reduce mononuclear phagocyte clearance, and improve tumor delivery compared to PEGylated nanoparticles. ACS Nano 18, 30540–30560 (2024).

    Article  Google Scholar 

  152. Hassanel, D. N. B. et al. Replacing poly (ethylene glycol) with RAFT lipopolymers in mRNA lipid nanoparticle systems for effective gene delivery. Int. J. Pharm. 665, 124695 (2024).

    Article  Google Scholar 

  153. Perrier, S. 50th anniversary perspective: RAFT polymerization. A user guide. Macromolecules 50, 7433–7447 (2017).

    Article  Google Scholar 

  154. Safdar, A., Wang, P., Muhaymin, A., Nie, G. & Li, S. From bench to bedside: platelet biomimetic nanoparticles as a promising carriers for personalized drug delivery. J. Control. Rel. 373, 128–144 (2024).

    Article  Google Scholar 

  155. Li, S. et al. Protein precoating modulates biomolecular coronas and nanocapsule–immune cell interactions in human blood. J. Mater. Chem. B 10, 7607–7621 (2022).

    Article  Google Scholar 

  156. Gravan, P. et al. Exploring the impact of nanoparticle stealth coatings in cancer models: from PEGylation to cell membrane-coating nanotechnology. ACS Appl. Mater. Interfaces 16, 2058–2074 (2024).

    Article  Google Scholar 

  157. Hu, C.-M. J. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 526, 118–121 (2015). This article demonstrates the potential and advantages of membrane-cloaked nanomedicines.

    Article  Google Scholar 

  158. Gao, C. et al. Treatment of atherosclerosis by macrophage-biomimetic nanoparticles via targeted pharmacotherapy and sequestration of proinflammatory cytokines. Nat. Commun. 11, 2622 (2020).

    Article  Google Scholar 

  159. Wang, D. et al. Neuronal membrane-derived nanodiscs for broad-spectrum neurotoxin detoxification. ACS Nano 18, 25069–25080 (2024).

    Article  Google Scholar 

  160. Zhang, K. et al. Recent advances in cell membrane coated biomimetic nanomedicines: from laboratory research to clinical application. Preprint at Authorea https://doi.org/10.22541/au.171816032.20485120/v1 (2024).

  161. Chan, M. H. et al. Integrated therapy platform of exosomal system: hybrid inorganic/organic nanoparticles with exosomes for cancer treatment. Nanoscale Horiz. 7, 352–367 (2022).

    Article  Google Scholar 

  162. Yong, T. et al. Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nat. Commun. 10, 3838 (2019).

    Article  Google Scholar 

  163. Qin, X. et al. Spontaneously right‐side‐out‐orientated coupling‐driven ROS‐sensitive nanoparticles on cell membrane inner leaflet for efficient renovation in vascular endothelial injury. Adv. Sci. 10, 2205093 (2023).

    Article  Google Scholar 

  164. Fan, Z., Zhou, H., Li, P. Y., Speer, J. E. & Cheng, H. Structural elucidation of cell membrane-derived nanoparticles using molecular probes. J. Mater. Chem. B 2, 8231–8238 (2014).

    Article  Google Scholar 

  165. Oh, J. Y. et al. Cloaking nanoparticles with protein corona shield for targeted drug delivery. Nat. Commun. 9, 4548 (2018).

    Article  Google Scholar 

  166. Iqbal, H. et al. A bioinspired doxorubicin-carried albumin nanocage against aggressive cancer via systemic targeting of tumor and lymph node metastasis. J. Control. Rel. 372, 829–845 (2024).

    Article  Google Scholar 

  167. Gheibi Hayat, S. M., Bianconi, V., Pirro, M. & Sahebkar, A. Stealth functionalization of biomaterials and nanoparticles by CD47 mimicry. Int. J. Pharm. 569, 118628 (2019).

    Article  Google Scholar 

  168. Jalil, A. R., Tobin, M. P. & Discher, D. E. Suppressing or enhancing macrophage engulfment through the use of CD47 and related peptides. Bioconjug. Chem. 33, 1989–1995 (2022).

    Article  Google Scholar 

  169. Gheibi Hayat, S. M., Jaafari, M. R., Hatamipour, M., Jamialahmadi, T. & Sahebkar, A. Harnessing CD47 mimicry to inhibit phagocytic clearance and enhance anti-tumor efficacy of nanoliposomal doxorubicin. Expert Opin. Drug Deliv. 17, 1049–1058 (2020).

    Article  Google Scholar 

  170. Spada, A., Emami, J., Tuszynski, J. A. & Lavasanifar, A. The uniqueness of albumin as a carrier in nanodrug delivery. Mol. Pharm. 18, 1862–1894 (2021).

    Article  Google Scholar 

  171. Zheng, B. et al. Modulating the tumoral SPARC content to enhance albumin-based drug delivery for cancer therapy. J. Control. Rel. 366, 596–610 (2024).

    Article  Google Scholar 

  172. Capomaccio, R. et al. Determination of the structure and morphology of gold nanoparticle–HSA protein complexes. Nanoscale 7, 17653–17657 (2015).

    Article  Google Scholar 

  173. Zaleski, M. H. et al. Conjugation chemistry markedly impacts toxicity and biodistribution of targeted nanoparticles, mediated by complement activation. Adv. Mater. 37, 2409945 (2024).

    Article  Google Scholar 

  174. Blume, J. E. et al. Rapid, deep and precise profiling of the plasma proteome with multi-nanoparticle protein corona. Nat. Commun. 11, 3662 (2020).

    Article  Google Scholar 

  175. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article  Google Scholar 

  176. Vaidya, A. et al. Expanding RNAi to kidneys, lungs, and spleen via selective organ targeting (SORT) siRNA lipid nanoparticles. Adv. Mater. 36, 2313791 (2024). This article reports a general approach to target lipid nanoparticles to different organs.

    Article  Google Scholar 

  177. Dilliard, S. A. et al. The interplay of quaternary ammonium lipid structure and protein corona on lung-specific mRNA delivery by selective organ targeting (SORT) nanoparticles. J. Control. Rel. 361, 361–372 (2023).

    Article  Google Scholar 

  178. Ding, T. et al. Reciprocal interaction with neutrophils facilitates cutaneous accumulation of liposomes. ACS Nano 18, 18769–18784 (2024).

    Article  Google Scholar 

  179. Luo, Z. et al. Neutrophil hitchhiking for drug delivery to the bone marrow. Nat. Nanotechnol. 18, 647–656 (2023).

    Article  Google Scholar 

  180. Kuang, J. et al. Nanoparticles hitchhike on monocytes for glioblastoma treatment after low-dose radiotherapy. ACS Nano 17, 13333–13347 (2023).

    Article  Google Scholar 

  181. Mu, Q. et al. Ligustrazine nanoparticle hitchhiking on neutrophils for enhanced therapy of cerebral ischemia–reperfusion injury. Adv. Sci. 10, 2301348 (2023).

    Article  Google Scholar 

  182. Kim, S. A. et al. Protein-based nanocages for vaccine development. J. Control. Rel. 353, 767–791 (2023).

    Article  Google Scholar 

  183. Lee, E. J., Lee, N. K. & Kim, I. S. Bioengineered protein-based nanocage for drug delivery. Adv. Drug Deliv. Rev. 106, 157–171 (2016).

    Article  Google Scholar 

  184. Brauer, D. D. et al. Systematic engineering of a protein nanocage for high-yield, site-specific modification. J. Am. Chem. Soc. 141, 3875–3884 (2019).

    Article  Google Scholar 

  185. Kwon, S. & Giessen, T. W. Engineered protein nanocages for concurrent RNA and protein packaging in vivo. ACS Synth. Biol. 11, 3504–3515 (2022).

    Article  Google Scholar 

  186. Yoo, J. D. et al. Designed ferritin nanocages displaying trimeric TRAIL and tumor-targeting peptides confer superior anti-tumor efficacy. Sci. Rep. 10, 19997 (2020).

    Article  Google Scholar 

  187. Zhang, J. et al. Cargo loading within ferritin nanocages in preparation for tumor-targeted delivery. Nat. Protoc. 16, 4878–4896 (2021).

    Article  Google Scholar 

  188. Ahn, B. et al. Four-fold channel-nicked human ferritin nanocages for active drug loading and pH-responsive drug release. Angew. Chem. Int. Ed. Engl. 57, 2909–2913 (2018).

    Article  Google Scholar 

  189. Divine, R. et al. Designed proteins assemble antibodies into modular nanocages. Science 372, eabd9994 (2021).

    Article  Google Scholar 

  190. Yang, E. C. et al. Computational design of non-porous pH-responsive antibody nanoparticles. Nat. Struct. Mol. Biol. 31, 1404–1412 (2024).

    Article  Google Scholar 

  191. Huddy, T. F. et al. Blueprinting extendable nanomaterials with standardized protein blocks. Nature 627, 898–904 (2024). This article reports the design of flexible protein building block system for the creation of new nanomedicines and nanomaterials.

    Article  Google Scholar 

  192. Rennie, C. et al. In vivo behavior of systemically administered encapsulin protein nanocages and implications for their use in targeted drug delivery. Adv. Ther. 7, 2300360 (2024).

    Article  Google Scholar 

  193. Herrmann, I. K., Wood, M. J. A. & Fuhrmann, G. Extracellular vesicles as a next-generation drug delivery platform. Nat. Nanotechnol. 16, 748–759 (2021).

    Article  Google Scholar 

  194. Cully, M. Exosome-based candidates move into the clinic. Nat. Rev. Drug Discov. 20, 6–7 (2021).

    Article  Google Scholar 

  195. Wiklander, O. P. B. et al. Antibody-displaying extracellular vesicles for targeted cancer therapy. Nat. Biomed. Eng. 8, 1453–1468 (2024).

    Article  Google Scholar 

  196. You, Y. et al. Intradermally delivered mRNA-encapsulating extracellular vesicles for collagen-replacement therapy. Nat. Biomed. Eng. 7, 887–900 (2023).

    Article  Google Scholar 

  197. Creeden, J. F. et al. Smart exosomes enhance PDAC targeted therapy. J. Control. Rel. 368, 413–429 (2024).

    Article  Google Scholar 

  198. Willms, E., Cabañas, C., Mäger, I., Wood, M. J. & Vader, P. Extracellular vesicle heterogeneity: subpopulations, isolation techniques, and diverse functions in cancer progression. Front. Immunol. 9, 738 (2018).

    Article  Google Scholar 

  199. Gupta, D. et al. Quantification of extracellular vesicles in vitro and in vivo using sensitive bioluminescence imaging. J. Extracell. Vesicles 9, 1800222 (2020).

    Article  Google Scholar 

  200. Whitehead, B. et al. Tumour exosomes display differential mechanical and complement activation properties dependent on malignant state: implications in endothelial leakiness. J. Extracell. Vesicles 4, 29685 (2015).

    Article  Google Scholar 

  201. Xia, Y., Zhang, J., Liu, G. & Wolfram, J. Immunogenicity of extracellular vesicles. Adv. Mater. 36, 2403199 (2024).

    Article  Google Scholar 

  202. Wu, J. P. et al. Reloadable multidrug capturing delivery system for targeted ischemic disease treatment. Sci. Transl. Med. 8, 365ra160 (2016).

    Article  Google Scholar 

  203. Chuang, K. H. et al. Endocytosis of PEGylated agents enhances cancer imaging and anticancer efficacy. Mol. Cancer Ther. 9, 1903–1912 (2010).

    Article  Google Scholar 

  204. Huang, W.-C. et al. Engineering chimeric receptors to investigate the size-and rigidity-dependent interaction of PEGylated nanoparticles with cells. ACS Nano 10, 648–662 (2016).

    Article  Google Scholar 

  205. Moles, E. et al. Delivery of PEGylated liposomal doxorubicin by bispecific antibodies improves treatment in models of high-risk childhood leukemia. Sci. Transl. Med. 15, eabm1262 (2023).

    Article  Google Scholar 

  206. Kim, J. et al. Translational development of a tumor junction opening technology. Sci. Rep. 12, 7753 (2022).

    Article  Google Scholar 

  207. Beyer, I. et al. Coadministration of epithelial junction opener JO-1 improves the efficacy and safety of chemotherapeutic drugs. Clin. Cancer Res. 18, 3340–3351 (2012).

    Article  Google Scholar 

  208. Chen, M. et al. A novel anti-tumor/anti-tumor-associated fibroblast/anti-mPEG tri-specific antibody to maximize the efficacy of mPEGylated nanomedicines against fibroblast-rich solid tumor. Biomater. Sci. 10, 202–215 (2022).

    Article  Google Scholar 

  209. Schiller, J. L., Marvin, A., McCallen, J. D. & Lai, S. K. Robust antigen-specific tuning of the nanoscale barrier properties of biogels using matrix-associating IgG and IgM antibodies. Acta Biomater. 89, 95–103 (2019).

    Article  Google Scholar 

  210. Schiller, J. L. et al. Antibody-mediated trapping in biological hydrogels is governed by sugar–sugar hydrogen bonds. Acta Biomater. 107, 91–101 (2020).

    Article  Google Scholar 

  211. Chithrani, B. D., Ghazani, A. A. & Chan, W. C. W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6, 662–668 (2006).

    Article  Google Scholar 

  212. Kao, C. H. et al. One-step mixing with humanized anti-mPEG bispecific antibody enhances tumor accumulation and therapeutic efficacy of mPEGylated nanoparticles. Biomaterials 35, 9930–9940 (2014).

    Article  Google Scholar 

  213. Chen, H.-J. et al. Targeting and internalizing PEGylated nanodrugs to enhance the therapeutic efficacy of hematologic malignancies by anti-PEG bispecific antibody (mPEG × CD20). Cancer Nanotechnol. 14, 78 (2023).

    Article  Google Scholar 

  214. Cheng, W.-J. et al. Active tumoral/tumor environmental dual-targeting by non-covalently arming with trispecific antibodies or dual-bispecific antibodies on docetaxel-loaded mPEGylated nanocarriers to enhance chemotherapeutic efficacy and Minimize systemic toxicity. Int. J. Nanomed. 16, 4017–4030 (2021).

    Article  Google Scholar 

  215. Meng, J.-L. et al. pH-responsive polyethylene glycol engagers for enhanced brain delivery of PEGylated nanomedicine to treat glioblastoma. ACS Nano 19, 307–321 (2025). This article reports PEG engagers designed to increase nanoparticle delivery across the bloodbrain barrier.

    Article  Google Scholar 

  216. Ho, K.-W. et al. Double attack strategy for leukemia using a pre-targeting bispecific antibody (CD20 Ab-mPEG scFv) and actively attracting PEGylated liposomal doxorubicin to enhance anti-tumor activity. J. Nanobiotechnol. 19, 1–12 (2021).

    Article  Google Scholar 

  217. Beishenaliev, A. et al. Bispecific antibodies for targeted delivery of anti-cancer therapeutic agents: a review. J. Control. Rel. 359, 268–286 (2023).

    Article  Google Scholar 

  218. Ju, Y. et al. Patient-specific nanoparticle targeting in human leukemia blood. ACS Nano 18, 29021–29035 (2024). This article reports that differences in patient anti-PEG antibody levels affect targeted delivery of PEGylated nanomedicines to leukaemia cells.

    Article  Google Scholar 

  219. Logan, A. et al. Targeted delivery of polo-like kinase 1 siRNA nanoparticles using an EGFR-PEG bispecific antibody inhibits proliferation of high-risk neuroblastoma. J. Control. Rel. 367, 806–820 (2024).

    Article  Google Scholar 

  220. Dietmair, B. et al. Targeted mRNA delivery with bispecific antibodies that tether LNPs to cell-surface markers. Mol. Ther. Nucleic Acids 36, 102520 (2025).

    Article  Google Scholar 

  221. McSweeney, M. D., Versfeld, Z. C., Carpenter, D. M. & Lai, S. K. Physician awareness of immune responses to polyethylene glycol-drug conjugates. Clin. Transl. Sci. 11, 162–165 (2018).

    Article  Google Scholar 

  222. Kierstead, P. H. et al. The effect of polymer backbone chemistry on the induction of the accelerated blood clearance in polymer modified liposomes. J. Control. Rel. 213, 1–9 (2015).

    Article  Google Scholar 

  223. Mestas, J. & Hughes, C. C. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004).

    Article  Google Scholar 

  224. Tagami, T. et al. CpG motifs in pDNA-sequences increase anti-PEG IgM production induced by PEG-coated pDNA-lipoplexes. J. Control. Rel. 142, 160–166 (2010).

    Article  Google Scholar 

  225. Li, Z. et al. Pegloticase co-administered with high MW polyethylene glycol effectively reduces PEG-immunogenicity and restores prolonged circulation in mouse. Acta Biomater. 170, 250–259 (2023).

    Article  Google Scholar 

  226. FDA. Doxil Label. https://www.accessdata.fda.gov/drugsatfda_docs/label/2007/050718s029lbl.pdf (2007).

  227. Sellaturay, P., Nasser, S. & Ewan, P. Polyethylene glycol-induced systemic allergic reactions (anaphylaxis). JACI Pract. 9, 670–675 (2021).

    Google Scholar 

  228. McSweeney, M. D., Mohan, M., Commins, S. P. & Lai, S. K. Anaphylaxis to Pfizer/BioNTech mRNA COVID-19 vaccine in a patient with clinically confirmed PEG allergy. Front. Allergy 2, 57 (2021).

    Article  Google Scholar 

  229. Barenholz, Y. C. Doxil® — the first FDA-approved nano-drug: lessons learned. J. Control. Rel. 160, 117–134 (2012).

    Article  Google Scholar 

  230. Marina, N. M. et al. Dose escalation and pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in children with solid tumors: a pediatric oncology group study. Clin. Cancer Res. 8, 413–418 (2002).

    Google Scholar 

  231. Fülöp, T. et al. Liposome-induced hypersensitivity reactions: risk reduction by design of safe infusion protocols in pigs. J. Control. Rel. 309, 333–338 (2019).

    Article  Google Scholar 

  232. Tsuji, J.-I, Hirose, K., Kasahara, E., Naitoh, M. & Yamamoto, I. Studies on antigenicity of the polyethylene glycol (PEG)-modified uricase. Int. J. Immunopharmacol. 7, 725–730 (1985).

    Article  Google Scholar 

  233. Liu, Y. et al. Antibodies predict pegaspargase allergic reactions and failure of rechallenge. J. Clin. Oncol. 37, 2051–2061 (2019).

    Article  Google Scholar 

  234. Subasic, C. N., Butcher, N. J., Minchin, R. F. & Kaminskas, L. M. Dose-dependent production of anti-PEG IgM after intramuscular PEGylated-hydrogenated soy phosphatidylcholine liposomes, but not lipid nanoparticle formulations of DNA, correlates with the plasma clearance of PEGylated liposomal doxorubicin in rats. Mol. Pharm. 20, 3494–3504 (2023).

    Article  Google Scholar 

  235. Driedonks, T. et al. Pharmacokinetics and biodistribution of extracellular vesicles administered intravenously and intranasally to Macaca nemestrina. J. Extracell. Biol. 1, e59 (2022).

    Article  Google Scholar 

  236. Park, J. H. et al. Genetically engineered cell membrane-coated nanoparticles for targeted delivery of dexamethasone to inflamed lungs. Sci. Adv. 7, eabf7820 (2021).

    Article  Google Scholar 

  237. Fang, R. H., Gao, W. & Zhang, L. Targeting drugs to tumours using cell membrane-coated nanoparticles. Nat. Rev. Clin. Oncol. 20, 33–48 (2023).

    Article  Google Scholar 

  238. Caracciolo, G. et al. Stealth effect of biomolecular corona on nanoparticle uptake by immune cells. Langmuir https://doi.org/10.1021/acs.langmuir.5b02158 (2015).

    Article  Google Scholar 

  239. Khoshnejad, M. et al. Ferritin nanocages with biologically orthogonal conjugation for vascular targeting and imaging. Bioconjug. Chem. 29, 1209–1218 (2018).

    Article  Google Scholar 

  240. Zhang, X. et al. Thermostability of protein nanocages: the effect of natural extra peptide on the exterior surface. RSC Adv. 9, 24777–24782 (2019).

    Article  Google Scholar 

  241. Liu, Q. et al. Neutrophil hitchhiking for nanoparticle delivery to the central nervous system. Appl. Mater. Today 38, 102259 (2024).

    Article  Google Scholar 

  242. Hu, C.-M. J. et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl Acad. Sci. USA 108, 10980–10985 (2011).

    Article  Google Scholar 

  243. Tirosh, O., Barenholz, Y., Katzhendler, J. & Priev, A. Hydration of polyethylene glycol-grafted liposomes. Biophys. J. 74, 1371–1379 (1998).

    Article  Google Scholar 

  244. Lasic, D., Martin, F., Gabizon, A., Huang, S. & Papahadjopoulos, D. Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times. Biochim. Biophys. Acta Biomembr. 1070, 187–192 (1991).

    Article  Google Scholar 

  245. Mishra, S., Webster, P. & Davis, M. E. PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur. J. Cell Biol. 83, 97–111 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This work is dedicated to the memory of T.-L. Cheng, our colleague, collaborator and friend who made many contributions to developing PEG monoclonal antibodies, anti-PEG antibody assays, PEG receptors and bispecific PEG engagers.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this manuscript.

Corresponding author

Correspondence to Steve R. Roffler.

Ethics declarations

Competing interests

S.R.R. may benefit from the licensing or commercial transfer of anti-PEG antibodies developed in the Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan and Kaohsiung Medical School, Kaohsiung, Taiwan.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Dmitri Simberg and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Su, YC. & Roffler, S.R. Polyethylene glycol immunogenicity in nanomedicine. Nat Rev Bioeng 3, 742–760 (2025). https://doi.org/10.1038/s44222-025-00321-6

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44222-025-00321-6

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research