Abstract
Unlike living organisms, which evolved to adapt to dynamic conditions, robots often become less agile in complex scenarios, prompting roboticists to reduce environmental complexities to ease robot operations. However, the strategies implemented by animals and plants to achieve energy-saving movements in complex environments can inspire the design of more resilient autonomous robots with lower energy consumption. In nature, movement strategies evolved to balance energy expenditure and resource acquisition to survive in unpredictable environments. This is particularly relevant for robots operating over large distances or in resource-limited conditions. In this Review, we present a performance analysis of movement strategies in both natural and artificial systems and across different environments — terrain, soil, underwater and air — and emphasize how energy-saving design principles can be used to widen the operativity of robots. We discuss the importance of the cost of transport as a metric for assessing movement economy and propose its use, not only for animals, but also to benchmark movement by growth and seed dispersal in plants. Despite the profound differences in energy harvesting strategies, as plants produce organic matter using energy from light and animals obtain energy by consuming organic matter, studying both can lead to energy-saving designs in bioinspired robots.
Key points
-
Movement strategies in natural and artificial systems are compared across terrain, soil, underwater and air to identify design principles that economize energy and extend robot operativity.
-
Cost of transport is used to measure the ‘economy’ of movements in robots, animals and, for the first time, in plants to enable a fundamental, function-related, energy-based comparison between specific species and their artificial counterparts.
-
Mechanical intelligence and environmental energy harvesting are the key enablers of energy-saving movements in biological systems.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Rivero-Moreno, Y. et al. Robotic surgery: a comprehensive review of the literature and current trends. Cureus 15, e42370 (2023).
Bernardo, R., Sousa, J. M. C. & Gonçalves, P. J. S. Survey on robotic systems for internal logistics. J. Manuf. Syst. 65, 339–350 (2022).
Oliveira, L. F. P., Moreira, A. P. & Silva, M. F. Advances in agriculture robotics: a state-of-the-art review and challenges ahead. Robotics 10, 52 (2021).
Sanneman, L., Fourie, C. & Shah, J. A. The state of industrial robotics: emerging technologies, challenges, and key research directions. Found. Trends Robot. 8, 225–306 (2021).
Melenbrink, N., Werfel, J. & Menges, A. On-site autonomous construction robots: towards unsupervised building. Autom. Constr. 119, 103312 (2020).
Lee, A. J. et al. Survey of robotics technologies for civil infrastructure inspection. J. Infrastruct. Intell. Resil. 2, 100018 (2023).
Chien, S. A., Visentin, G. & Basich, C. Exploring beyond earth using space robotics. Sci. Robot. 9, eadi6424 (2024).
Li, D. et al. A survey of space robotic technologies for on-orbit assembly. Space Sci. Technol. 2022, 9849170 (2022).
Laschi, C. & Mazzolai, B. Lessons from animals and plants: the symbiosis of morphological computation and soft robotics. IEEE Robot. Autom. Mag. 23, 107–114 (2016).
Rowe, N. & Speck, T. Plant growth forms: an ecological and evolutionary perspective. New Phytol. 166, 61–72 (2005).
Minetti, A. E. & Alexander, R. M. A theory of metabolic costs for bipedal gaits. J. Theor. Biol. 186, 467–476 (1997).
Mochon, S. & McMahon, T. A. Ballistic walking. J. Biomech. 13, 49–57 (1980).
Reher, J., Cousineau, E. A., Hereid, A., Hubicki, C. M. & Ames, A. D. Realizing dynamic and efficient bipedal locomotion on the humanoid robot DURUS. In Proc. 2016 IEEE International Conference on Robotics and Automation (ICRA) 1794–1801 (IEEE, 2016).
Collins, S. H. & Ruina, A. A bipedal walking robot with efficient and human-like gait. In Proc. 2005 IEEE International Conference on Robotics and Automation 1983–1988 (IEEE, 2005).
Tsagarakis, N. G. et al. WALK‐MAN: a high‐performance humanoid platform for realistic environments. J. Field Robot. 34, 1225–1259 (2017).
Kashiri, N. et al. An overview on principles for energy efficient robot locomotion. Front. Robot. AI 5, 129 (2018).
Makedon, V., Mykhailenko, O. & Vazov, R. Dominants and features of growth of the world market of robotics. Eur. J. Manag. Issues 29, 133–141 (2021).
Salguero-Gómez, R. et al. Fast–slow continuum and reproductive strategies structure plant life-history variation worldwide. Proc. Natl Acad. Sci. USA 113, 230–235 (2016).
Oli, M. K. The fast–slow continuum and mammalian life-history patterns: an empirical evaluation. Basic Appl. Ecol. 5, 449–463 (2004).
Lailvaux, S. P. & Husak, J. F. Predicting life-history trade-offs with whole-organism performance. Integr. Comp. Biol. 57, 325–332 (2017).
Alexander, R. M. Tyrannosaurus on the run. Nature 379, 121 (1996).
Mazzolai, B., Tramacere, F., Fiorello, I. & Margheri, L. The bio-engineering approach for plant investigations and growing robots. A mini-review. Front. Robot. AI 7, 573014 (2020).
Brackenbury, J. Caterpillar kinematics. Nature 390, 453 (1997).
Lin, H.-T., Leisk, G. G. & Trimmer, B. GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinspir. Biomim. 6, 026007 (2011).
Radhakrishnan, V. Locomotion: dealing with friction. Proc. Natl Acad. Sci. USA 95, 5448–5455 (1998).
Casey, T. M. Energetics of caterpillar locomotion: biomechanical constraints of a hydraulic skeleton. Science 252, 112–114 (1991).
Full, R. J., Zuccarello, D. A. & Tullis, A. Effect of variation in form on the cost of terrestrial locomotion. J. Exp. Biol. 150, 233–246 (1990).
Lin, H.-T. & Trimmer, B. Caterpillars use the substrate as their external skeleton: a behavior confirmation. Commun. Integr. Biol. 3, 471–474 (2010).
Vaughan, S. C., Lin, H. & Trimmer, B. A. Caterpillar climbing: robust, tension-based omni-directional locomotion. J. Insect Sci. 18, 13 (2018).
Ariizumi, R. & Matsuno, F. Dynamical analysis of sidewinding locomotion by a snake-like robot. In Proc. 2013 IEEE International Conference on Robotics and Automation 5149–5154 (IEEE, 2013).
Fu, Q., Astley, H. C. & Li, C. Snakes combine vertical and lateral bending to traverse uneven terrain. Bioinspir. Biomim. 17, 036009 (2022).
Ariizumi, R. & Matsuno, F. Dynamic analysis of three snake robot gaits. IEEE Trans. Robot. 33, 1075–1087 (2017).
McMahon, T. A. Mechanics of locomotion. Int. J. Robot. Res. 3, 4–28 (1984).
McGeer, T. Passive dynamic walking. Int. J. Robot. Res. 9, 62–82 (1990).
Tucker, V. A. The energetic cost of moving about. Am. Sci. 63, 413–419 (1975).
Collins, S. H., Wisse, M. & Ruina, A. A three-dimensional passive-dynamic walking robot with two legs and knees. Int. J. Robot. Res. 20, 607–615 (2001).
Collins, S. H., Adamczyk, P. G. & Kuo, A. D. Dynamic arm swinging in human walking. Proc. R. Soc. B 276, 3679–3688 (2009).
Tedrake, R., Zhang, T. W. & Seung, H. S. Stochastic policy gradient reinforcement learning on a simple 3D biped. In Proc. 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566) 2849–2854 (IEEE, 2004).
Collins, S., Ruina, A., Tedrake, R. & Wisse, M. Efficient bipedal robots based on passive-dynamic walkers. Science 307, 1082–1085 (2005).
Müller, V. C. & Hoffmann, M. What is morphological computation? On how the body contributes to cognition and control. Artif. Life 23, 1–24 (2017).
Rudman, K., Aspden, R. & Meakin, J. Compression or tension? The stress distribution in the proximal femur. Biomed. Eng. Online 5, 12 (2006).
Seok, S. et al. Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot. In Proc. 2013 IEEE International Conference on Robotics and Automation 3307–3312 (IEEE, 2013).
Ananthanarayanan, A., Azadi, M. & Kim, S. Towards a bio-inspired leg design for high-speed running. Bioinspir. Biomim. 7, 046005 (2012).
Badri-Spröwitz, A., Aghamaleki Sarvestani, A., Sitti, M. & Daley, M. A. BirdBot achieves energy-efficient gait with minimal control using avian-inspired leg clutching. Sci. Robot. 7, eabg4055 (2022).
Blickhan, R. et al. Intelligence by mechanics. Philos. Trans. R. Soc. A 365, 199–220 (2007).
Ilton, M. et al. The principles of cascading power limits in small, fast biological and engineered systems. Science 360, eaao1082 (2018).
Bonsignori, G. et al. The green leafhopper, Cicadella viridis (Hemiptera, Auchenorrhyncha, Cicadellidae), jumps with near-constant acceleration. J. Exp. Biol. 216, 1270–1279 (2013).
Ker, R. F., Alexander, R. M. & Bennett, M. B. Why are mammalian tendons so thick? J. Zool. 216, 309–324 (1988).
Ker, R. F. Dynamic tensile properties of the plantaris tendon of sheep (Ovis aries). J. Exp. Biol. 93, 283–302 (1981).
Vincent, J. F. V. & Wegst, U. G. K. Design and mechanical properties of insect cuticle. Arthropod Struct. Dev. 33, 187–199 (2004).
Vogler, H. et al. The pollen tube: a soft shell with a hard core. Plant. J. 73, 617–627 (2013).
Nezhad, A. S., Naghavi, M., Packirisamy, M., Bhat, R. & Geitmann, A. Quantification of the Young’s modulus of the primary plant cell wall using bending-lab-on-chip (BLOC). Lab Chip 13, 2599–2608 (2013).
Li, F. et al. Jumping like an insect: design and dynamic optimization of a jumping mini robot based on bio-mimetic inspiration. Mechatronics 22, 167–176 (2012).
Soffiatti, P., Fort, E., Heinz, C. & Rowe, N. P. Trellis-forming stems of a tropical liana Condylocarpon guianense (Apocynaceae): a plant-made safety net constructed by simple “start-stop” development. Front. Plant Sci. 13, 1016195 (2022).
Hattermann, T., Petit-Bagnard, L., Heinz, C., Heuret, P. & Rowe, N. P. Mind the gap: reach and mechanical diversity of searcher shoots in climbing plants. Front. For. Glob. Change 5, 836247 (2022).
Naselli, G. A. et al. A soft continuum robotic arm with a climbing plant‐inspired adaptive behavior for minimal sensing, actuation, and control effort. Adv. Intell. Syst. 6, 2300537 (2024).
Del Dottore, E., Mondini, A., Rowe, N. & Mazzolai, B. A growing soft robot with climbing plant–inspired adaptive behaviors for navigation in unstructured environments. Sci. Robot. 9, eadi5908 (2024).
Aguilar-Duque, J. I., Hernández-Arellano, J. L., Avelar-Sosa, L., Amaya-Parra, G. & Tamayo-Pérez, U. J. in Best Practices in Manufacturing Processes (eds García Alcaraz, J. L. et al.) 347–366 (Springer, 2019).
Sadeghi, A., Tonazzini, A., Popova, L. & Mazzolai, B. A novel growing device inspired by plant root soil penetration behaviors. PLoS One 9, e90139 (2014).
Del Dottore, E., Sadeghi, A., Mondini, A., Mattoli, V. & Mazzolai, B. Toward growing robots: a historical evolution from cellular to plant-inspired robotics. Front. Robot. AI 5, 16 (2018).
Del Dottore, E. & Mazzolai, B. Perspectives on computation in plants. Artif. Life 29, 336–350 (2023).
Speck, T. & Rowe, N. P. in The Evolution of Plant Architecture (eds Kurmann, N. H. & Hemsley, A. R.) 447–479 (Kew, 1999).
Maladen, R. D., Umbanhowar, P. B., Ding, Y., Masse, A. & Goldman, D. I. Granular lift forces predict vertical motion of a sand-swimming robot. In Proc. 2011 IEEE International Conference on Robotics and Automation 1398–1403 (IEEE, 2011).
Zhang, W., Huang, R., Xiang, J. & Zhang, N. Recent advances in bio-inspired geotechnics: from burrowing strategy to underground structures. Gondwana Res. 130, 1–17 (2024).
Martinez, A. et al. Bio-inspired geotechnical engineering: principles, current work, opportunities and challenges. Geotechnique 72, 687–705 (2022).
Patino-Ramirez, F. & O’Sullivan, C. Optimal tip shape for minimum drag and lift during horizontal penetration in granular media. Acta Geotech. 19, 19–38 (2024).
Quillin, K. J. Kinematic scaling of locomotion by hydrostatic animals: ontogeny of peristaltic crawling by the earthworm Lumbricus terrestris. J. Exp. Biol. 202, 661–674 (1999).
Ali, O., Cheddadi, I., Landrein, B. & Long, Y. Revisiting the relationship between turgor pressure and plant cell growth. New Phytol. 238, 62–69 (2023).
Ruiz, S., Schymanski, S. J. & Or, D. Mechanics and energetics of soil penetration by earthworms and plant roots: higher rates cost more. Vadose Zone J. 16, 1–16 (2017).
Pirrone, S. R. M., Del Dottore, E., Sibille, L. & Mazzolai, B. A methodology to investigate the design requirements of plant root-inspired robots for soil exploration. IEEE Robot. Autom. Lett. 8, 3438–3445 (2023).
Dorgan, K. M. The biomechanics of burrowing and boring. J. Exp. Biol. 218, 176–183 (2015).
Pirrone, S. R. M., Del Dottore, E., Sibille, L. & Mazzolai, B. Investigations of bioinspired soil penetration strategies via a numerical model: does radial expansion improve soil intruder performances? Acta Geotech. 19, 1275–1293 (2024).
Keudel, M. & Schrader, S. Axial and radial pressure exerted by earthworms of different ecological groups. Biol. Fertil. Soils 29, 262–269 (1999).
Materechera, S. A., Alston, A. M., Kirby, J. M. & Dexter, A. R. Influence of root diameter on the penetration of seminal roots into a compacted subsoil. Plant Soil 144, 297–303 (1992).
Das, R., Babu, S. P. M., Visentin, F., Palagi, S. & Mazzolai, B. An earthworm-like modular soft robot for locomotion in multi-terrain environments. Sci. Rep. 13, 1571 (2023).
Sadeghi, A., Mondini, A. & Mazzolai, B. Toward self-growing soft robots inspired by plant roots and based on additive manufacturing technologies. Soft Robot. 4, 211–223 (2017).
Sadeghi, A., Del Dottore, E., Mondini, A. & Mazzolai, B. Passive morphological adaptation for obstacle avoidance in a self-growing robot produced by additive manufacturing. Soft Robot. 7, 85–94 (2020).
Naclerio, N. D. et al. Controlling subterranean forces enables a fast, steerable, burrowing soft robot. Sci. Robot. 6, eabe2922 (2021).
Del Dottore, E., Mondini, A., Bray, D. & Mazzolai, B. Miniature soil moisture sensors for a root-inspired burrowing growing robot. In Proc. Biomimetic and Biohybrid Systems, 12th International Conference, Living Machines 2023 (eds Meder, F. et al.) 184–196 (Springer, 2023).
Abraham, Y. & Elbaum, R. Hygroscopic movements in Geraniaceae: the structural variations that are responsible for coiling or bending. New Phytol. 199, 584–594 (2013).
Abraham, Y. et al. Tilted cellulose arrangement as a novel mechanism for hygroscopic coiling in the stork’s bill awn. J. R. Soc. Interface 9, 640–647 (2012).
Evangelista, D., Hotton, S. & Dumais, J. The mechanics of explosive dispersal and self-burial in the seeds of the filaree, Erodium cicutarium (Geraniaceae). J. Exp. Biol. 214, 521–529 (2011).
Cecchini, L. et al. 4D printing of humidity‐driven seed inspired soft robots. Adv. Sci. 10, 2205146 (2023).
Luo, D. et al. Autonomous self-burying seed carriers for aerial seeding. Nature 614, 463–470 (2023).
Fiorello, I., Ronzan, M., Speck, T., Sinibaldi, E. & Mazzolai, B. A biohybrid self‐dispersing miniature machine using wild oat fruit awns for reforestation and precision agriculture. Adv. Mater. 36, e2313906 (2024).
Hasan, K. et al. Oceanic challenges to technological solutions: a review of autonomous underwater vehicle path technologies in biomimicry, control, navigation, and sensing. IEEE Access 12, 46202–46231 (2024).
Stoner, A. W., Ryer, C. H., Parker, S. J., Auster, P. J. & Wakefield, W. W. Evaluating the role of fish behavior in surveys conducted with underwater vehicles. Can. J. Fish. Aquat. Sci. 65, 1230–1243 (2008).
Sfakiotakis, M., Lane, D. M. & Davies, J. B. C. Review of fish swimming modes for aquatic locomotion. IEEE J. Ocean. Eng. 24, 237–252 (1999).
Bainbridge, R. The speed of swimming of fish as related to size and to the frequency and amplitude of the tail beat. J. Exp. Biol. 35, 109–133 (1958).
Wang, R., Wang, S., Wang, Y., Cheng, L. & Tan, M. Development and motion control of biomimetic underwater robots: a survey. IEEE Trans. Syst. Man. Cybern. Syst. 52, 833–844 (2022).
Shintake, J., Cacucciolo, V., Shea, H. & Floreano, D. Soft biomimetic fish robot made of dielectric elastomer actuators. Soft Robot. 5, 466–474 (2018).
Di Santo, V. et al. Convergence of undulatory swimming kinematics across a diversity of fishes. Proc. Natl Acad. Sci. USA 118, e2113206118 (2021).
Katzschmann, R. K., DelPreto, J., MacCurdy, R. & Rus, D. Exploration of underwater life with an acoustically controlled soft robotic fish. Sci. Robot. 3, eaar3449 (2018).
Calisti, M. & Laschi, C. Morphological and control criteria for self-stable underwater hopping. Bioinspir. Biomim. 13, 016001 (2017).
Chellapurath, M. et al. Locomotory behaviour of the intertidal marble crab (Pachygrapsus marmoratus) supports the underwater spring-loaded inverted pendulum as a fundamental model for punting in animals. Bioinspir. Biomim. 15, 055004 (2020).
Picardi, G. et al. Bioinspired underwater legged robot for seabed exploration with low environmental disturbance. Sci. Robot. 5, eaaz1012 (2020).
Giorgio-Serchi, F., Arienti, A. & Laschi, C. Underwater soft-bodied pulsed-jet thrusters: actuator modeling and performance profiling. Int. J. Robot. Res. 35, 1308–1329 (2016).
Giorgio Serchi, F., Arienti, A. & Laschi, C. Biomimetic vortex propulsion: toward the new paradigm of soft unmanned underwater vehicles. IEEE/ASME Trans. Mechatron. 18, 484–493 (2013).
Trueman, E. R. & Packard, A. Motor performances of some cephalopods. J. Exp. Biol. 49, 495–507 (1968).
Renda, F., Giorgio Serchi, F., Boyer, F. & Laschi, C. Structural dynamics of a pulsed-jet propulsion system for underwater soft robots. Int. J. Adv. Robot. Syst. https://doi.org/10.5772/60143 (2015).
Renda, F. et al. A unified multi-soft-body dynamic model for underwater soft robots. Int. J. Robot. Res. 37, 648–666 (2018).
Seibel, B. A. & Drazen, J. C. The rate of metabolism in marine animals: environmental constraints, ecological demands and energetic opportunities. Philos. Trans. R. Soc. B 362, 2061–2078 (2007).
Gemmell, B. J. et al. Passive energy recapture in jellyfish contributes to propulsive advantage over other metazoans. Proc. Natl Acad. Sci. USA 110, 17904–17909 (2013).
Villanueva, A., Smith, C. & Priya, S. A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators. Bioinspir. Biomim. 6, 036004 (2011).
Templin, R. J. The spectrum of animal flight: insects to pterosaurs. Prog. Aerosp. Sci. 36, 393–436 (2000).
Jafferis, N. T., Helbling, E. F., Karpelson, M. & Wood, R. J. Untethered flight of an insect-sized flapping-wing microscale aerial vehicle. Nature 570, 491–495 (2019).
Jafferis, N. T., Graule, M. A. & Wood, R. J. Non-linear resonance modeling and system design improvements for underactuated flapping-wing vehicles. In Proc. 2016 IEEE International Conference on Robotics and Automation (ICRA) 3234–3241 (IEEE, 2016).
Marden, J. H. Maximum lift production during takeoff in flying animals. J. Exp. Biol. 130, 235–258 (1987).
Nachtigall, W., Hanauer-Thieser, U. & Mörz, M. Flight of the honey bee VII: metabolic power versus flight speed relation. J. Comp. Physiol. B 165, 484–489 (1995).
Nachtigall, W. & Hanauer-Thieser, U. Flight of the honeybee: V. Drag and lift coefficients of the bee’s body; implications for flight dynamics. J. Comp. Physiol. B 162, 267–277 (1992).
Kovac, M., Wassim-Hraiz, Fauria, O., Zufferey, J.-C. & Floreano, D. The EPFL jumpglider: a hybrid jumping and gliding robot with rigid or folding wings. In Proc. 2011 IEEE International Conference on Robotics and Biomimetics 1503–1508 (IEEE, 2011).
Lentink, D., Dickson, W. B., Van Leeuwen, J. L. & Dickinson, M. H. Leading-edge vortices elevate lift of autorotating plant seeds. Science 324, 1438–1440 (2009).
Norberg, R. Å. Autorotation, self‐stability, and structure of single‐winged fruits and seeds (Samaras) with comparative remarks on animal flight. Biol. Rev. 48, 561–596 (1973).
Nave, G. K. et al. Wind dispersal of natural and biomimetic maple samaras. Biomimetics 6, 23 (2021).
Holden, J. R., Caley, T. M. & Turner, M. G. Maple seed performance as a wind turbine. In Proc. 53rd AIAA Aerospace Sciences Meeting https://doi.org/10.2514/6.2015-1304 (American Institute of Aeronautics and Astronautics, 2015).
Dai, J., Liu, D., Wen, L. & Long, X. Research on power coefficient of wind turbines based on SCADA data. Renew. Energy 86, 206–215 (2016).
Herrera, C. et al. Structural design and manufacturing process of a low scale bio-inspired wind turbine blades. Compos. Struct. 208, 1–12 (2019).
Ulrich, E. R., Pines, D. J. & Humbert, J. S. From falling to flying: the path to powered flight of a robotic samara nano air vehicle. Bioinspir. Biomim. 5, 045009 (2010).
Cikalleshi, K. et al. A printed luminescent flier inspired by plant seeds for eco-friendly physical sensing. Sci. Adv. 9, eadi8492 (2023).
Pounds, P. & Singh, S. Samara: biologically inspired self-deploying sensor networks. IEEE Potentials 34, 10–14 (2015).
Wiesemüller, F. et al. Transient bio-inspired gliders with embodied humidity responsive actuators for environmental sensing. Front. Robot. AI 9, 1011793 (2022).
Cummins, C. et al. A separated vortex ring underlies the flight of the dandelion. Nature 562, 414–418 (2018).
Ledda, P. G., Siconolfi, L., Viola, F., Camarri, S. & Gallaire, F. Flow dynamics of a dandelion pappus: a linear stability approach. Phys. Rev. Fluids 4, 071901 (2019).
Chen, Y. et al. Light-driven dandelion-inspired microfliers. Nat. Commun. 14, 3036 (2023).
Mariani, S. et al. A biodegradable, porous flier inspired by a parachute‐like Tragopogon fruit for environmental preservation. Small 21, 2403582 (2025).
Donelan, J. M., Kram, R. & Kuo, A. D. Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking. J. Exp. Biol. 205, 3717–3727 (2002).
Hae-Won, P., Wensing, P. M. & Kim, S. Online planning for autonomous running jumps over obstacles in high-speed quadrupeds. In Proc. 2015 Robotics: Science and Systems Conference (RSS) (eds Buchli, J. et al.) 1–9 (MIT Press, 2015).
Kim, K., Spieler, P., Lupu, E.-S., Ramezani, A. & Chung, S.-J. A bipedal walking robot that can fly, slackline, and skateboard. Sci. Robot. 6, eabf8136 (2021).
Ohlberger, J., Staaks, G. & Hölker, F. Swimming efficiency and the influence of morphology on swimming costs in fishes. J. Comp. Physiol. B 176, 17–25 (2006).
Aleyev, Y. G. in Nekton 367–370 (Springer, 1977).
Schmidt-Nielsen, K. Locomotion: energy cost of swimming, flying, and running. Science 177, 222–228 (1972).
Kraskura, K. et al. Sex-specific differences in swimming, aerobic metabolism and recovery from exercise in adult coho salmon (Oncorhynchus kisutch) across ecologically relevant temperatures. Conserv. Physiol. 9, coab016 (2021).
Nelson, J., Tang, Y. & Boutilier, R. The effects of salinity change on the exercise performance of two Atlantic cod (Gadus morhua) populations inhabiting different environments. J. Exp. Biol. 199, 1295–1309 (1996).
Seebacher, F., Webster, M. M., James, R. S., Tallis, J. & Ward, A. J. W. Morphological differences between habitats are associated with physiological and behavioural trade-offs in stickleback (Gasterosteus aculeatus). R. Soc. Open Sci. 3, 160316 (2016).
Oldham, T., Nowak, B., Hvas, M. & Oppedal, F. Metabolic and functional impacts of hypoxia vary with size in Atlantic salmon. Comp. Biochem. Physiol. A 231, 30–38 (2019).
Jahn, M. & Seebacher, F. Variations in cost of transport and their ecological consequences: a review. J. Exp. Biol. 225, jeb243646 (2022).
Wilson, R. S., Husak, J. F., Halsey, L. G. & Clemente, C. J. Predicting the movement speeds of animals in natural environments. Integr. Comp. Biol. 55, 1125–1141 (2015).
Han, A. X., Berlin, C. & Ellerby, D. J. Field swimming behavior in largemouth bass deviates from predictions based on economy and propulsive efficiency. J. Exp. Biol. 220, 3204–3208 (2017).
Burden, S. A., Libby, T., Jayaram, K., Sponberg, S. & Donelan, J. M. Why animals can outrun robots. Sci. Robot. 9, eadi9754 (2024).
Huang, X. et al. Chasing biomimetic locomotion speeds: creating untethered soft robots with shape memory alloy actuators. Sci. Robot. 3, eaau7557 (2018).
Del Dottore, E., Sadeghi, A., Mondini, A. & Mazzolai, B. Continuous growth in plant-inspired robots through 3D additive manufacturing. In Proc. 2018 IEEE International Conference on Robotics and Automation (ICRA) 3454–3460 (IEEE, 2018).
Kenneally, G., De, A. & Koditschek, D. E. Design principles for a family of direct-drive legged robots. IEEE Robot. Autom. Lett. 1, 900–907 (2016).
Chae, S.-H., Baek, S.-M., Lee, J. & Cho, K.-J. Agile and energy-efficient jumping–crawling robot through rapid transition of locomotion and enhanced jumping height adjustment. IEEE/ASME Trans. Mechatron. 27, 5890–5901 (2022).
Kau, N., Schultz, A., Ferrante, N. & Slade, P. Stanford Doggo: an open-source, quasi-direct-drive quadruped. In Proc. 2019 International Conference on Robotics and Automation (ICRA) 6309–6315 (IEEE, 2019).
Bledt, G. et al. MIT Cheetah 3: design and control of a robust, dynamic quadruped robot. In Proc. 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2245–2252 (IEEE, 2018).
Hutter, M. et al. ANYmal - a highly mobile and dynamic quadrupedal robot. In Proc. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 38–44 (IEEE, 2016).
Spröwitz, A. et al. Towards dynamic trot gait locomotion: design, control, and experiments with Cheetah-cub, a compliant quadruped robot. Int. J. Robot. Res. 32, 932–950 (2013).
Reher, J. P., Hereid, A., Kolathaya, S., Hubicki, C. M. & Ames, A. D. Algorithmic foundations of realizing multi-contact locomotion on the humanoid robot DURUS. In Proc. Algorithmic Foundations of Robotics XII (eds Goldberg, K. et al.) 400–415 (Springer, 2020).
Arrázola-Vásquez, E. et al. Earthworm burrowing modes and rates depend on earthworm species and soil mechanical resistance. Appl. Soil Ecol. 178, 104568 (2022).
Wells, M. J. & Clarke, A. Energetics: the costs of living and reproducing for an individual cephalopod. Philos. Trans. R. Soc. B 351, 1083–1104 (1996).
Hnilička, F. et al. Combustion calorimetry and its application in the assessment of ecosystems. J. Therm. Anal. Calorim. 142, 771–781 (2020).
Yan, P., Xu, L. & He, N. Variation in the calorific values of different plants organs in China. PLoS One 13, e0199762 (2018).
Die Nährwerttabelle 9th edn. Deutsche Gesellschaft für Ernährung https://www.dge.de/presse/meldungen/2024/9-auflage-naehrwerttabelle/ (2024).
Picardi, G., De Luca, M., Chimienti, G., Cianchetti, M. & Calisti, M. User-driven design and development of an underwater soft gripper for biological sampling and litter collection. J. Mar. Sci. Eng. 11, 771 (2023).
Lighton, J. R. B. Minimum cost of transport and ventilatory patterns in three African beetles. Physiol. Zool. 58, 390–399 (1985).
Priest, J. in Encyclopedia of Energy (ed. Cleveland, C. J.) 1–7 (Elsevier, 2004).
Fuentes, M. A. The mechanical cost of transport of fast running animals. J. Theor. Biol. 345, 22–31 (2014).
Beismann, H. et al. Brittleness of twig bases in the genus Salix: fracture mechanics and ecological relevance. J. Exp. Bot. 51, 617–633 (2000).
Beismann, H., Barker, J. H. A., Karp, A. & Speck, T. AFLP analysis sheds light on distribution of two Salix species and their hybrid along a natural gradient. Mol. Ecol. 6, 989–993 (1997).
Acosta-Rangel, A., Rechcigl, J., Bollin, S., Deng, Z. & Agehara, S. Hop (Humulus lupulus L.) phenology, growth, and yield under subtropical climatic conditions: effects of cultivars and crop management. Aust. J. Crop Sci. 15, 764–772 (2021).
Lieth, H. in Application of Calorimetry in Life Sciences (eds Lamprecht, I. & Schaarschmidt, B.) 325–336 (De Gruyter, 1977).
Armour, R. H. & Vincent, J. F. V. Rolling in nature and robotics: a review. J. Bionic Eng. 3, 195–208 (2006).
Flaherty, E. A., Scheibe, J. S. & Goldingay, R. Locomotor performance in the squirrel glider, Petaurus norfolcensis, and the sugar glider, Petaurus breviceps. Aust. Mammal. 30, 25–35 (2008).
Scheibe, J. S., Smith, W. P., Bassham, J. & Magness, D. Locomotor performance and cost of transport in the northern flying squirrel Glaucomys sabrinus. Acta Theriol. 51, 169–178 (2006).
Acknowledgements
T.S. is grateful for funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC-2193/1 – 390951807. C.L. acknowledges support from the National University of Singapore (NUS) through her start-up Grant RoboLife (Soft Robots with Morphological Adaptation and Life-Like Abilities). B.M. and E.D.D. acknowledge support from the European Research Council under the European Union’s Horizon 2020 research and innovation programme grant agreement No. 101003304 (I-Wood). B.M. acknowledges support from the European Union Horizon 2020 research and innovation programme under grant agreement No 101017940 (I-Seed).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Bioengineering thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Mazzolai, B., Del Dottore, E., Speck, T. et al. Energy-saving movement strategies in animals and plants for robot design. Nat Rev Bioeng (2025). https://doi.org/10.1038/s44222-025-00344-z
Accepted:
Published:
DOI: https://doi.org/10.1038/s44222-025-00344-z