Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bioinspired and biointegrated vision for artificial sight convergence

Abstract

The long-standing effort to achieve artificial sight can be classified into two complementary approaches. The first is the development of bioinspired optics and optoelectronics for machine vision, which takes cues from the different ocular structures and intricate retinal functions found across various species, and aims to enhance the visual capabilities of machines. The second approach focuses on biointegrated vision, which seeks to integrate intraocular prosthetics within the biological vision system to restore or enhance the sight of the visually impaired. As these two approaches evolve, their convergence is becoming more apparent, underlining the growing need for shared knowledge and collaboration. In this Review, we discuss bioinspired and biointegrated vision placing emphasis on visual devices that mimic the structures of the natural eyes and the information-processing capabilities of biological visual systems. Furthermore, we highlight opportunities for reciprocal exchange and collaborative development across these two disciplines.

Key points

  • By replicating the structures of biological eyes, bioinspired optics can improve adaptability for light acquisition.

  • By mimicking the functions of retinal cells, bioinspired optoelectronics can achieve efficient in-sensor computing.

  • Nanotechnology enables intraocular prosthetics to create a seamless bioprosthetic interface, although aligning prosthetic signals with neural signals remains a challenge.

  • Bioinspired and biointegrated vision are converging towards artificial sight. Their crosstalk in material selection and device physics opens new opportunities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bioinspired and biointegrated vision.
Fig. 2: Adaptive optics inspired by ocular structures.
Fig. 3: Bioinspired visual information processing.
Fig. 4: Biointegrated visual prosthesis.
Fig. 5: Technology fusion between bioinspired and biointegrated visual devices.

Similar content being viewed by others

References

  1. Nilsson, D.-E. The diversity of eyes and vision. Annu. Rev. Vis. Sci. 7, 19–41 (2021).

    Article  Google Scholar 

  2. Lamb, T. D., Collin, S. P. & Pugh, E. N. Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup. Nat. Rev. Neurosci. 8, 960–976 (2007).

    Article  Google Scholar 

  3. Nilsson, D.-E. Eye evolution and its functional basis. Vis. Neurosci. 30, 5–20 (2013).

    Article  Google Scholar 

  4. Baden, T., Euler, T. & Berens, P. Understanding the retinal basis of vision across species. Nat. Rev. Neurosci. 21, 5–20 (2020).

    Article  Google Scholar 

  5. Ranft, B. & Stiller, C. The role of machine vision for intelligent vehicles. IEEE Trans. Intell. Veh. 1, 8–19 (2016).

    Article  Google Scholar 

  6. Malamas, E. N., Petrakis, E. G. M., Zervakis, M., Petit, L. & Legat, J.-D. A survey on industrial vision systems, applications and tools. Image Vis. Comput. 21, 171–188 (2003).

    Article  Google Scholar 

  7. Ibrahim, S. W. A comprehensive review on intelligent surveillance systems. Commun. Sci. Technol. https://doi.org/10.21924/cst.1.1.2016.7 (2016).

  8. Apple, D. J. & Sims, J. Harold Ridley and the invention of the intraocular lens. Surv. Ophthalmol. 40, 279–292 (1996).

    Article  Google Scholar 

  9. Burk, S. E. et al. Prosthetic iris implantation for congenital, traumatic, or functional iris deficiencies. J. Cataract Refract. Surg. 27, 1732–1740 (2001).

    Article  Google Scholar 

  10. Weiland, J. D., Liu, W. & Humayun, M. S. Retinal prosthesis. Annu. Rev. Biomed. Eng. 7, 361–401 (2005).

    Article  Google Scholar 

  11. Eiraku, M. et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472, 51–56 (2011).

    Article  Google Scholar 

  12. Ma, Y. et al. Mammalian near-infrared image vision through injectable and self-powered retinal nanoantennae. Cell 177, 243–255.e15 (2019).

    Article  Google Scholar 

  13. Holladay, J. T. Visual acuity measurements. J. Cataract Refract. Surg. 30, 287–290 (2004).

    Article  Google Scholar 

  14. Horridge, G. A. The compound eye of insects. Sci. Am. 237, 108–121 (1977).

    Article  Google Scholar 

  15. Rao, Z. et al. Curvy, shape-adaptive imagers based on printed optoelectronic pixels with a kirigami design. Nat. Electron. 4, 513–521 (2021).

    Article  Google Scholar 

  16. Lee, M. et al. An amphibious artificial vision system with a panoramic visual field. Nat. Electron. 5, 452–459 (2022).

    Article  Google Scholar 

  17. Song, Y. M. et al. Digital cameras with designs inspired by the arthropod eye. Nature 497, 95–99 (2013).

    Article  Google Scholar 

  18. Basiri, A. et al. Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements. Light Sci. Appl. 8, 78 (2019).

    Article  Google Scholar 

  19. Chai, Y. In-sensor computing for machine vision. Nature 579, 32–33 (2020).

    Article  Google Scholar 

  20. Zhou, F. & Chai, Y. Near-sensor and in-sensor computing. Nat. Electron. 3, 664–671 (2020).

    Article  Google Scholar 

  21. Wan, T. et al. In-sensor computing: materials, devices, and integration technologies. Adv. Mater. 35, e2203830 (2023).

    Article  Google Scholar 

  22. Ren, Q. et al. Optoelectronic devices for in-sensor computing. Adv. Mater. https://doi.org/10.1002/adma.202407476 (2024).

  23. Baino, F. et al. Biomaterials for orbital implants and ocular prostheses: overview and future prospects. Acta Biomater. 10, 1064–1087 (2014).

    Article  Google Scholar 

  24. Vukusic, P. & Sambles, J. R. Photonic structures in biology. Nature 424, 852–855 (2003).

    Article  Google Scholar 

  25. Charmet, J., Barton, R. & Oyen, M. Tuneable bioinspired lens. Bioinspir. Biomim. 10, 046004 (2015).

    Article  Google Scholar 

  26. Jung, I. et al. Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability. Proc. Natl Acad. Sci. USA 108, 1788–1793 (2011).

    Article  Google Scholar 

  27. Carpi, F., Frediani, G., Turco, S. & De Rossi, D. Bioinspired tunable lens with muscle-like electroactive elastomers. Adv. Funct. Mater. 21, 4152–4158 (2011).

    Article  Google Scholar 

  28. Ji, S. et al. Polymeric nanolayered gradient refractive index lenses: technology review and introduction of spherical gradient refractive index ball lenses. Opt. Eng. 52, 112105 (2013).

    Article  Google Scholar 

  29. Wu, T. et al. Design and fabrication of silicon-tessellated structures for monocentric imagers. Microsyst. Nanoeng. 2, 16019 (2016).

    Article  Google Scholar 

  30. Kim, M. et al. An aquatic-vision-inspired camera based on a monocentric lens and a silicon nanorod photodiode array. Nat. Electron. 3, 546–553 (2020).

    Article  Google Scholar 

  31. Lee, G. J., Nam, W. I. & Song, Y. M. Robustness of an artificially tailored fisheye imaging system with a curvilinear image surface. Opt. Laser Technol. 96, 50–57 (2017).

    Article  Google Scholar 

  32. Zeng, H., Wani, O. M., Wasylczyk, P., Kaczmarek, R. & Priimagi, A. Self-regulating iris based on light-actuated liquid crystal elastomer. Adv. Mater. 29, 1701814 (2017).

    Article  Google Scholar 

  33. Chang, K. T., Liu, C. Y. & Liu, J. H. Tunable artificial iris controlled by photo/thermal exposure based on liquid crystalline elastomers. Macromol. Mater. Eng. 306, 2100121 (2021).

    Article  Google Scholar 

  34. Petsch, S., Schuhladen, S., Dreesen, L. & Zappe, H. The engineered eyeball, a tunable imaging system using soft-matter micro-optics. Light Sci. Appl. 5, e16068 (2016).

    Article  Google Scholar 

  35. Kim, M. et al. Cuttlefish eye–inspired artificial vision for high-quality imaging under uneven illumination conditions. Sci. Robot. 8, eade4698 (2023).

    Article  Google Scholar 

  36. Kim, M. S. et al. Feline eye–inspired artificial vision for enhanced camouflage breaking under diverse light conditions. Sci. Adv. 10, eadp2809 (2024).

    Article  Google Scholar 

  37. Zhou, Y. et al. An ultrawide field-of-view pinhole compound eye using hemispherical nanowire array for robot vision. Sci. Robot. 9, eadi8666 (2024).

    Article  Google Scholar 

  38. Liu, H. et al. Fabrication of bioinspired omnidirectional and gapless microlens array for wide field-of-view detections. Appl. Phys. Lett. 100, 133701 (2012).

    Article  Google Scholar 

  39. Kwon, Y. W. et al. Flexible near-field nanopatterning with ultrathin, conformal phase masks on nonplanar substrates for biomimetic hierarchical photonic structures. ACS Nano 10, 4609–4617 (2016).

    Article  Google Scholar 

  40. Min, W.-L., Betancourt, A. P., Jiang, P. & Jiang, B. Bioinspired broadband antireflection coatings on GaSb. Appl. Phys. Lett. 92, 141109 (2008).

    Article  Google Scholar 

  41. Chan, E. P. & Crosby, A. J. Fabricating microlens arrays by surface wrinkling. Adv. Mater. 18, 3238–3242 (2006).

    Article  Google Scholar 

  42. Yaegashi, M., Kinoshita, M., Shishido, A. & Ikeda, T. Direct fabrication of microlens arrays with polarization selectivity. Adv. Mater. 19, 801–804 (2007).

    Article  Google Scholar 

  43. Zhou, P. et al. Fabrication of waterproof artificial compound eyes with variable field of view based on the bioinspiration from natural hierarchical micro–nanostructures. Nano-Micro Lett. 12, 166 (2020).

    Article  Google Scholar 

  44. Dai, B. et al. Biomimetic apposition compound eye fabricated using microfluidic-assisted 3D printing. Nat. Commun. 12, 6458 (2021).

    Article  Google Scholar 

  45. Munir, A., Aved, A. & Blasch, E. Situational awareness: techniques, challenges, and prospects. AI 3, 55–77 (2022).

    Article  Google Scholar 

  46. Marr, D. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information (MIT press, 2010).

  47. Luo, D.-G., Xue, T. & Yau, K.-W. How vision begins: an odyssey. Proc. Natl Acad. Sci. USA 105, 9855–9862 (2008).

    Article  Google Scholar 

  48. Radonjić, A., Allred, S. R., Gilchrist, A. L. & Brainard, D. H. The dynamic range of human lightness perception. Curr. Biol. 21, 1931–1936 (2011).

    Article  Google Scholar 

  49. Dunn, F. A., Lankheet, M. J. & Rieke, F. Light adaptation in cone vision involves switching between receptor and post-receptor sites. Nature 449, 603–606 (2007).

    Article  Google Scholar 

  50. Demb, J. B. Functional circuitry of visual adaptation in the retina. J. Physiol. 586, 4377–4384 (2008).

    Article  Google Scholar 

  51. Deeb, S. S. Genetics of variation in human color vision and the retinal cone mosaic. Curr. Opin. Genet. Dev. 16, 301–307 (2006).

    Article  Google Scholar 

  52. Wald, G. The receptors of human color vision: action spectra of three visual pigments in human cones account for normal color vision and color-blindness. Science 145, 1007–1016 (1964).

    Article  Google Scholar 

  53. Euler, T., Haverkamp, S., Schubert, T. & Baden, T. Retinal bipolar cells: elementary building blocks of vision. Nat. Rev. Neurosci. 15, 507–519 (2014).

    Article  Google Scholar 

  54. Chapot, C. A., Euler, T. & Schubert, T. How do horizontal cells ‘talk’ to cone photoreceptors? Different levels of complexity at the cone–horizontal cell synapse. J. Physiol. 595, 5495–5506 (2017).

    Article  Google Scholar 

  55. Sanes, J. R. & Masland, R. H. The types of retinal ganglion cells: current status and implications for neuronal classification. Annu. Rev. Neurosci. 38, 221–246 (2015).

    Article  Google Scholar 

  56. Rao, R. P. N. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).

    Article  Google Scholar 

  57. Bar, M. The proactive brain: using analogies and associations to generate predictions. Trends Cogn. Sci. 11, 280–289 (2007).

    Article  Google Scholar 

  58. Ouchi, A. & Fujisawa, S. Predictive grid coding in the medial entorhinal cortex. Science 385, 776–784 (2024).

    Article  Google Scholar 

  59. Mahowald, M. in An Analog VLSI System for Stereoscopic Vision 4–65 (Springer, 1994).

  60. Mase, M., Kawahito, S., Sasaki, M., Wakamori, Y. & Furuta, M. A wide dynamic range CMOS image sensor with multiple exposure-time signal outputs and 12-bit column-parallel cyclic A/D converters. IEEE J. Solid-State Circuits 40, 2787–2795 (2005).

    Article  Google Scholar 

  61. Lee, T.-J. et al. Realization of an artificial visual nervous system using an integrated optoelectronic device array. Adv. Mater. 33, 2105485 (2021).

    Article  Google Scholar 

  62. Kumar, M., Lim, J., Kim, S. & Seo, H. Environment-adaptable photonic–electronic-coupled neuromorphic angular visual system. ACS Nano 14, 14108–14117 (2020).

    Article  Google Scholar 

  63. Liao, F. et al. Bioinspired in-sensor visual adaptation for accurate perception. Nat. Electron. 5, 84–91 (2022).

    Article  Google Scholar 

  64. Gao, Z. et al. InP quantum dots tailored oxide thin film phototransistor for bioinspired visual adaptation. Adv. Funct. Mater. 33, 2305959 (2023).

    Article  Google Scholar 

  65. He, Z. et al. An organic transistor with light intensity-dependent active photoadaptation. Nat. Electron. 4, 522–529 (2021).

    Article  Google Scholar 

  66. Geng, X., Hu, L., Zhuge, F. & Wei, X. Retina-inspired two-terminal optoelectronic neuromorphic devices with light-tunable short-term plasticity for self-adjusting sensing. Adv. Intell. Syst. 4, 2200019 (2022).

    Article  Google Scholar 

  67. Subbulakshmi Radhakrishnan, S. et al. A sparse and spike‐timing‐based adaptive photoencoder for augmenting machine vision for spiking neural networks. Adv. Mater. 34, 2202535 (2022).

    Article  Google Scholar 

  68. Li, L. et al. Adaptative machine vision with microsecond-level accurate perception beyond human retina. Nat. Commun. 15, 6261 (2024).

    Article  Google Scholar 

  69. Park, J. et al. Avian eye–inspired perovskite artificial vision system for foveated and multispectral imaging. Sci. Robot. 9, eadk6903 (2024).

    Article  Google Scholar 

  70. Jo, C. et al. Retina‐inspired color‐cognitive learning via chromatically controllable mixed quantum dot synaptic transistor arrays. Adv. Mater. 34, 2108979 (2022).

    Article  Google Scholar 

  71. Kim, J. et al. Vertically stacked full color quantum dots phototransistor arrays for high‐resolution and enhanced color‐selective imaging. Adv. Mater. 34, 2106215 (2022).

    Article  Google Scholar 

  72. Hung, C., Chiang, Y., Lin, Y., Chiu, Y. & Chen, W. Conception of a smart artificial retina based on a dual‐mode organic sensing inverter. Adv. Sci. 8, 2100742 (2021).

    Article  Google Scholar 

  73. Kim, J. et al. A skin-like two-dimensionally pixelized full-color quantum dot photodetector. Sci. Adv. 5, eaax8801 (2019).

    Article  Google Scholar 

  74. Seo, S. et al. Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nat. Commun. 9, 5106 (2018).

    Article  Google Scholar 

  75. Islam, M. M. et al. Multiwavelength optoelectronic synapse with 2D materials for mixed-color pattern recognition. ACS Nano 16, 10188–10198 (2022).

    Article  Google Scholar 

  76. Zhang, J. et al. Retina‐inspired artificial synapses with ultraviolet to near‐infrared broadband responses for energy‐efficient neuromorphic visual systems. Adv. Funct. Mater. 33, 2302885 (2023).

    Article  Google Scholar 

  77. Tan, Y. et al. A bioinspired retinomorphic device for spontaneous chromatic adaptation. Adv. Mater. 34, 2206816 (2022).

    Article  Google Scholar 

  78. Bringmann, A. Structure and function of the bird fovea. Anat. Histol. Embryol. 48, 177–200 (2019).

    Article  Google Scholar 

  79. Ouyang, B. Bioinspired in-sensor spectral adaptation for perceiving spectrally distinctive features. Nat. Electron. 7, 705–713 (2024).

    Article  Google Scholar 

  80. Wang, C.-Y. et al. Gate-tunable van der Waals heterostructure for reconfigurable neural network vision sensor. Sci. Adv. 6, eaba6173 (2020).

    Article  Google Scholar 

  81. Xu, Y. et al. Gate-tunable positive and negative photoconductance in near-infrared organic heterostructures for in-sensor computing. Adv. Mater. 36, e2402903 (2024).

    Article  Google Scholar 

  82. Wang, Y. et al. Negative photoconductance in van der Waals heterostructure-based floating gate phototransistor. ACS Nano 12, 9513–9520 (2018).

    Article  Google Scholar 

  83. Li, T. et al. Reconfigurable, non-volatile neuromorphic photovoltaics. Nat. Nanotechnol. 18, 1303–1310 (2023).

    Article  Google Scholar 

  84. Mennel, L. et al. Ultrafast machine vision with 2D material neural network image sensors. Nature 579, 62–66 (2020).

    Article  Google Scholar 

  85. Pi, L. et al. Broadband convolutional processing using band-alignment-tunable heterostructures. Nat. Electron. 5, 248–254 (2022).

    Article  Google Scholar 

  86. Zhang, Z. et al. All-in-one two-dimensional retinomorphic hardware device for motion detection and recognition. Nat. Nanotechnol. 17, 27–32 (2022).

    Article  Google Scholar 

  87. Chen, J. et al. Optoelectronic graded neurons for bioinspired in-sensor motion perception. Nat. Nanotechnol. 18, 882–888 (2023).

    Article  Google Scholar 

  88. Tan, H. & van Dijken, S. Dynamic machine vision with retinomorphic photomemristor-reservoir computing. Nat. Commun. 14, 2169 (2023).

    Article  Google Scholar 

  89. Pan, X. et al. Parallel perception of visual motion using light-tunable memory matrix. Sci. Adv. 9, eadi4083 (2023).

    Article  Google Scholar 

  90. Wu, X. et al. Ultralow-power optoelectronic synaptic transistors based on polyzwitterion dielectrics for in-sensor reservoir computing. Sci. Adv. 10, eadn4524 (2024).

    Article  Google Scholar 

  91. Huang, P. Y. et al. Neuro-inspired optical sensor array for high-accuracy static image recognition and dynamic trace extraction. Nat. Commun. 14, 6736 (2023).

    Article  Google Scholar 

  92. Jayachandran, D. et al. A low-power biomimetic collision detector based on an in-memory molybdenum disulfide photodetector. Nat. Electron. 3, 646–655 (2020).

    Article  Google Scholar 

  93. Williams, M. A. et al. Feedback of visual object information to foveal retinotopic cortex. Nat. Neurosci. 11, 1439–1445 (2008).

    Article  Google Scholar 

  94. Quinn, K. R., Seillier, L., Butts, D. A. & Nienborg, H. Decision-related feedback in visual cortex lacks spatial selectivity. Nat. Commun. 12, 4473 (2021).

    Article  Google Scholar 

  95. Kels, B. D., Grzybowski, A. & Grant-Kels, J. M. Human ocular anatomy. Clin. Dermatol. 33, 140–146 (2015).

    Article  Google Scholar 

  96. Alio, J. L., Plaza-Puche, A. B., Férnandez-Buenaga, R., Pikkel, J. & Maldonado, M. Multifocal intraocular lenses: an overview. Surv. Ophthalmol. 62, 611–634 (2017).

    Article  Google Scholar 

  97. Kohnen, T. & Suryakumar, R. Extended depth-of-focus technology in intraocular lenses. J. Cataract Refract. Surg. 46, 298–304 (2020).

    Article  Google Scholar 

  98. Dick, H. B. Small-aperture strategies for the correction of presbyopia. Curr. Opin. Ophthalmol. 30, 236–242 (2019).

    Article  Google Scholar 

  99. Pozdeyeva, N. A., Pashtayev, N. P., Lukin, V. P. & Batkov, Y. N. Artificial iris–lens diaphragm in reconstructive surgery for aniridia and aphakia. J. Cataract Refract. Surg. 31, 1750–1759 (2005).

    Article  Google Scholar 

  100. Srinivasan, S., Ting, D. S. J., Snyder, M. E., Prasad, S. & Koch, H.-R. Prosthetic iris devices. Can. J. Ophthalmol. 49, 6–17 (2014).

    Article  Google Scholar 

  101. Chew, H. F. et al. Boston keratoprosthesis outcomes and complications. Cornea 28, 989–996 (2009).

    Article  Google Scholar 

  102. Tan, D. T. H., Dart, J. K. G., Holland, E. J. & Kinoshita, S. Corneal transplantation. Lancet 379, 1749–1761 (2012).

    Article  Google Scholar 

  103. Qu, S. et al. An artificially-intelligent cornea with tactile sensation enables sensory expansion and interaction. Nat. Commun. 14, 7181 (2023).

    Article  Google Scholar 

  104. Luo, Y. H.-L. & Da Cruz, L. The Argus® II retinal prosthesis system. Prog. Retin. Eye Res. 50, 89–107 (2016).

    Article  Google Scholar 

  105. Klauke, S. et al. Stimulation with a wireless intraocular epiretinal implant elicits visual percepts in blind humans. Invest. Ophthalmol. Vis. Sci. 52, 449–455 (2011).

    Article  Google Scholar 

  106. Sekirnjak, C. et al. High-resolution electrical stimulation of primate retina for epiretinal implant design. J. Neurosci. 28, 4446–4456 (2008).

    Article  Google Scholar 

  107. Lorach, H. et al. Photovoltaic restoration of sight with high visual acuity. Nat. Med. 21, 476–482 (2015).

    Article  Google Scholar 

  108. Yang, R. et al. Assessment of visual function in blind mice and monkeys with subretinally implanted nanowire arrays as artificial photoreceptors. Nat. Biomed. Eng. 8, 1018–1039 (2024).

    Article  Google Scholar 

  109. Daschner, R., Rothermel, A., Rudorf, R., Rudorf, S. & Stett, A. Functionality and performance of the subretinal implant chip Alpha AMS. Sens. Mater. 30, 179–192 (2018).

    Google Scholar 

  110. Zrenner, E. et al. The development of subretinal microphotodiodes for replacement of degenerated photoreceptors. Ophthalmic Res. 29, 269–280 (1997).

    Article  Google Scholar 

  111. Ayton, L. N. et al. First-in-human trial of a novel suprachoroidal retinal prosthesis. PLoS ONE 9, e115239 (2014).

    Article  Google Scholar 

  112. Weitz, A. C. et al. Improving the spatial resolution of epiretinal implants by increasing stimulus pulse duration. Sci. Transl. Med. 7, 318ra203 (2015).

    Article  Google Scholar 

  113. Ghani, N., Bansal, J., Naidu, A. & Chaudhary, K. M. Long term positional stability of the Argus II retinal prosthesis epiretinal implant. BMC Ophthalmol. 23, 70 (2023).

    Article  Google Scholar 

  114. Weiland, J. D., Cho, A. K. & Humayun, M. S. Retinal prostheses: current clinical results and future needs. Ophthalmology 118, 2227–2237 (2011).

    Article  Google Scholar 

  115. Grosberg, L. E. et al. Activation of ganglion cells and axon bundles using epiretinal electrical stimulation. J. Neurophysiol. 118, 1457–1471 (2017).

    Article  Google Scholar 

  116. Esler, T. B. et al. Minimizing activation of overlying axons with epiretinal stimulation: The role of fiber orientation and electrode configuration. PLoS ONE 13, e0193598 (2018).

    Article  Google Scholar 

  117. Vilkhu, R. S. et al. Spatially patterned bi-electrode epiretinal stimulation for axon avoidance at cellular resolution. J. Neural Eng. 18, 066007 (2021).

    Article  Google Scholar 

  118. Wang, B. Y. et al. Electronic photoreceptors enable prosthetic visual acuity matching the natural resolution in rats. Nat. Commun. 13, 6627 (2022).

    Article  Google Scholar 

  119. Chenais, N. A. L., Airaghi Leccardi, M. J. I. & Ghezzi, D. Photovoltaic retinal prosthesis restores high-resolution responses to single-pixel stimulation in blind retinas. Commun. Mater. 2, 28 (2021).

    Article  Google Scholar 

  120. Huang, T. W. et al. Vertical-junction photodiodes for smaller pixels in retinal prostheses. J. Neural Eng. 18, 036015 (2021).

    Article  Google Scholar 

  121. Chung, W. G. et al. Liquid-metal-based three-dimensional microelectrode arrays integrated with implantable ultrathin retinal prosthesis for vision restoration. Nat. Nanotechnol. 19, 688–697 (2024).

    Article  Google Scholar 

  122. Ghezzi, D. et al. A polymer optoelectronic interface restores light sensitivity in blind rat retinas. Nat. Photonics 7, 400–406 (2013).

    Article  Google Scholar 

  123. Airaghi Leccardi, M. J. I. et al. Photovoltaic organic interface for neuronal stimulation in the near-infrared. Commun. Mater. 1, 21 (2020).

    Article  Google Scholar 

  124. Maya-Vetencourt, J. F. et al. Subretinally injected semiconducting polymer nanoparticles rescue vision in a rat model of retinal dystrophy. Nat. Nanotechnol. 15, 698–708 (2020).

    Article  Google Scholar 

  125. Bosking, W. H., Beauchamp, M. S. & Yoshor, D. Electrical stimulation of visual cortex: relevance for the development of visual cortical prosthetics. Annu. Rev. Vis. Sci. 3, 141–166 (2017).

    Article  Google Scholar 

  126. Fernández, E. & Normann, R. A. in Artificial Vision: A Clinical Guide (ed. Gabel, V. P.) 191–201 (Springer, 2017).

  127. Lowery, A. J. et al. in Artificial Vision: A Clinical Guide (ed. Gabel, V. P.) 215–225 (Springer, 2017).

  128. Woeppel, K. et al. Explant analysis of Utah electrode arrays implanted in human cortex for brain-computer-interfaces. Front. Bioeng. Biotechnol. 9, 759711 (2021).

    Article  Google Scholar 

  129. Rosenfeld, J. V. et al. Tissue response to a chronically implantable wireless intracortical visual prosthesis (Gennaris array). J. Neural Eng. 17, 046001 (2020).

    Google Scholar 

  130. Winzeler, A. & Wang, J. T. Purification and culture of retinal ganglion cells from rodents. Cold Spring Harb. Protoc. 2013, 643–652 (2013).

    Google Scholar 

  131. Enayati, S. et al. Electrical stimulation induces retinal Müller cell proliferation and their progenitor cell potential. Cells 9, 781 (2020).

    Article  Google Scholar 

  132. Fernando, M. et al. Differentiation of brain and retinal organoids from confluent cultures of pluripotent stem cells connected by nerve-like axonal projections of optic origin. Stem Cell Rep. 17, 1476–1492 (2022).

    Article  Google Scholar 

  133. Rountree, C. M., Raghunathan, A., Troy, J. B. & Saggere, L. Prototype chemical synapse chip for spatially patterned neurotransmitter stimulation of the retina ex vivo. Microsyst. Nanoeng. 3, 17052 (2017).

    Article  Google Scholar 

  134. Tu, H.-Y. et al. Medium-to long-term survival and functional examination of human iPSC-derived retinas in rat and primate models of retinal degeneration. EBioMedicine 39, 562–574 (2019).

    Article  Google Scholar 

  135. Zhong, X. et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat. Commun. 5, 4047 (2014).

    Article  Google Scholar 

  136. Inayat, S., Rountree, C. M., Troy, J. B. & Saggere, L. Chemical stimulation of rat retinal neurons: feasibility of an epiretinal neurotransmitter-based prosthesis. J. Neural Eng. 12, 016010 (2015).

    Article  Google Scholar 

  137. Nauman, A. Light-adaptable artificial iris with dynamically scalable pupil-aperture function by radially patterned photochromic transition control. Mater. Des. 237, 112515 (2024).

    Article  Google Scholar 

  138. Wang, W. et al. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science 380, 735–742 (2023).

    Article  Google Scholar 

  139. Yuan, R. et al. A neuromorphic physiological signal processing system based on VO2 memristor for next-generation human-machine interface. Nat. Commun. 14, 3695 (2023).

    Article  Google Scholar 

  140. Jo, S. H. et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010).

    Article  Google Scholar 

  141. Yang, Y. & Li, H. Tellurium-based artificial neuron: capturing biological complexity while keeping it simple. Adv. Electron. Mater. 8, 2200094 (2022).

    Article  Google Scholar 

  142. Liu, Z. et al. A memristor-based adaptive neuromorphic decoder for brain–computer interfaces. Nat. Electron. 8, 362–372 (2025).

    Article  Google Scholar 

  143. Curcio, C. A., Sloan, K. R., Kalina, R. E. & Hendrickson, A. E. Human photoreceptor topography. J. Comp. Neurol. 292, 497–523 (1990).

    Article  Google Scholar 

  144. Gu, L. et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581, 278–282 (2020).

    Article  Google Scholar 

  145. Choi, C. et al. Curved neuromorphic image sensor array using a MoS2-organic heterostructure inspired by the human visual recognition system. Nat. Commun. 11, 5934 (2020).

    Article  Google Scholar 

  146. Martin, S., Bruns, A. & Franke, J. Dynamic light control using bionic dielectric elastomer iris actuators. Adv. Funct. Mater. 32, 2112260 (2022).

    Article  Google Scholar 

  147. Wu, K. Y., Mina, M., Sahyoun, J. Y., Kalevar, A. & Tran, S. D. Retinal prostheses: engineering and clinical perspectives for vision restoration. Sensors 23, 5782 (2023).

    Article  Google Scholar 

  148. Shi, Y. et al. Nonlinear germanium-silicon photodiode for activation and monitoring in photonic neuromorphic networks. Nat. Commun. 13, 6048 (2022).

    Article  Google Scholar 

  149. Mathieson, K. et al. Photovoltaic retinal prosthesis with high pixel density. Nat. Photonics 6, 391–397 (2012).

    Article  Google Scholar 

  150. Choi, C. et al. Anti-distortion bioinspired camera with an inhomogeneous photo-pixel array. Nat. Commun. 15, 6021 (2024).

    Article  Google Scholar 

  151. Zhang, K. et al. Origami silicon optoelectronics for hemispherical electronic eye systems. Nat. Commun. 8, 1782 (2017).

    Article  Google Scholar 

  152. Choi, C. et al. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 8, 1664 (2017).

    Article  Google Scholar 

  153. Liu, H., Huang, Y. & Jiang, H. Artificial eye for scotopic vision with bioinspired all-optical photosensitivity enhancer. Proc. Natl Acad. Sci. USA 113, 3982–3985 (2016).

    Article  Google Scholar 

  154. Kim, Y. et al. A hemispherical image sensor array fabricated with organic photomemory transistors. Adv. Mater. 35, 2203541 (2023).

    Article  Google Scholar 

  155. Luo, X. et al. A bionic self-driven retinomorphic eye with ionogel photosynaptic retina. Nat. Commun. 15, 3086 (2024).

    Article  Google Scholar 

  156. Song, J.-K. et al. Stretchable colour-sensitive quantum dot nanocomposites for shape-tunable multiplexed phototransistor arrays. Nat. Nanotechnol. 17, 849–856 (2022).

    Article  Google Scholar 

  157. Thai, K. Y. et al. MoS2/graphene photodetector array with strain-modulated photoresponse up to the near-infrared regime. ACS Nano 15, 12836–12846 (2021).

    Article  Google Scholar 

  158. Long, Z. et al. A neuromorphic bionic eye with filter-free color vision using hemispherical perovskite nanowire array retina. Nat. Commun. 14, 1972 (2023).

    Article  Google Scholar 

  159. Ding, Y. et al. Uncooled self-powered hemispherical biomimetic pit organ for mid- to long-infrared imaging. Sci. Adv. 8, eabq8432 (2022).

    Article  Google Scholar 

  160. Blake, R. & Wilson, H. Binocular vision. Vis. Res. 51, 754–770 (2011).

    Article  Google Scholar 

  161. Adachi-Usami, E. & Lehmann, D. Monocular and binocular evoked average potential field topography: upper and lower hemiretinal stimuli. Exp. Brain Res. 50, 341–346 (1983).

    Google Scholar 

  162. Eigen, D. & Fergus, R. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In Proc. 2015 IEEE International Conference on Computer Vision (ICCV) 2650–2658 (IEEE, 2015).

  163. Fabius, J. H. & Van der Stigchel, S. Vision while the eyes move: getting the full picture. Sci. Adv. 7, eabk0043 (2021).

    Article  Google Scholar 

  164. Wallach, H., Frey, K. J. & Bode, K. A. The nature of adaptation in distance perception based on oculomotor cues. Atten. Percept. Psychophys. 11, 110–116 (1972).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (62425405), MOST National Key Technologies R&D Programme (SQ2022YFA1200118-04), Research Grant Council of Hong Kong (CRS_PolyU502/22) and The Hong Kong Polytechnic University (WZ4X and YWE4).

Author information

Authors and Affiliations

Authors

Contributions

Y.C. conceived the idea and guided the project. Y.Y., Y.W., C.Z., Z.X., Z.Q. and Y.C. wrote and edited the article. Z.W. provided guidance on the display items.

Corresponding author

Correspondence to Yang Chai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Citation diversity statement

We acknowledge that papers authored by scholars from historically excluded groups are systematically under-cited. Here, we have made every attempt to reference relevant papers in a manner that is equitable in terms of racial, ethnic, gender and geographical representation.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Young Min Song, Chris Klink and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Wang, Y., Zhu, C. et al. Bioinspired and biointegrated vision for artificial sight convergence. Nat Rev Bioeng (2025). https://doi.org/10.1038/s44222-025-00324-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44222-025-00324-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing