Abstract
The long-standing effort to achieve artificial sight can be classified into two complementary approaches. The first is the development of bioinspired optics and optoelectronics for machine vision, which takes cues from the different ocular structures and intricate retinal functions found across various species, and aims to enhance the visual capabilities of machines. The second approach focuses on biointegrated vision, which seeks to integrate intraocular prosthetics within the biological vision system to restore or enhance the sight of the visually impaired. As these two approaches evolve, their convergence is becoming more apparent, underlining the growing need for shared knowledge and collaboration. In this Review, we discuss bioinspired and biointegrated vision placing emphasis on visual devices that mimic the structures of the natural eyes and the information-processing capabilities of biological visual systems. Furthermore, we highlight opportunities for reciprocal exchange and collaborative development across these two disciplines.
Key points
-
By replicating the structures of biological eyes, bioinspired optics can improve adaptability for light acquisition.
-
By mimicking the functions of retinal cells, bioinspired optoelectronics can achieve efficient in-sensor computing.
-
Nanotechnology enables intraocular prosthetics to create a seamless bioprosthetic interface, although aligning prosthetic signals with neural signals remains a challenge.
-
Bioinspired and biointegrated vision are converging towards artificial sight. Their crosstalk in material selection and device physics opens new opportunities.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Nilsson, D.-E. The diversity of eyes and vision. Annu. Rev. Vis. Sci. 7, 19–41 (2021).
Lamb, T. D., Collin, S. P. & Pugh, E. N. Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup. Nat. Rev. Neurosci. 8, 960–976 (2007).
Nilsson, D.-E. Eye evolution and its functional basis. Vis. Neurosci. 30, 5–20 (2013).
Baden, T., Euler, T. & Berens, P. Understanding the retinal basis of vision across species. Nat. Rev. Neurosci. 21, 5–20 (2020).
Ranft, B. & Stiller, C. The role of machine vision for intelligent vehicles. IEEE Trans. Intell. Veh. 1, 8–19 (2016).
Malamas, E. N., Petrakis, E. G. M., Zervakis, M., Petit, L. & Legat, J.-D. A survey on industrial vision systems, applications and tools. Image Vis. Comput. 21, 171–188 (2003).
Ibrahim, S. W. A comprehensive review on intelligent surveillance systems. Commun. Sci. Technol. https://doi.org/10.21924/cst.1.1.2016.7 (2016).
Apple, D. J. & Sims, J. Harold Ridley and the invention of the intraocular lens. Surv. Ophthalmol. 40, 279–292 (1996).
Burk, S. E. et al. Prosthetic iris implantation for congenital, traumatic, or functional iris deficiencies. J. Cataract Refract. Surg. 27, 1732–1740 (2001).
Weiland, J. D., Liu, W. & Humayun, M. S. Retinal prosthesis. Annu. Rev. Biomed. Eng. 7, 361–401 (2005).
Eiraku, M. et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472, 51–56 (2011).
Ma, Y. et al. Mammalian near-infrared image vision through injectable and self-powered retinal nanoantennae. Cell 177, 243–255.e15 (2019).
Holladay, J. T. Visual acuity measurements. J. Cataract Refract. Surg. 30, 287–290 (2004).
Horridge, G. A. The compound eye of insects. Sci. Am. 237, 108–121 (1977).
Rao, Z. et al. Curvy, shape-adaptive imagers based on printed optoelectronic pixels with a kirigami design. Nat. Electron. 4, 513–521 (2021).
Lee, M. et al. An amphibious artificial vision system with a panoramic visual field. Nat. Electron. 5, 452–459 (2022).
Song, Y. M. et al. Digital cameras with designs inspired by the arthropod eye. Nature 497, 95–99 (2013).
Basiri, A. et al. Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements. Light Sci. Appl. 8, 78 (2019).
Chai, Y. In-sensor computing for machine vision. Nature 579, 32–33 (2020).
Zhou, F. & Chai, Y. Near-sensor and in-sensor computing. Nat. Electron. 3, 664–671 (2020).
Wan, T. et al. In-sensor computing: materials, devices, and integration technologies. Adv. Mater. 35, e2203830 (2023).
Ren, Q. et al. Optoelectronic devices for in-sensor computing. Adv. Mater. https://doi.org/10.1002/adma.202407476 (2024).
Baino, F. et al. Biomaterials for orbital implants and ocular prostheses: overview and future prospects. Acta Biomater. 10, 1064–1087 (2014).
Vukusic, P. & Sambles, J. R. Photonic structures in biology. Nature 424, 852–855 (2003).
Charmet, J., Barton, R. & Oyen, M. Tuneable bioinspired lens. Bioinspir. Biomim. 10, 046004 (2015).
Jung, I. et al. Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability. Proc. Natl Acad. Sci. USA 108, 1788–1793 (2011).
Carpi, F., Frediani, G., Turco, S. & De Rossi, D. Bioinspired tunable lens with muscle-like electroactive elastomers. Adv. Funct. Mater. 21, 4152–4158 (2011).
Ji, S. et al. Polymeric nanolayered gradient refractive index lenses: technology review and introduction of spherical gradient refractive index ball lenses. Opt. Eng. 52, 112105 (2013).
Wu, T. et al. Design and fabrication of silicon-tessellated structures for monocentric imagers. Microsyst. Nanoeng. 2, 16019 (2016).
Kim, M. et al. An aquatic-vision-inspired camera based on a monocentric lens and a silicon nanorod photodiode array. Nat. Electron. 3, 546–553 (2020).
Lee, G. J., Nam, W. I. & Song, Y. M. Robustness of an artificially tailored fisheye imaging system with a curvilinear image surface. Opt. Laser Technol. 96, 50–57 (2017).
Zeng, H., Wani, O. M., Wasylczyk, P., Kaczmarek, R. & Priimagi, A. Self-regulating iris based on light-actuated liquid crystal elastomer. Adv. Mater. 29, 1701814 (2017).
Chang, K. T., Liu, C. Y. & Liu, J. H. Tunable artificial iris controlled by photo/thermal exposure based on liquid crystalline elastomers. Macromol. Mater. Eng. 306, 2100121 (2021).
Petsch, S., Schuhladen, S., Dreesen, L. & Zappe, H. The engineered eyeball, a tunable imaging system using soft-matter micro-optics. Light Sci. Appl. 5, e16068 (2016).
Kim, M. et al. Cuttlefish eye–inspired artificial vision for high-quality imaging under uneven illumination conditions. Sci. Robot. 8, eade4698 (2023).
Kim, M. S. et al. Feline eye–inspired artificial vision for enhanced camouflage breaking under diverse light conditions. Sci. Adv. 10, eadp2809 (2024).
Zhou, Y. et al. An ultrawide field-of-view pinhole compound eye using hemispherical nanowire array for robot vision. Sci. Robot. 9, eadi8666 (2024).
Liu, H. et al. Fabrication of bioinspired omnidirectional and gapless microlens array for wide field-of-view detections. Appl. Phys. Lett. 100, 133701 (2012).
Kwon, Y. W. et al. Flexible near-field nanopatterning with ultrathin, conformal phase masks on nonplanar substrates for biomimetic hierarchical photonic structures. ACS Nano 10, 4609–4617 (2016).
Min, W.-L., Betancourt, A. P., Jiang, P. & Jiang, B. Bioinspired broadband antireflection coatings on GaSb. Appl. Phys. Lett. 92, 141109 (2008).
Chan, E. P. & Crosby, A. J. Fabricating microlens arrays by surface wrinkling. Adv. Mater. 18, 3238–3242 (2006).
Yaegashi, M., Kinoshita, M., Shishido, A. & Ikeda, T. Direct fabrication of microlens arrays with polarization selectivity. Adv. Mater. 19, 801–804 (2007).
Zhou, P. et al. Fabrication of waterproof artificial compound eyes with variable field of view based on the bioinspiration from natural hierarchical micro–nanostructures. Nano-Micro Lett. 12, 166 (2020).
Dai, B. et al. Biomimetic apposition compound eye fabricated using microfluidic-assisted 3D printing. Nat. Commun. 12, 6458 (2021).
Munir, A., Aved, A. & Blasch, E. Situational awareness: techniques, challenges, and prospects. AI 3, 55–77 (2022).
Marr, D. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information (MIT press, 2010).
Luo, D.-G., Xue, T. & Yau, K.-W. How vision begins: an odyssey. Proc. Natl Acad. Sci. USA 105, 9855–9862 (2008).
Radonjić, A., Allred, S. R., Gilchrist, A. L. & Brainard, D. H. The dynamic range of human lightness perception. Curr. Biol. 21, 1931–1936 (2011).
Dunn, F. A., Lankheet, M. J. & Rieke, F. Light adaptation in cone vision involves switching between receptor and post-receptor sites. Nature 449, 603–606 (2007).
Demb, J. B. Functional circuitry of visual adaptation in the retina. J. Physiol. 586, 4377–4384 (2008).
Deeb, S. S. Genetics of variation in human color vision and the retinal cone mosaic. Curr. Opin. Genet. Dev. 16, 301–307 (2006).
Wald, G. The receptors of human color vision: action spectra of three visual pigments in human cones account for normal color vision and color-blindness. Science 145, 1007–1016 (1964).
Euler, T., Haverkamp, S., Schubert, T. & Baden, T. Retinal bipolar cells: elementary building blocks of vision. Nat. Rev. Neurosci. 15, 507–519 (2014).
Chapot, C. A., Euler, T. & Schubert, T. How do horizontal cells ‘talk’ to cone photoreceptors? Different levels of complexity at the cone–horizontal cell synapse. J. Physiol. 595, 5495–5506 (2017).
Sanes, J. R. & Masland, R. H. The types of retinal ganglion cells: current status and implications for neuronal classification. Annu. Rev. Neurosci. 38, 221–246 (2015).
Rao, R. P. N. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).
Bar, M. The proactive brain: using analogies and associations to generate predictions. Trends Cogn. Sci. 11, 280–289 (2007).
Ouchi, A. & Fujisawa, S. Predictive grid coding in the medial entorhinal cortex. Science 385, 776–784 (2024).
Mahowald, M. in An Analog VLSI System for Stereoscopic Vision 4–65 (Springer, 1994).
Mase, M., Kawahito, S., Sasaki, M., Wakamori, Y. & Furuta, M. A wide dynamic range CMOS image sensor with multiple exposure-time signal outputs and 12-bit column-parallel cyclic A/D converters. IEEE J. Solid-State Circuits 40, 2787–2795 (2005).
Lee, T.-J. et al. Realization of an artificial visual nervous system using an integrated optoelectronic device array. Adv. Mater. 33, 2105485 (2021).
Kumar, M., Lim, J., Kim, S. & Seo, H. Environment-adaptable photonic–electronic-coupled neuromorphic angular visual system. ACS Nano 14, 14108–14117 (2020).
Liao, F. et al. Bioinspired in-sensor visual adaptation for accurate perception. Nat. Electron. 5, 84–91 (2022).
Gao, Z. et al. InP quantum dots tailored oxide thin film phototransistor for bioinspired visual adaptation. Adv. Funct. Mater. 33, 2305959 (2023).
He, Z. et al. An organic transistor with light intensity-dependent active photoadaptation. Nat. Electron. 4, 522–529 (2021).
Geng, X., Hu, L., Zhuge, F. & Wei, X. Retina-inspired two-terminal optoelectronic neuromorphic devices with light-tunable short-term plasticity for self-adjusting sensing. Adv. Intell. Syst. 4, 2200019 (2022).
Subbulakshmi Radhakrishnan, S. et al. A sparse and spike‐timing‐based adaptive photoencoder for augmenting machine vision for spiking neural networks. Adv. Mater. 34, 2202535 (2022).
Li, L. et al. Adaptative machine vision with microsecond-level accurate perception beyond human retina. Nat. Commun. 15, 6261 (2024).
Park, J. et al. Avian eye–inspired perovskite artificial vision system for foveated and multispectral imaging. Sci. Robot. 9, eadk6903 (2024).
Jo, C. et al. Retina‐inspired color‐cognitive learning via chromatically controllable mixed quantum dot synaptic transistor arrays. Adv. Mater. 34, 2108979 (2022).
Kim, J. et al. Vertically stacked full color quantum dots phototransistor arrays for high‐resolution and enhanced color‐selective imaging. Adv. Mater. 34, 2106215 (2022).
Hung, C., Chiang, Y., Lin, Y., Chiu, Y. & Chen, W. Conception of a smart artificial retina based on a dual‐mode organic sensing inverter. Adv. Sci. 8, 2100742 (2021).
Kim, J. et al. A skin-like two-dimensionally pixelized full-color quantum dot photodetector. Sci. Adv. 5, eaax8801 (2019).
Seo, S. et al. Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 9, 5106 (2018).
Islam, M. M. et al. Multiwavelength optoelectronic synapse with 2D materials for mixed-color pattern recognition. ACS Nano 16, 10188–10198 (2022).
Zhang, J. et al. Retina‐inspired artificial synapses with ultraviolet to near‐infrared broadband responses for energy‐efficient neuromorphic visual systems. Adv. Funct. Mater. 33, 2302885 (2023).
Tan, Y. et al. A bioinspired retinomorphic device for spontaneous chromatic adaptation. Adv. Mater. 34, 2206816 (2022).
Bringmann, A. Structure and function of the bird fovea. Anat. Histol. Embryol. 48, 177–200 (2019).
Ouyang, B. Bioinspired in-sensor spectral adaptation for perceiving spectrally distinctive features. Nat. Electron. 7, 705–713 (2024).
Wang, C.-Y. et al. Gate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor. Sci. Adv. 6, eaba6173 (2020).
Xu, Y. et al. Gate-tunable positive and negative photoconductance in near-infrared organic heterostructures for in-sensor computing. Adv. Mater. 36, e2402903 (2024).
Wang, Y. et al. Negative photoconductance in van der Waals heterostructure-based floating gate phototransistor. ACS Nano 12, 9513–9520 (2018).
Li, T. et al. Reconfigurable, non-volatile neuromorphic photovoltaics. Nat. Nanotechnol. 18, 1303–1310 (2023).
Mennel, L. et al. Ultrafast machine vision with 2D material neural network image sensors. Nature 579, 62–66 (2020).
Pi, L. et al. Broadband convolutional processing using band-alignment-tunable heterostructures. Nat. Electron. 5, 248–254 (2022).
Zhang, Z. et al. All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat. Nanotechnol. 17, 27–32 (2022).
Chen, J. et al. Optoelectronic graded neurons for bioinspired in-sensor motion perception. Nat. Nanotechnol. 18, 882–888 (2023).
Tan, H. & van Dijken, S. Dynamic machine vision with retinomorphic photomemristor-reservoir computing. Nat. Commun. 14, 2169 (2023).
Pan, X. et al. Parallel perception of visual motion using light-tunable memory matrix. Sci. Adv. 9, eadi4083 (2023).
Wu, X. et al. Ultralow-power optoelectronic synaptic transistors based on polyzwitterion dielectrics for in-sensor reservoir computing. Sci. Adv. 10, eadn4524 (2024).
Huang, P. Y. et al. Neuro-inspired optical sensor array for high-accuracy static image recognition and dynamic trace extraction. Nat. Commun. 14, 6736 (2023).
Jayachandran, D. et al. A low-power biomimetic collision detector based on an in-memory molybdenum disulfide photodetector. Nat. Electron. 3, 646–655 (2020).
Williams, M. A. et al. Feedback of visual object information to foveal retinotopic cortex. Nat. Neurosci. 11, 1439–1445 (2008).
Quinn, K. R., Seillier, L., Butts, D. A. & Nienborg, H. Decision-related feedback in visual cortex lacks spatial selectivity. Nat. Commun. 12, 4473 (2021).
Kels, B. D., Grzybowski, A. & Grant-Kels, J. M. Human ocular anatomy. Clin. Dermatol. 33, 140–146 (2015).
Alio, J. L., Plaza-Puche, A. B., Férnandez-Buenaga, R., Pikkel, J. & Maldonado, M. Multifocal intraocular lenses: an overview. Surv. Ophthalmol. 62, 611–634 (2017).
Kohnen, T. & Suryakumar, R. Extended depth-of-focus technology in intraocular lenses. J. Cataract Refract. Surg. 46, 298–304 (2020).
Dick, H. B. Small-aperture strategies for the correction of presbyopia. Curr. Opin. Ophthalmol. 30, 236–242 (2019).
Pozdeyeva, N. A., Pashtayev, N. P., Lukin, V. P. & Batkov, Y. N. Artificial iris–lens diaphragm in reconstructive surgery for aniridia and aphakia. J. Cataract Refract. Surg. 31, 1750–1759 (2005).
Srinivasan, S., Ting, D. S. J., Snyder, M. E., Prasad, S. & Koch, H.-R. Prosthetic iris devices. Can. J. Ophthalmol. 49, 6–17 (2014).
Chew, H. F. et al. Boston keratoprosthesis outcomes and complications. Cornea 28, 989–996 (2009).
Tan, D. T. H., Dart, J. K. G., Holland, E. J. & Kinoshita, S. Corneal transplantation. Lancet 379, 1749–1761 (2012).
Qu, S. et al. An artificially-intelligent cornea with tactile sensation enables sensory expansion and interaction. Nat. Commun. 14, 7181 (2023).
Luo, Y. H.-L. & Da Cruz, L. The Argus® II retinal prosthesis system. Prog. Retin. Eye Res. 50, 89–107 (2016).
Klauke, S. et al. Stimulation with a wireless intraocular epiretinal implant elicits visual percepts in blind humans. Invest. Ophthalmol. Vis. Sci. 52, 449–455 (2011).
Sekirnjak, C. et al. High-resolution electrical stimulation of primate retina for epiretinal implant design. J. Neurosci. 28, 4446–4456 (2008).
Lorach, H. et al. Photovoltaic restoration of sight with high visual acuity. Nat. Med. 21, 476–482 (2015).
Yang, R. et al. Assessment of visual function in blind mice and monkeys with subretinally implanted nanowire arrays as artificial photoreceptors. Nat. Biomed. Eng. 8, 1018–1039 (2024).
Daschner, R., Rothermel, A., Rudorf, R., Rudorf, S. & Stett, A. Functionality and performance of the subretinal implant chip Alpha AMS. Sens. Mater. 30, 179–192 (2018).
Zrenner, E. et al. The development of subretinal microphotodiodes for replacement of degenerated photoreceptors. Ophthalmic Res. 29, 269–280 (1997).
Ayton, L. N. et al. First-in-human trial of a novel suprachoroidal retinal prosthesis. PLoS ONE 9, e115239 (2014).
Weitz, A. C. et al. Improving the spatial resolution of epiretinal implants by increasing stimulus pulse duration. Sci. Transl. Med. 7, 318ra203 (2015).
Ghani, N., Bansal, J., Naidu, A. & Chaudhary, K. M. Long term positional stability of the Argus II retinal prosthesis epiretinal implant. BMC Ophthalmol. 23, 70 (2023).
Weiland, J. D., Cho, A. K. & Humayun, M. S. Retinal prostheses: current clinical results and future needs. Ophthalmology 118, 2227–2237 (2011).
Grosberg, L. E. et al. Activation of ganglion cells and axon bundles using epiretinal electrical stimulation. J. Neurophysiol. 118, 1457–1471 (2017).
Esler, T. B. et al. Minimizing activation of overlying axons with epiretinal stimulation: The role of fiber orientation and electrode configuration. PLoS ONE 13, e0193598 (2018).
Vilkhu, R. S. et al. Spatially patterned bi-electrode epiretinal stimulation for axon avoidance at cellular resolution. J. Neural Eng. 18, 066007 (2021).
Wang, B. Y. et al. Electronic photoreceptors enable prosthetic visual acuity matching the natural resolution in rats. Nat. Commun. 13, 6627 (2022).
Chenais, N. A. L., Airaghi Leccardi, M. J. I. & Ghezzi, D. Photovoltaic retinal prosthesis restores high-resolution responses to single-pixel stimulation in blind retinas. Commun. Mater. 2, 28 (2021).
Huang, T. W. et al. Vertical-junction photodiodes for smaller pixels in retinal prostheses. J. Neural Eng. 18, 036015 (2021).
Chung, W. G. et al. Liquid-metal-based three-dimensional microelectrode arrays integrated with implantable ultrathin retinal prosthesis for vision restoration. Nat. Nanotechnol. 19, 688–697 (2024).
Ghezzi, D. et al. A polymer optoelectronic interface restores light sensitivity in blind rat retinas. Nat. Photonics 7, 400–406 (2013).
Airaghi Leccardi, M. J. I. et al. Photovoltaic organic interface for neuronal stimulation in the near-infrared. Commun. Mater. 1, 21 (2020).
Maya-Vetencourt, J. F. et al. Subretinally injected semiconducting polymer nanoparticles rescue vision in a rat model of retinal dystrophy. Nat. Nanotechnol. 15, 698–708 (2020).
Bosking, W. H., Beauchamp, M. S. & Yoshor, D. Electrical stimulation of visual cortex: relevance for the development of visual cortical prosthetics. Annu. Rev. Vis. Sci. 3, 141–166 (2017).
Fernández, E. & Normann, R. A. in Artificial Vision: A Clinical Guide (ed. Gabel, V. P.) 191–201 (Springer, 2017).
Lowery, A. J. et al. in Artificial Vision: A Clinical Guide (ed. Gabel, V. P.) 215–225 (Springer, 2017).
Woeppel, K. et al. Explant analysis of Utah electrode arrays implanted in human cortex for brain-computer-interfaces. Front. Bioeng. Biotechnol. 9, 759711 (2021).
Rosenfeld, J. V. et al. Tissue response to a chronically implantable wireless intracortical visual prosthesis (Gennaris array). J. Neural Eng. 17, 046001 (2020).
Winzeler, A. & Wang, J. T. Purification and culture of retinal ganglion cells from rodents. Cold Spring Harb. Protoc. 2013, 643–652 (2013).
Enayati, S. et al. Electrical stimulation induces retinal Müller cell proliferation and their progenitor cell potential. Cells 9, 781 (2020).
Fernando, M. et al. Differentiation of brain and retinal organoids from confluent cultures of pluripotent stem cells connected by nerve-like axonal projections of optic origin. Stem Cell Rep. 17, 1476–1492 (2022).
Rountree, C. M., Raghunathan, A., Troy, J. B. & Saggere, L. Prototype chemical synapse chip for spatially patterned neurotransmitter stimulation of the retina ex vivo. Microsyst. Nanoeng. 3, 17052 (2017).
Tu, H.-Y. et al. Medium-to long-term survival and functional examination of human iPSC-derived retinas in rat and primate models of retinal degeneration. EBioMedicine 39, 562–574 (2019).
Zhong, X. et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat. Commun. 5, 4047 (2014).
Inayat, S., Rountree, C. M., Troy, J. B. & Saggere, L. Chemical stimulation of rat retinal neurons: feasibility of an epiretinal neurotransmitter-based prosthesis. J. Neural Eng. 12, 016010 (2015).
Nauman, A. Light-adaptable artificial iris with dynamically scalable pupil-aperture function by radially patterned photochromic transition control. Mater. Des. 237, 112515 (2024).
Wang, W. et al. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 380, 735–742 (2023).
Yuan, R. et al. A neuromorphic physiological signal processing system based on VO2 memristor for next-generation human-machine interface. Nat. Commun. 14, 3695 (2023).
Jo, S. H. et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010).
Yang, Y. & Li, H. Tellurium-based artificial neuron: capturing biological complexity while keeping it simple. Adv. Electron. Mater. 8, 2200094 (2022).
Liu, Z. et al. A memristor-based adaptive neuromorphic decoder for brain–computer interfaces. Nat. Electron. 8, 362–372 (2025).
Curcio, C. A., Sloan, K. R., Kalina, R. E. & Hendrickson, A. E. Human photoreceptor topography. J. Comp. Neurol. 292, 497–523 (1990).
Gu, L. et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581, 278–282 (2020).
Choi, C. et al. Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nat. Commun. 11, 5934 (2020).
Martin, S., Bruns, A. & Franke, J. Dynamic light control using bionic dielectric elastomer iris actuators. Adv. Funct. Mater. 32, 2112260 (2022).
Wu, K. Y., Mina, M., Sahyoun, J. Y., Kalevar, A. & Tran, S. D. Retinal prostheses: engineering and clinical perspectives for vision restoration. Sensors 23, 5782 (2023).
Shi, Y. et al. Nonlinear germanium-silicon photodiode for activation and monitoring in photonic neuromorphic networks. Nat. Commun. 13, 6048 (2022).
Mathieson, K. et al. Photovoltaic retinal prosthesis with high pixel density. Nat. Photonics 6, 391–397 (2012).
Choi, C. et al. Anti-distortion bioinspired camera with an inhomogeneous photo-pixel array. Nat. Commun. 15, 6021 (2024).
Zhang, K. et al. Origami silicon optoelectronics for hemispherical electronic eye systems. Nat. Commun. 8, 1782 (2017).
Choi, C. et al. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 8, 1664 (2017).
Liu, H., Huang, Y. & Jiang, H. Artificial eye for scotopic vision with bioinspired all-optical photosensitivity enhancer. Proc. Natl Acad. Sci. USA 113, 3982–3985 (2016).
Kim, Y. et al. A hemispherical image sensor array fabricated with organic photomemory transistors. Adv. Mater. 35, 2203541 (2023).
Luo, X. et al. A bionic self-driven retinomorphic eye with ionogel photosynaptic retina. Nat. Commun. 15, 3086 (2024).
Song, J.-K. et al. Stretchable colour-sensitive quantum dot nanocomposites for shape-tunable multiplexed phototransistor arrays. Nat. Nanotechnol. 17, 849–856 (2022).
Thai, K. Y. et al. MoS2/graphene photodetector array with strain-modulated photoresponse up to the near-infrared regime. ACS Nano 15, 12836–12846 (2021).
Long, Z. et al. A neuromorphic bionic eye with filter-free color vision using hemispherical perovskite nanowire array retina. Nat. Commun. 14, 1972 (2023).
Ding, Y. et al. Uncooled self-powered hemispherical biomimetic pit organ for mid- to long-infrared imaging. Sci. Adv. 8, eabq8432 (2022).
Blake, R. & Wilson, H. Binocular vision. Vis. Res. 51, 754–770 (2011).
Adachi-Usami, E. & Lehmann, D. Monocular and binocular evoked average potential field topography: upper and lower hemiretinal stimuli. Exp. Brain Res. 50, 341–346 (1983).
Eigen, D. & Fergus, R. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In Proc. 2015 IEEE International Conference on Computer Vision (ICCV) 2650–2658 (IEEE, 2015).
Fabius, J. H. & Van der Stigchel, S. Vision while the eyes move: getting the full picture. Sci. Adv. 7, eabk0043 (2021).
Wallach, H., Frey, K. J. & Bode, K. A. The nature of adaptation in distance perception based on oculomotor cues. Atten. Percept. Psychophys. 11, 110–116 (1972).
Acknowledgements
This work is supported by National Natural Science Foundation of China (62425405), MOST National Key Technologies R&D Programme (SQ2022YFA1200118-04), Research Grant Council of Hong Kong (CRS_PolyU502/22) and The Hong Kong Polytechnic University (WZ4X and YWE4).
Author information
Authors and Affiliations
Contributions
Y.C. conceived the idea and guided the project. Y.Y., Y.W., C.Z., Z.X., Z.Q. and Y.C. wrote and edited the article. Z.W. provided guidance on the display items.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Citation diversity statement
We acknowledge that papers authored by scholars from historically excluded groups are systematically under-cited. Here, we have made every attempt to reference relevant papers in a manner that is equitable in terms of racial, ethnic, gender and geographical representation.
Peer review
Peer review information
Nature Reviews Bioengineering thanks Young Min Song, Chris Klink and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Yang, Y., Wang, Y., Zhu, C. et al. Bioinspired and biointegrated vision for artificial sight convergence. Nat Rev Bioeng (2025). https://doi.org/10.1038/s44222-025-00324-3
Accepted:
Published:
DOI: https://doi.org/10.1038/s44222-025-00324-3