Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Detection and characterization of microplastics and nanoplastics in biological samples

Abstract

Plastic pollution from microplastics (1 μm–5 mm) and nanoplastics (<1 μm) is an emerging global threat. These particles have been detected in water, soil, atmospheric samples and even in naturally sampled organisms and human tissues/organs with potential ecological and health risks. However, most detection techniques are better suited for microplastic and nanoplastic (MNP) identification in ideal media (such as water) and face limitations when analysing biological samples. This issue must be addressed because the minimum sizes of MNPs found in organisms are often larger than those detected in water. In this Review, we discuss current progress in the detection, identification and analysis of MNPs in naturally sampled organisms and the human body. Moreover, we provide recommendations for how to improve the workflows of detection and labelling of MNPs in biological samples.

Key points

  • Techniques for detecting, identifying, analysing and quantifying microplastics and nanoplastics (MNPs) in water samples are more well developed compared with those used for measuring MNPs in biological samples.

  • Strategies for digestion, separation, enrichment and detection of MNPs need to be optimized depending on the category of organism under investigation.

  • MNPs have been detected in almost every organ/tissue in the human body but exposure pathways and the associated health risks are largely unknown.

  • Labelling strategies need to be designed based on a full characterization of MNPs in natural organisms, including polymer types, shapes and surface functionality.

  • Machine learning algorithms can greatly reduce the labour time and cost of MNP identification and characterization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Analytical workflow of MNPs in biological samples and timeline for the development of detection techniques.
Fig. 2: Strategies to improve digestion, separation, enrichment and detection of MNPs in three categories of organisms.
Fig. 3: Detection, concentration and distribution of MNPs in the human body.
Fig. 4: Labelling strategies of MNPs and related detection techniques.
Fig. 5: Machine learning integration.

Similar content being viewed by others

References

  1. Ryan, P. G. & Moloney, C. L. Plastic and other artefacts on South African beaches: temporal trends in abundance and composition. S. Afr. J. Sci. 86, 450–452 (1990).

    Google Scholar 

  2. Thompson, R. C. et al. Lost at sea: where is all the plastic? Science 304, 83–838 (2004).

    Article  Google Scholar 

  3. Thompson, R. C. et al. Twenty years of microplastics pollution research—what have we learned? Science 386, eadl2746 (2024). This article reviews two decades of research on MP pollution, potential sources, environmental distribution, ecological impacts, human health risks and detection methods.

    Article  Google Scholar 

  4. Allen, D. et al. Microplastics and nanoplastics in the marine–atmosphere environment. Nat. Rev. Earth Environ. 3, 393–405 (2022).

    Article  Google Scholar 

  5. Browne, M. A., Galloway, T. & Thompson, R. Microplastic—an emerging contaminant of potential concern? Integr. Environ. Assess. Manage. 3, 559–561 (2007).

    Article  Google Scholar 

  6. World Health Organization. Dietary and inhalation exposure to nano- and microplastic particles and potential implications for human health; https://www.who.int/publications/i/item/9789240054608 (2022).

  7. Ross, P. S. et al. Pervasive distribution of polyester fibres in the Arctic Ocean is driven by Atlantic inputs. Nat. Commun. 12, 106 (2021).

    Article  Google Scholar 

  8. Zhang, S. et al. Distribution characteristics of microplastics in surface and subsurface Antarctic seawater. Sci. Total. Environ. 838, 156051 (2022).

    Article  Google Scholar 

  9. Peng, G., Bellerby, R., Zhang, F., Sun, X. & Li, D. The ocean’s ultimate trashcan: hadal trenches as major depositories for plastic pollution. Water Res. 168, 115121 (2020).

    Article  Google Scholar 

  10. Napper, I. E. et al. Reaching new heights in plastic pollution—preliminary findings of microplastics on Mount Everest. One Earth 3, 621–630 (2020).

    Article  Google Scholar 

  11. Wang, M. et al. Oligomer nanoparticle release from polylactic acid plastics catalysed by gut enzymes triggers acute inflammation. Nat. Nanotechnol. 18, 403–411 (2023).

    Article  Google Scholar 

  12. Sun, X. D. et al. Differentially charged nanoplastics demonstrate distinct accumulation in Arabidopsis thaliana. Nat. Nanotechnol. 15, 755–760 (2020).

    Article  Google Scholar 

  13. Zhou, Y. et al. In vitro toxicity and modeling reveal nanoplastic effects on marine bivalves. ACS Nano 18, 17228–17239 (2024).

    Article  Google Scholar 

  14. Zhao, J. et al. Microplastic fragmentation by rotifers in aquatic ecosystems contributes to global nanoplastic pollution. Nat. Nanotechnol. 19, 406–414 (2024). This article presents different analytical techniques for the identification and quantification of MNPs in organisms.

    Article  Google Scholar 

  15. Ding, J. et al. Elder fish means more microplastics? Alaska pollock microplastic story in the Bering Sea. Sci. Adv. 9, eadf5897 (2023).

    Article  Google Scholar 

  16. Li, P. & Liu, J. Micro(nano)plastics in the human body: sources, occurrences, fates, and health risks. Environ. Sci. Technol. 58, 3065–3078 (2024).

    Google Scholar 

  17. Lowry, G. et al. Why was my paper rejected without review? Environ. Sci. Technol. 54, 11641–11644 (2020).

    Article  Google Scholar 

  18. Yang, L., Yuan, L. & Wang, W. X. Visible combined near-infrared in situ imaging revealed dynamic effects of microplastic fibers and beads in zebrafish. Environ. Sci. Technol. 58, 16269–16281 (2024).

    Article  Google Scholar 

  19. Li, B. et al. Fish ingest microplastics unintentionally. Environ. Sci. Technol. 55, 10471–10479 (2021).

    Article  Google Scholar 

  20. Thornton et al. Characterizing microplastic hazards: which concentration metrics and particle characteristics are most informative for understanding toxicity in aquatic organisms? Microplast. Nanoplast. 2, 20 (2022).

    Article  Google Scholar 

  21. Xie, L. et al. Automatic identification of individual nanoplastics by Raman spectroscopy based on machine learning. Environ. Sci. Technol. 57, 18203–18214 (2023).

    Article  Google Scholar 

  22. Nor, N. H. M. & Obbard, J. P. Microplastics in Singapore’s coastal mangrove ecosystems. Mar. Pollut. Bull. 79, 278–283 (2014).

    Article  Google Scholar 

  23. Yang, J. et al. Microplastics in different water samples (seawater, freshwater, and wastewater): methodology approach for characterization using micro-FTIR spectroscopy. Water Res. 232, 119711 (2023).

    Article  Google Scholar 

  24. Imhof, H. K., Schmid, J., Niessner, R., Ivleva, N. P. & Laforsch, C. A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments. Limnol. Oceanogr.: Methods 10, 524–537 (2012).

    Article  Google Scholar 

  25. Moses, S. R. et al. Comparison of two rapid automated analysis tools for large FTIR microplastic datasets. Anal. Bioanal. Chem. 415, 2975–2987 (2023).

    Article  Google Scholar 

  26. Piarulli, S. et al. Rapid and direct detection of small microplastics in aquatic samples by a new near infrared hyperspectral imaging (NIR-HSI) method. Chemosphere 260, 127655 (2020).

    Article  Google Scholar 

  27. Su, Y. et al. Steam disinfection releases micro(nano)plastics from silicone-rubber baby teats as examined by optical photothermal infrared microspectroscopy. Nat. Nanotechnol. 17, 76–85 (2022).

    Article  Google Scholar 

  28. Dong, M., She, Z., Xiong, X., Ouyang, G. & Luo, Z. Automated analysis of microplastics based on vibrational spectroscopy: are we measuring the same metrics? Anal. Bioanal. Chem. 414, 3359–3372 (2022).

    Article  Google Scholar 

  29. Ruan, X. et al. Rapid detection of nanoplastics down to 20 nm in water by surface-enhanced Raman spectroscopy. J. Hazard. Mater. 462, 132702 (2024).

    Article  Google Scholar 

  30. Fang, C. et al. Identification and visualisation of microplastics/nanoplastics by Raman imaging (ii): smaller than the diffraction limit of laser? Water Res. 183, 116046 (2020).

    Article  Google Scholar 

  31. Wang, C. et al. Natural solar irradiation produces fluorescent and biodegradable nanoplastics. Environ. Sci. Technol. 57, 6626–6635 (2023).

    Article  Google Scholar 

  32. Oßmann, B. E. et al. Small-sized microplastics and pigmented particles in bottled mineral water. Water Res. 141, 307–316 (2018).

    Article  Google Scholar 

  33. Liu, Y. et al. Overcoming the fluorescent interference during Raman spectroscopy detection of microplastics. Sci. Total. Environ. 897, 165333 (2023).

    Article  Google Scholar 

  34. Ye, Y., Yu, K. & Zhao, Y. The development and application of advanced analytical methods in microplastics contamination detection: a critical review. Sci. Total. Environ. 818, 151851 (2022).

    Article  Google Scholar 

  35. Fischer, M. & Scholz-Böttcher, B. M. Simultaneous trace identification and quantification of common types of microplastics in environmental samples by pyrolysis–gas chromatography–mass spectrometry. Environ. Sci. Technol. 51, 5052–5060 (2017).

    Article  Google Scholar 

  36. Albignac, M. et al. Tandem mass spectrometry enhances the performances of pyrolysis–gas chromatography–mass spectrometry for microplastic quantification. J. Anal. Appl. Pyrolysis 172, 105993 (2023).

    Article  Google Scholar 

  37. Zhang, J., Wang, L. & Kannan, K. Quantitative analysis of polyethylene terephthalate and polycarbonate microplastics in sediment collected from South Korea, Japan and the USA. Chemosphere 279, 130551 (2021).

    Article  Google Scholar 

  38. Lou, F. et al. Influence of interaction on accuracy of quantification of mixed microplastics using Py-GC/MS. J. Environ. Chem. Eng. 10, 108012 (2022).

    Article  Google Scholar 

  39. Ruan, X. et al. Nanoplastics detected in commercial sea salt. Environ. Sci. Technol. 58, 9091–9101 (2024).

    Article  Google Scholar 

  40. Hole, P. et al. Interlaboratory comparison of size measurements on nanoparticles using nanoparticle tracking analysis (NTA). J. Nanopart. Res. 15, 1–12 (2013).

    Article  Google Scholar 

  41. Sarau, G. et al. Correlative microscopy and spectroscopy workflow for microplastics. Appl. Spectrosc. 74, 1155–1160 (2020).

    Article  Google Scholar 

  42. Li, Y., Zhang, C., Tian, Z., Cai, X. & Guan, B. Identification and quantification of nanoplastics (20–1000 nm) in a drinking water treatment plant using AFM-IR and Pyr-GC/MS. J. Hazard. Mater. 463, 132933 (2024).

    Article  Google Scholar 

  43. Browne, M. et al. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ. Sci. Technol. 42, 5026–5031 (2008).

    Article  Google Scholar 

  44. Nguyen, B. & Tufenkji, N. Single-particle resolution fluorescence microscopy of nanoplastics. Environ. Sci. Technol. 56, 6426–6435 (2022).

    Article  Google Scholar 

  45. Roth, G. A., Tahiliani, S., Neu‐Baker, N. M. & Brenner, S. A. Hyperspectral microscopy as an analytical tool for nanomaterials. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 7, 565–579 (2015).

    Google Scholar 

  46. Hu, F., Shi, L. & Min, W. Biological imaging of chemical bonds by stimulated Raman scattering microscopy. Nat. Methods 16, 830–842 (2019).

    Article  Google Scholar 

  47. Wang, M. et al. Stimulated Raman scattering microscopy reveals bioaccumulation of small microplastics in protozoa from natural waters. Environ. Sci. Technol. 58, 2922–2930 (2024). This article reports an SRS-based technique for in vivo imaging and quantification of small-sized MPs in protozoa.

    Article  Google Scholar 

  48. Naidu, S. A., Ranga Rao, V. & Ramu, K. J. E. G. Microplastics in the benthic invertebrates from the coastal waters of Kochi, Southeastern Arabian Sea. Environ. Geochem. Health. 40, 1377–1383 (2018).

    Article  Google Scholar 

  49. Bergami, E. et al. Plastics everywhere: first evidence of polystyrene fragments inside the common Antarctic collembolan Cryptopygus antarcticus. Biol. Lett. 16, 20200093 (2020).

    Article  Google Scholar 

  50. Wei, M. et al. Volumetric chemical imaging by clearing-enhanced stimulated Raman scattering microscopy. Proc. Natl. Acad. Sci. USA. 116, 6608–6617 (2019).

    Article  Google Scholar 

  51. Choi, D. S. et al. Label-free live-cell imaging of internalized microplastics and cytoplasmic organelles with multicolor CARS microscopy. Environ. Sci. Technol. 56, 3045–3055 (2022).

    Article  Google Scholar 

  52. Galloway, T. S. et al. Ecotoxicological assessment of nanoparticle-containing acrylic copolymer dispersions in fairy shrimp and zebrafish embryos. Environ. Sci.: Nano 4, 1981–1997 (2017).

    Google Scholar 

  53. Xue, R. et al. Mechanistic understanding toward the maternal transfer of nanoplastics in Daphnia magna. ACS Nano 17, 13488–13499 (2023). This article demonstrates two pathways on the maternal transfer of NPs in D. magna by tracking and quantification of NPs in different parts of D. magna.

    Article  Google Scholar 

  54. Feng, J. et al. In situ identification and spatial mapping of microplastic standards in paramecia by secondary-ion mass spectrometry imaging. Anal. Chem. 93, 5521–5528 (2021).

    Article  Google Scholar 

  55. Li, Y. et al. In situ imaging of microplastics in living organisms based on mass spectrometry technology. Eco-Environ. Health. 3, 412–417 (2024).

    Article  Google Scholar 

  56. Lin, Y., Huang, X., Liu, Q., Lin, Z. & Jiang, G. Thermal fragmentation enhanced identification and quantification of polystyrene micro/nanoplastics in complex media. Talanta 208, 120478 (2020).

    Article  Google Scholar 

  57. Endres, K. J., Hill, J. A., Lu, K., Foster, M. D. & Wesdemiotis, C. Surface layer matrix-assisted laser desorption ionization mass spectrometry imaging: a surface imaging technique for the molecular-level analysis of synthetic material surfaces. Anal. Chem. 90, 13427–13433 (2018).

    Article  Google Scholar 

  58. Ye, H. et al. MALDI mass spectrometry‐assisted molecular imaging of metabolites during nitrogen fixation in the Medicago truncatulaSinorhizobium meliloti symbiosis. Plant. J. 75, 130–145 (2013).

    Article  Google Scholar 

  59. Zavalin, A. et al. Direct imaging of single cells and tissue at sub-cellular spatial resolution using transmission geometry MALDI MS. J. Mass. Spectrom. 47, 1473–1481 (2012).

    Article  Google Scholar 

  60. Conti, G. O. et al. Micro-and nano-plastics in edible fruit and vegetables. The first diet risks assessment for the general population. Environ. Res. 187, 109677 (2020).

    Article  Google Scholar 

  61. Maxwell, S. H., Melinda, K. F. & Matthew, G. Counterstaining to separate Nile red-stained microplastic particles from terrestrial invertebrate biomass. Environ. Sci. Technol. 54, 5580–5588 (2020).

    Article  Google Scholar 

  62. Feng, Z. et al. Microplastics in bloom-forming macroalgae: distribution, characteristics and impacts. J. Hazard. Mater. 397, 122752 (2020).

    Article  Google Scholar 

  63. Bowley, J., Baker-Austin, C., Porter, A., Hartnell, R. & Lewis, C. Oceanic hitchhikers—assessing pathogen risks from marine microplastic. Trends Microbiol. 29, 107–116 (2021).

    Article  Google Scholar 

  64. De Witte, B. et al. Short report on methods and protocols for the analysis of nano-, micro-, and macroplastic in biota. Zenodo https://doi.org/10.5281/zenodo.8417585 (2023).

  65. Zhu, J. & Wang, C. Recent advances in the analysis methodologies for microplastics in aquatic organisms: current knowledge and research challenges. Anal. Methods. 12, 2944–2957 (2020).

    Article  Google Scholar 

  66. Karami, A. et al. A high-performance protocol for extraction of microplastics in fish. Sci. Total. Environ. 578, 485–494 (2017).

    Article  Google Scholar 

  67. Bianchi, J. et al. Food preference determines the best suitable digestion protocol for analysing microplastic ingestion by fish. Mar. Pollut. Bull. 154, 111050 (2020).

    Article  Google Scholar 

  68. Yu, W. et al. Extraction of biodegradable microplastics from tissues of aquatic organisms. Sci. Total. Environ. 838, 156396 (2022).

    Article  Google Scholar 

  69. Podbielski, I., Hamm, T. & Lenz, M. Customized digestion protocols for copepods, euphausiids, chaetognaths and fish larvae facilitate the isolation of ingested microplastics. Sci. Rep. 14, 19985 (2024).

    Article  Google Scholar 

  70. Löder, M. G. J. et al. Enzymatic purification of microplastics in environmental samples. Environ. Sci. Technol. 51, 14283–14292 (2017).

    Article  Google Scholar 

  71. Collard, F. et al. Plastic particle ingestion by wild freshwater fish: a critical review. Environ. Sci. Technol. 53, 12974–12988 (2019).

    Article  Google Scholar 

  72. Li, Q. C. et al. Sequential isolation of microplastics and nanoplastics in environmental waters by membrane filtration, followed by cloud-point extraction. Anal. Chem. 93, 4559–4566 (2021).

    Article  Google Scholar 

  73. Marfella, R. et al. Microplastics and nanoplastics in atheromas and cardiovascular events. N. Engl. J. Med. 390, 900–910 (2024). This article demonstrates the presence of MNPs in atherosclerotic plaques and describes their association with higher combined risk (heart attack, stroke or death) of cardiovascular events.

    Article  Google Scholar 

  74. Zhou, X. X. et al. Quantitative analysis of polystyrene and poly(methyl methacrylate) nanoplastics in tissues of aquatic animals. Environ. Sci. Technol. 55, 3032–3040 (2021).

    Article  Google Scholar 

  75. Li, P., He, C. & Lin, D. Extraction and quantification of polystyrene nanoplastics from biological samples. Environ. Pollut. 314, 120267 (2022).

    Article  Google Scholar 

  76. Hermsen, E., Mintenig, S. M., Besseling, E. & Koelmans, A. A. Quality criteria for the analysis of microplastic in biota samples: a critical review. Environ. Sci. Technol. 52, 10230–10240 (2018).

    Article  Google Scholar 

  77. Nihart, A. J. et al. Bioaccumulation of microplastics in decedent human brains. Nat. Med. 31, 1114–1119 (2025). This study reports the presence of MNPs in human brains and provides evidence on the higher abundance of MNPs in the brains of individuals with dementia than in those without.

    Article  Google Scholar 

  78. Amato-Lourenço, L. F. et al. Microplastics in the olfactory bulb of the human brain. JAMA Netw. Open. 7, 2440018 (2024).

    Article  Google Scholar 

  79. Amato-Lourenço, L. F. et al. Presence of airborne microplastics in human lung tissue. J. Hazard. Mater. 416, 126124 (2021).

    Article  Google Scholar 

  80. Zhu, L. et al. Tissue accumulation of microplastics and potential health risks in human. Sci. Total. Environ. 915, 170004 (2024).

    Article  Google Scholar 

  81. Jenner, L. C. et al. Detection of microplastics in human lung tissue using μFTIR spectroscopy. Sci. Total. Environ. 831, 154907 (2022).

    Article  Google Scholar 

  82. Wang, S. et al. Microplastics in the lung tissues associated with blood test index. Toxics 11, 759 (2023).

    Article  Google Scholar 

  83. Ao, J. et al. Fast detection and 3D imaging of nanoplastics and microplastics by stimulated Raman scattering microscopy. Cell Rep. Phys. Sci. 4, 101623 (2023).

    Article  Google Scholar 

  84. Chen, Q. et al. An emerging role of microplastics in the etiology of lung ground glass nodules. Environ. Sci. Eur. 34, 25 (2022).

    Article  Google Scholar 

  85. Baeza-Martínez, C. et al. First evidence of microplastics isolated in European citizens’ lower airway. J. Hazard. Mater. 438, 129439 (2022).

    Article  Google Scholar 

  86. Chen, C. et al. Microplastics in the bronchoalveolar lavage fluid of Chinese children: associations with age, city development, and disease features. Environ. Sci. Technol. 57, 12594–12601 (2023).

    Article  Google Scholar 

  87. Ibrahim, Y. S. et al. Detection of microplastics in human colectomy specimens. JGH Open. 5, 116–121 (2021).

    Article  Google Scholar 

  88. Horvatits, T. et al. Microplastics detected in cirrhotic liver tissue. eBioMedicine 82, 104147 (2022).

    Article  Google Scholar 

  89. Leslie, H. A. et al. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 163, 107199 (2022).

    Article  Google Scholar 

  90. Yang, Y. et al. Detection of various microplastics in patients undergoing cardiac surgery. Environ. Sci. Technol. 57, 10911–10918 (2023).

    Article  Google Scholar 

  91. Liu, S. et al. Microplastics in three types of human arteries detected by pyrolysis–gas chromatography/mass spectrometry (Py-GC/MS). J. Hazard. Mater. 469, 133855 (2024).

    Article  Google Scholar 

  92. Rotchell, J. M. et al. Detection of microplastics in human saphenous vein tissue using μFTIR: a pilot study. PLoS One 18, 0280594 (2023).

    Article  Google Scholar 

  93. Massardo, S. et al. MicroRaman spectroscopy detects the presence of microplastics in human urine and kidney tissue. Environ. Int. 184, 108444 (2024).

    Article  Google Scholar 

  94. Liu, S. et al. The association between microplastics and microbiota in placentas and meconium: the first evidence in humans. Environ. Sci. Technol. 57, 17774–17785 (2022).

    Article  Google Scholar 

  95. Zhu, L. et al. Identification of microplastics in human placenta using laser direct infrared spectroscopy. Sci. Total. Environ. 856, 159060 (2023).

    Article  Google Scholar 

  96. Weingrill, R. B. et al. Temporal trends in microplastic accumulation in placentas from pregnancies in Hawai’i. Environ. Int. 180, 108220 (2023).

    Article  Google Scholar 

  97. Garcia, M. A. et al. Quantitation and identification of microplastics accumulation in human placental specimens using pyrolysis gas chromatography mass spectrometry. Toxicol. Sci. 199, 81–88 (2024).

    Article  Google Scholar 

  98. Ragusa, A. et al. Plasticenta: first evidence of microplastics in human placenta. Environ. Int. 146, 106274 (2021).

    Article  Google Scholar 

  99. Xue, J. et al. Microplastics in maternal amniotic fluid and their associations with gestational age. Sci. Total. Environ. 920, 171044 (2024).

    Article  Google Scholar 

  100. Zhao, Q. et al. Detection and characterization of microplastics in the human testis and semen. Sci. Total. Environ. 877, 162713 (2023).

    Article  Google Scholar 

  101. Hu, C. J. et al. Microplastic presence in dog and human testis and its potential association with sperm count and weights of testis and epididymis. Toxicol. Sci. 200, 235–240 (2024).

    Article  Google Scholar 

  102. Li, Z. et al. Identification and analysis of microplastics in human lower limb joints. J. Hazard. Mater. 461, 132640 (2024).

    Article  Google Scholar 

  103. Guo, X. et al. Discovery and analysis of microplastics in human bone marrow. J. Hazard. Mater. 477, 135266 (2024).

    Article  Google Scholar 

  104. Wallace, H. et al. Statement on the presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA J. 14, e4501 (2016).

    Google Scholar 

  105. Wright, S. L. & Kelly, F. J. Plastic and human health: a micro issue? Environ. Sci. Technol. 51, 6634–6647 (2017).

    Article  Google Scholar 

  106. Zhang, D. et al. Microplastics are detected in human gallstones and have the ability to form large cholesterol–microplastic heteroaggregates. J. Hazard. Mater. 467, 133631 (2024).

    Article  Google Scholar 

  107. Prata, J. C. Microplastics and human health: integrating pharmacokinetics. Crit. Rev. Environ. Sci. Technol. 53, 1489–1511 (2023).

    Article  Google Scholar 

  108. Tarafdar, A., Xie, J., Gowen, A., O’Higgins, A. C. & Xu, J. L. Advanced optical photothermal infrared spectroscopy for comprehensive characterization of microplastics from intravenous fluid delivery systems. Sci. Total. Environ. 929, 172648 (2024).

    Article  Google Scholar 

  109. Çağlayan, U., Gündoğdu, S., Ramos, T. M. & Syberg, K. Intravenous hypertonic fluids as a source of human microplastic exposure. Environ. Toxicol. Phar. 107, 104411 (2024).

    Article  Google Scholar 

  110. Qian, N. et al. Rapid single-particle chemical imaging of nanoplastics by SRS microscopy. Proc. Natl. Acad. Sci. USA. 121, e2300582121 (2024).

    Article  Google Scholar 

  111. Pan, Z., Liu, Q., Xu, J., Li, W. & Lin, H. Microplastic contamination in seafood from Dongshan Bay in southeastern China and its health risk implication for human consumption. Environ. Pollut. 303, 119163 (2022).

    Article  Google Scholar 

  112. Liao, Z. et al. Airborne microplastics in indoor and outdoor environments of a coastal city in eastern China. J. Hazard. Mater. 417, 126007 (2021).

    Article  Google Scholar 

  113. Qin, X. et al. Features, potential invasion pathways, and reproductive health risks of microplastics detected in human uterus. Environ. Sci. Technol. 58, 10482–10493 (2024).

    Article  Google Scholar 

  114. Li, N. et al. Prevalence and implications of microplastic contaminants in general human seminal fluid: a Raman spectroscopic study. Sci. Total. Environ. 937, 173522 (2024).

    Article  Google Scholar 

  115. Zhang, C. et al. Association of mixed exposure to microplastics with sperm dysfunction: a multi-site study in China. eBioMedicine 108, 105369 (2024).

    Article  Google Scholar 

  116. Deng, C. et al. Identification and analysis of microplastics in para-tumor and tumor of human prostate. eBioMedicine 108, 105360 (2024).

    Article  Google Scholar 

  117. Canga, E. M., Gowen, A. & Xu, J. L. Assessing the inconsistency of microplastic measurements in foods and beverages. Compr. Rev. Food Sci. Food Saf. 23, e13315 (2024).

    Article  Google Scholar 

  118. Jiang, X., Tian, L., Ma, Y. & Ji, R. Quantifying the bioaccumulation of nanoplastics and PAHs in the clamworm Perinereis aibuhitensis. Sci. Total. Environ. 655, 591–597 (2019).

    Article  Google Scholar 

  119. Hataley, E. K., McIlwraith, H. K., Roy, D. & Rochman, C. M. Towards a management strategy for microplastic pollution in the Laurentian Great Lakes—ecological risk assessment and management (part 2). Can. J. Fish. Aquat. Sci. 80, 1669–1678 (2023).

    Article  Google Scholar 

  120. Brander, S. M. et al. Sampling and quality assurance and quality control: a guide for scientists investigating the occurrence of microplastics across matrices. Appl. Spectrosc. 74, 1099–1125 (2020).

    Article  Google Scholar 

  121. Ivleva, N. P., Wiesheu, A. C. & Niessner, R. Microplastic in aquatic ecosystems. Angew. Chem. Int. Ed. 56, 1720–1739 (2017).

    Article  Google Scholar 

  122. Catarino, A. I., Frutos, A. & Henry, T. B. Use of fluorescent-labelled nanoplastics (NPs) to demonstrate NP absorption is inconclusive without adequate controls. Sci. Total. Environ. 670, 915–920 (2019).

    Article  Google Scholar 

  123. Villacorta, A. et al. Fluorescent labeling of micro/nanoplastics for biological applications with a focus on “true-to-life” tracking. J. Hazard. Mater. 476, 135134 (2024).

    Article  Google Scholar 

  124. Wang, M. & Wang, W. X. Accumulation kinetics and gut microenvironment responses to environmentally relevant doses of micro/nanoplastics by zooplankton Daphnia magna. Environ. Sci. Technol. 57, 5611–5620 (2023). This article reports the bioaccumulation of differentially charged MNPs in zooplankton using AIE-labelled MNPs.

    Article  Google Scholar 

  125. Dong, Z. & Wang, W. X. Tracking nano-and microplastics accumulation and egestion in a marine copepod by novel fluorescent AIEgens: kinetic modeling of the rhythm behavior. Environ. Sci. Technol. 57, 20761–20772 (2023).

    Article  Google Scholar 

  126. Liang, J. L. et al. Low-toxic, fluorescent labeled and size-controlled graphene oxide quantum dots@polystyrene nanospheres as reference material for quantitative determination and in vivo tracing. Chemosphere 307, 136094 (2022).

    Article  Google Scholar 

  127. Wang, Y. K. et al. Long-range order enabled stability in quantum dot light-emitting diodes. Nature 629, 586–591 (2024).

    Article  Google Scholar 

  128. Aramendia, J. et al. Evidence of internalized microplastics in mussel tissues detected by volumetric Raman imaging. Sci. Total. Environ. 914, 169960 (2024).

    Article  Google Scholar 

  129. Schermelleh, L. et al. Super-resolution microscopy demystified. Nat. Cell Biol. 21, 72–84 (2019).

    Article  Google Scholar 

  130. Morgana, S., Casentini, B., Tirelli, V., Grasso, F. & Amalfitano, S. Fluorescence-based detection: a review of current and emerging techniques to unveil micro/nanoplastics in environmental samples. TrAC. Trends Anal. Chem. 172, 117559 (2024).

    Article  Google Scholar 

  131. Clark, N. J., Khan, F. R., Mitrano, D. M., Boyle, D. & Thompson, R. C. Demonstrating the translocation of nanoplastics across the fish intestine using palladium-doped polystyrene in a salmon gut-sac. Environ. Int. 159, 106994 (2022).

    Article  Google Scholar 

  132. Han, P. et al. Unveiling unique microbial nitrogen cycling and nitrification driver in coastal Antarctica. Nat. Commun. 15, 3143 (2024).

    Article  Google Scholar 

  133. Mitrano, D. M. et al. Synthesis of metal-doped nanoplastics and their utility to investigate fate and behaviour in complex environmental systems. Nat. Nanotechnol. 14, 362–368 (2019). This article reports a method to synthesize palladium-doped NPs and achieves accurate quantification of NPs in complex environmental systems.

    Article  Google Scholar 

  134. Heinlaan, M. et al. Multi-generation exposure to polystyrene nanoplastics showed no major adverse effects in Daphnia magna. Environ. Pollut. 323, 121213 (2023).

    Article  Google Scholar 

  135. Del Real, A. E. P. et al. Assessing implications of nanoplastics exposure to plants with advanced nanometrology techniques. J. Hazard. Mater. 430, 128356 (2022).

    Article  Google Scholar 

  136. Fu, S. F. et al. Core–shell Au@ nanoplastics as a quantitative tracer to investigate the bioaccumulation of nanoplastics in freshwater ecosystems. Anal. Chem. 95, 12785–12793 (2023).

    Article  Google Scholar 

  137. Monikh, F. A. et al. Quantifying the trophic transfer of sub-micron plastics in an assembled food chain. Nano Today 46, 101611 (2022).

    Article  Google Scholar 

  138. Cassano, D. et al. Inorganic species-doped polypropylene nanoparticles for multifunctional detection. ACS Appl. Nano Mater. 4, 1551–1557 (2021).

    Article  Google Scholar 

  139. Li, X. et al. Preparation of NaYF4:Yb,Er nanoparticles coated with hydrophilic polystyrene. Mater. Lett. 247, 159–162 (2019).

    Article  Google Scholar 

  140. Smith, C. et al. Nanoplastics prepared with uniformly distributed metal-tags: a novel approach to quantify size distribution and particle number concentration of polydisperse nanoplastics by single particle ICP-MS. Environ. Sci.: Nano 11, 911–923 (2024).

    Google Scholar 

  141. Das, A., Terry, L. R., Sanders, S., Yang, L. & Guo, H. Confocal surface-enhanced Raman imaging of the intestinal barrier crossing behavior of model nanoplastics in Daphnia magna. Environ. Sci. Technol. 58, 11615–11624 (2024).

    Article  Google Scholar 

  142. Luo, Y. et al. Quantitative tracing of uptake and transport of submicrometre plastics in crop plants using lanthanide chelates as a dual-functional tracer. Nat. Nanotechnol. 17, 424–431 (2022).

    Article  Google Scholar 

  143. Wang, Y. et al. Tracking and imaging nano-plastics in fresh plant using cryogenic laser ablation inductively coupled plasma mass spectrometry. J. Hazard. Mater. 465, 133029 (2024).

    Article  Google Scholar 

  144. Yeo, I. C. et al. Insights into tissue-specific bioaccumulation of nanoplastics in marine medaka as revealed by a stable carbon isotopic approach. Environ. Sci. Technol. Lett. 10, 838–843 (2023).

    Article  Google Scholar 

  145. Taipale, S. J. et al. Tracing the fate of microplastic carbon in the aquatic food web by compound-specific isotope analysis. Sci. Rep. 9, 19894 (2019).

    Article  Google Scholar 

  146. Jiang, X. et al. Foliar exposure of deuterium stable isotope-labeled nanoplastics to lettuce: quantitative determination of foliar uptake, transport, and trophic transfer in a terrestrial food chain. Environ. Sci. Technol. 58, 15438–15449 (2024).

    Article  Google Scholar 

  147. Al-Sid-Cheikh, M. et al. Uptake, whole-body distribution, and depuration of nanoplastics by the scallop Pecten maximus at environmentally realistic concentrations. Environ. Sci. Technol. 52, 14480–14486 (2018). This article reports the synthesis of 14C-labelled polystyrene nanoplastics and obtains their distribution in Pecten maximus via QWBA.

    Article  Google Scholar 

  148. Munir, M. et al. Iodine-131 radiolabeled polyvinylchloride: a potential radiotracer for micro and nanoplastics bioaccumulation and biodistribution study in organisms. Mar. Pollut. Bull. 188, 114627 (2023).

    Article  Google Scholar 

  149. Im, C. et al. PET tracing of biodistribution for orally administered 64Cu-labeled polystyrene in mice. J. Nucl. Med. 63, 461–467 (2022).

    Article  Google Scholar 

  150. Delaney, S. et al. Unraveling the in vivo fate of inhaled MNPs with PET imaging. Sci. Total. Environ. 904, 166320 (2023).

    Article  Google Scholar 

  151. Shi, X. et al. Capturing, enriching and detecting nanoplastics in water based on optical manipulation, surface-enhanced Raman scattering and microfluidics. Nat. Water 3, 449–460 (2025).

    Article  Google Scholar 

  152. Al-Sid-Cheikh, M. et al. Synthesis of 14C-labelled polystyrene nanoplastics for environmental studies. Commun. Mater. 1, 97 (2020).

    Article  Google Scholar 

  153. Lorenzo-Navarro, J. et al. Deep learning approach for automatic microplastics counting and classification. Sci. Total. Environ. 765, 142728 (2021).

    Article  Google Scholar 

  154. Lee, G. & Jhang, K. Neural network analysis for microplastic segmentation. Sensors 21, 7030 (2021).

    Article  Google Scholar 

  155. Zhu, Z., Parker, W. & Wong, A. Leveraging deep learning for automatic recognition of microplastics (MPs) via focal plane array (FPA) micro-FT-IR imaging. Environ. Pollut. 337, 122548 (2023).

    Article  Google Scholar 

  156. Chen, Q. et al. Rapid mass conversion for environmental microplastics of diverse shapes. Environ. Sci. Technol. 58, 10776–10785 (2024). This article reports the development of an accurate MP mass conversion model based on a deep neural residual network.

    Article  Google Scholar 

  157. Primpke, S. et al. Toward the systematic identification of microplastics in the environment: evaluation of a new independent software tool (siMPle) for spectroscopic analysis. Appl. Spectrosc. 74, 1127–1138 (2020).

    Article  Google Scholar 

  158. Zhu, Z., Parker, W. & Wong, A. PlasticNet: deep learning for automatic microplastic recognition via FT-IR spectroscopy. J. Comput. Vis. Imaging Syst. 6, 1–3 (2021).

    Article  Google Scholar 

  159. Bianco, V. et al. Microplastic identification via holographic imaging and machine learning. Adv. Intell. Syst. 2, 1900153 (2020).

    Article  Google Scholar 

  160. Zhu, Y., Yeung, C. H. & Lam, E. Y. Digital holographic imaging and classification of microplastics using deep transfer learning. Appl. Opt. 60, A38–A47 (2021).

    Article  Google Scholar 

  161. Wang, X. et al. Differentiating microplastics from natural particles in aqueous suspensions using flow cytometry with machine learning. Environ. Sci. Technol. 58, 10240–10251 (2024).

    Article  Google Scholar 

  162. Li, Y. et al. Tracing microplastic aging processes using multimodal deep learning: a predictive model for enhanced traceability. Environ. Sci. Technol. 58, 18335–18344 (2024).

    Article  Google Scholar 

  163. Shishkin, I. E. & Grekov, A. N. Implementation of YOLOv5 for detection and classification of microplastics and microorganisms in marine environment. In International Russian Smart Industry Conference 229–235 (Curan Associates, 2023).

  164. Zhang, Y. et al. Hyperspectral imaging based method for rapid detection of microplastics in the intestinal tracts of fish. Environ. Sci. Technol. 53, 5151–5158 (2019).

    Article  Google Scholar 

  165. Ishmukhametov, I., Nigamatzyanova, L., Fakhrullina, G. & Fakhrullin, R. Label-free identification of microplastics in human cells: dark-field microscopy and deep learning study. Anal. Bioanal. Chem. 414, 1297–1312 (2022).

    Article  Google Scholar 

  166. Lee, S. et al. Automatic classification of microplastics and natural organic matter mixtures using a deep learning model. Water Res. 246, 120710 (2023).

    Article  Google Scholar 

  167. Suaria, G. et al. Microfibers in oceanic surface waters: a global characterization. Sci. Adv. 6, 8493 (2020).

    Article  Google Scholar 

  168. Liu, Y. et al. Suspected sources of microplastics and nanoplastics: contamination from experimental reagents and solvents. Water Res. 249, 120925 (2024).

    Article  Google Scholar 

  169. Bai, R. et al. Microplastics are overestimated due to poor quality control of reagents. J. Hazard. Mater. 459, 132068 (2023).

    Article  Google Scholar 

  170. Yang, T., Xu, Y., Liu, G. & Nowack, B. Oligomers are a major fraction of the submicrometre particles released during washing of polyester textiles. Nat. Water 2, 151–160 (2024).

    Article  Google Scholar 

  171. Conchione, C., Lucci, P. & Moret, S. Migration of polypropylene oligomers into ready-to-eat vegetable soups. Foods 9, 1365 (2020).

    Article  Google Scholar 

  172. Tamayo-Belda, M. et al. Identification and toxicity towards aquatic primary producers of the smallest fractions released from hydrolytic degradation of polycaprolactone microplastics. Chemosphere 303, 134966 (2022).

    Article  Google Scholar 

  173. Arctic Monitoring and Assessment Programme. Microplastics and litter in the environment; https://litterandmicroplastics.amap.no (2021).

  174. Coffin, S. The emergence of microplastics: charting the path from research to regulations. Environ. Sci.: Adv. 2, 356–367 (2023).

    Google Scholar 

  175. International Organization for Standardization. Principles for the analysis of microplastics present in the environment; https://www.iso.org/obp/ui/en/#iso:std:iso:24187:ed-1:v1:en (2023).

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (42192572, U2106213), International Scientific and Technological Cooperation and Research and Development Projects in Hainan Province (GHYF2025046) and USDA Hatch program (MAS 00616).

Author information

Authors and Affiliations

Authors

Contributions

J.Z. and B.X. conceptualized the idea and wrote the outline of the manuscript. J.Z., Z.W. and B.X. supervised the project. J.Z., R.L., H.T, J.W., Y.M., Q.C. and F.J. researched data for the article, and made a substantial contribution to discussion of content and writing of the article. All authors reviewed and approved the manuscript.

Corresponding authors

Correspondence to Zhenyu Wang or Baoshan Xing.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Wei Min, Giuseppe Suaria, Anna Posacka and Tamara Galloway for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Lan, R., Tan, H. et al. Detection and characterization of microplastics and nanoplastics in biological samples. Nat Rev Bioeng (2025). https://doi.org/10.1038/s44222-025-00335-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44222-025-00335-0

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology