Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Psychology
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications psychology
  3. articles
  4. article
Increased generalisation in trait anxiety is driven by aversive value transfer
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 10 February 2026

Increased generalisation in trait anxiety is driven by aversive value transfer

  • Luianta Verra  ORCID: orcid.org/0009-0008-0366-00781,2,
  • Bernhard Spitzer  ORCID: orcid.org/0000-0001-9752-932X1,3,
  • Nicolas W. Schuck  ORCID: orcid.org/0000-0002-0150-87761,2,4 na1 &
  • …
  • Ondrej Zika  ORCID: orcid.org/0000-0003-0483-44431,5,6,7,8 na1 

Communications Psychology , Article number:  (2026) Cite this article

  • 600 Accesses

  • 7 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Human behaviour

Abstract

Anxiety has been linked to increased generalisation of threat expectations to perceptually similar stimuli. Such generalisation can arise either from a failure to distinguish threatening from non-threatening stimuli (perceptual mechanism) or from the transfer of learned values between stimuli (value-based mechanism). Yet, how these mechanisms contribute to generalisation remains unclear. Here we assess how participants (n = 140) generalise outcome expectancies to perceptually similar stimuli, using personalised stimulus spaces. Computational modelling revealed that individuals differ in the extent to which they generalise value and in the underlying value function. We further found that stronger generalisation in trait anxiety was best explained by greater reliance on value transfer. In this work, we characterise individual differences in the generalisation of aversive stimuli and link stronger generalisation in trait anxiety to preferential reliance on value transfer.

Similar content being viewed by others

Humans display interindividual differences in the latent mechanisms underlying fear generalization behaviour

Article Open access 01 August 2023

Generalization of beneficial exposure effects to untreated stimuli from another fear category

Article Open access 19 December 2023

Psychometric properties of the emotional processing scale in individuals with psychiatric symptoms and the development of a brief 15-item version

Article Open access 21 June 2022

Data availability

The behavioural data generated in this study have been deposited to GitHub and are openly accessible here: https://github.com/luiantav/vp_gen_cp. The raw behavioural data have been anonymized and are stored in a publicly available repository69: https://github.com/luiantav/vp_gen_rawdata. The code for the task used to collect the data has been deposited in a separate GitHub repository: https://github.com/luiantav/vp_gen_task.

Code availability

The code used to derive statistical results is stored in the same GitHub repository as the data (https://github.com/luiantav/vp_gen_cp) and archived on Zenodo70. This repository further includes instructions to reproduce the results, including a dedicated computational virtual environment in R.

References

  1. Dymond, S., Dunsmoor, J. E., Vervliet, B., Roche, B. & Hermans, D. Fear generalization in humans: systematic review and implications for anxiety disorder research. Behav. Ther. 46, 561–582 (2015).

    Google Scholar 

  2. Cooper, S. E. et al. A meta-analysis of conditioned fear generalization in anxiety-related disorders. Neuropsychopharmacology 47, 1652–1661 (2022).

    Google Scholar 

  3. Sep, M. S. C., Steenmeijer, A. & Kennis, M. The relation between anxious personality traits and fear generalization in healthy subjects: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 107, 320–328 (2019).

    Google Scholar 

  4. Struyf, D., Zaman, J., Vervliet, B. & Van Diest, I. Perceptual discrimination in fear generalization: Mechanistic and clinical implications. Neurosci. Biobehav. Rev. 59, 201–207 (2015).

    Google Scholar 

  5. Lovibond, P. F., Lee, J. C. & Hayes, B. K. Stimulus discriminability and induction as independent components of generalization. J. Exp. Psychol. Learn. Mem. Cogn. 46, 1106–1120 (2020).

    Google Scholar 

  6. Zaman, J., Struyf, D., Ceulemans, E., Beckers, T. & Vervliet, B. Probing the role of perception in fear generalization. Sci. Rep. 9, 10026 (2019).

    Google Scholar 

  7. Zaman, J. et al. Perceptual variability: Implications for learning and generalization. Psychon. Bull. Rev. 28, 1–19 (2021).

    Google Scholar 

  8. Zaman, J., Ceulemans, E., Hermans, D. & Beckers, T. Direct and indirect effects of perception on generalization gradients. Behav. Res. Ther. 114, 44–50 (2019).

    Google Scholar 

  9. Zaman, J., Yu, K. & Verheyen, S. The idiosyncratic nature of how individuals perceive, represent, and remember their surroundings and its impact on learning-based generalization. J. Exp. Psychol. Gen. 152, 2345–2358 (2023).

    Google Scholar 

  10. Lee, J. C. & Schlegelmilch, R. The role of perception in generalization: Commentary on Zaman, Yu, & Verheyen (2023). J. Exp. Psychol. Gen. 154, 1167–1175 (2005).

  11. Yu, K., Verheyen, S. & Zaman, J. Beyond dichotomies in generalization research: A reply to Lee and Schlegelmilch (2025). J. Exp. Psychol. Gen. 154, 1176–1181 (2025).

    Google Scholar 

  12. Lashley, K. S. & Wade, M. The Pavlovian theory of generalization. Psychol. Rev. 53, 72–87 (1946).

    Google Scholar 

  13. Holt, D. J. et al. A parametric study of fear generalization to faces and non-face objects: relationship to discrimination thresholds. Front. Hum. Neurosci. 8; https://doi.org/10.3389/fnhum.2014.00624 (2014).

  14. Tuominen, L. et al. The relationship of perceptual discrimination to neural mechanisms of fear generalization. NeuroImage 188, 445–455 (2019).

    Google Scholar 

  15. Norbury, A., Robbins, T. W. & Seymour, B. Value generalization in human avoidance learning. eLife 7, e34779 (2018).

    Google Scholar 

  16. Onat, S. & Büchel, C. The neuronal basis of fear generalization in humans. Nat. Neurosci. 18, 1811–1818 (2015).

    Google Scholar 

  17. Yu, K., Tuerlinckx, F., Vanpaemel, W. & Zaman, J. Humans display interindividual differences in the latent mechanisms underlying fear generalization behaviour. Commun. Psychol. 1, 5 (2023).

    Google Scholar 

  18. Shepard, R. N. Toward a Universal Law of Generalization for Psychological Science. Science 237, 1317–1323 (1987).

    Google Scholar 

  19. Mclaren, I. P. L. & Mackintosh, N. J. Associative learning and elemental representation: II. Generalization and discrimination. Anim. Learn. Behav. 30, 177–200 (2002).

    Google Scholar 

  20. Kahnt, T., Park, S. Q., Burke, C. J. & Tobler, P. N. How Glitter Relates to Gold: Similarity-Dependent Reward Prediction Errors in the Human Striatum. J. Neurosci. 32, 16521–16529 (2012).

    Google Scholar 

  21. Dunsmoor, J. E. & Murphy, G. L. Categories, concepts, and conditioning: how humans generalize fear. Trends Cogn. Sci. 19, 73–77 (2015).

    Google Scholar 

  22. Dunsmoor, J. E., Kroes, M. C. W., Braren, S. H. & Phelps, E. A. Threat intensity widens fear generalization gradients. Behav. Neurosci. 131, 168–175 (2017).

    Google Scholar 

  23. Ferrari, M. C. O., Messier, F. & Chivers, D. P. Can prey exhibit threat-sensitive generalization of predator recognition? Extending the Predator Recognition Continuum Hypothesis. Proc. R. Soc. B Biol. Sci. 275, 1811–1816 (2008).

    Google Scholar 

  24. Aslanidou, A., Andreatta, M., Wong, A. & Wieser, M. No influence of threat uncertainty on fear generalization. Psychophysiology 61, e14423 (2024).

    Google Scholar 

  25. Ram, H., Struyf, D., Vervliet, B., Menahem, G. & Liberman, N. The Effect of Outcome Probability on Generalization in Predictive Learning. Exp. Psychol. 66, 23–39 (2019).

    Google Scholar 

  26. Lee, J. C., Mills, L., Hayes, B. K. & Livesey, E. J. Modelling generalisation gradients as augmented Gaussian functions. Q. J. Exp. Psychol. 74, 106–121 (2021).

    Google Scholar 

  27. Ghirlanda, S. & Enquist, M. A century of generalization. Anim. Behav. 66, 15–36 (2003).

    Google Scholar 

  28. Ahmed, O. & Lovibond, P. F. Rule-based processes in generalisation and peak shift in human fear conditioning. Q. J. Exp. Psychol. 72, 118–131 (2019).

    Google Scholar 

  29. Wong, A. H. K. & Lovibond, P. F. Rule-based generalisation in single-cue and differential fear conditioning in humans. Biol. Psychol. 129, 111–120 (2017).

    Google Scholar 

  30. Zaman, J., Yu, K. & Lee, J. C. Individual differences in stimulus identification, rule induction, and generalization of learning. J. Exp. Psychol. Learn. Mem. Cogn. 49, 1004–1017 (2023).

    Google Scholar 

  31. Lissek, S. et al. Generalized Anxiety Disorder Is Associated With Overgeneralization of Classically Conditioned Fear. Biol. Psychiatry 75, 909–915 (2014).

    Google Scholar 

  32. Craske, M. G. et al. What is an anxiety disorder? Depress Anxiety 26, 1066–1085 (2009).

    Google Scholar 

  33. Chambers, J. A., Power, K. G. & Durham, R. C. The relationship between trait vulnerability and anxiety and depressive diagnoses at long-term follow-up of Generalized Anxiety Disorder. J. Anxiety Disord. 18, 587–607 (2004).

    Google Scholar 

  34. Weger, M. & Sandi, C. High anxiety trait: A vulnerable phenotype for stress-induced depression. Neurosci. Biobehav. Rev. 87, 27–37 (2018).

    Google Scholar 

  35. Laufer, O., Israeli, D. & Paz, R. Behavioral and Neural Mechanisms of Overgeneralization in Anxiety. Curr. Biol. 26, 713–722 (2016).

    Google Scholar 

  36. Zaman, J., Vlaeyen, J. W. S., Van Oudenhove, L., Wiech, K. & Van Diest, I. Associative fear learning and perceptual discrimination: A perceptual pathway in the development of chronic pain. Neurosci. Biobehav. Rev. 51, 118–125 (2015).

    Google Scholar 

  37. Green, P. & MacLeod, C. J. SIMR: an R package for power analysis of generalized linear mixed models by simulation. Methods Ecol. Evol. 7, 493–498 (2016).

    Google Scholar 

  38. R. Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (2021).

  39. Lonsdorf, T. B. et al. Navigating the garden of forking paths for data exclusions in fear conditioning research. eLife 8, e52465 (2019).

    Google Scholar 

  40. Seow, T. X. F. & Hauser, T. U. Reliability of web-based affective auditory stimulus presentation. Behav. Res. Methods 54, 378–392 (2021).

    Google Scholar 

  41. Bradley, M. M. & Lang, P. J. The International Affective Digitalized Sounds (IADS-2): Affective Ratings of Sounds and Instruction Manual. (University of Florida, NIMH Center for the Study of Emotion and Attention, Gainesville, FL, 2007).

  42. Woods, K. J. P., Siegel, M. H., Traer, J. & McDermott, J. H. Headphone screening to facilitate web-based auditory experiments. Atten. Percept. Psychophys. 79, 2064–2072 (2017).

    Google Scholar 

  43. Van Dam, L. C. J. & Ernst, M. O. Mapping shape to visuomotor mapping: learning and generalisation of sensorimotor behaviour based on contextual information. PLOS Comput. Biol. 11, e1004172 (2015).

    Google Scholar 

  44. Li, Q., Joo, S. J., Yeatman, J. D. & Reinecke, K. Controlling for participants’ viewing distance in large-scale, psychophysical online experiments using a virtual chinrest. Sci. Rep. 10, 904 (2020).

    Google Scholar 

  45. De Leeuw, J. R., Gilbert, R. A. & Luchterhandt, B. jsPsych: Enabling an Open-Source CollaborativeEcosystem of Behavioral Experiments. J. Open Source Softw. 8, 5351 (2023).

    Google Scholar 

  46. Kaernbach, C. Simple adaptive testing with the weighted up-down method. Percept. Psychophys. 49, 227–229 (1991).

    Google Scholar 

  47. Ree, M. J., French, D., MacLeod, C. & Locke, V. Distinguishing cognitive and somatic dimensions of state and trait anxiety: development and validation of the State-Trait Inventory for Cognitive and Somatic Anxiety (STICSA). Behav. Cogn. Psychother. 36, 313–332 (2008).

    Google Scholar 

  48. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Google Scholar 

  49. Brooks, M. E. et al. glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. R. J. 9, 378–400 (2017).

    Google Scholar 

  50. Ferrari, S. & Cribari-Neto, F. Beta Regression for Modelling Rates and Proportions. J. Appl. Stat. 31, 799–815 (2004).

    Google Scholar 

  51. Zika, O. et al. Reduction of Aversive Learning Rates in Pavlovian Conditioning by Angiotensin II Antagonist Losartan: A Randomized Controlled Trial. Biol. Psychiatry 96, 247–255 (2024).

    Google Scholar 

  52. Fox, J. & Weisberg, S. An R Companion to Applied Regression. (Sage, Thousand Oaks CA, 2019).

  53. Barr, D. J., Levy, R., Scheepers, C. & Tily, H. J. Random effects structure for confirmatory hypothesis testing: Keep it maximal. J. Mem. Lang. 68, 255–278 (2013).

    Google Scholar 

  54. Schielzeth, H. et al. Robustness of linear mixed-effects models to violations of distributional assumptions. Methods Ecol. Evol. 11, 1141–1152 (2020).

    Google Scholar 

  55. Gablonsky, J. M. & Kelley, C. T. A Locally-Biased form of the DIRECT Algorithm. J. Glob. Optim. 21, 27–37 (2001).

    Google Scholar 

  56. Johnson, S. G. The NLopt nonlinear-optimization package. https://nlopt.readthedocs.io/en/latest/ (2008).

  57. Wilson, R. C. & Collins, A. G. Ten simple rules for the computational modeling of behavioral data. eLife 8, e49547 (2019).

    Google Scholar 

  58. Zika, O., Wiech, K., Reinecke, A., Browning, M. & Schuck, N. W. Trait anxiety is associated with hidden state inference during aversive reversal learning. Nat. Commun. 14, 4203 (2023).

    Google Scholar 

  59. Schulz, E., Tenenbaum, J. B., Duvenaud, D., Speekenbrink, M. & Gershman, S. J. Compositional inductive biases in function learning. Cogn. Psychol. 99, 44–79 (2017).

    Google Scholar 

  60. Raymond, J. G., Steele, J. D. & Seriès, P. Modeling trait anxiety: from computational processes to personality. Front. Psychiatry 8; https://doi.org/10.3389/fpsyt.2017.00001 (2017).

  61. Grös, D. F., Antony, M. M., Simms, L. J. & McCabe, R. E. Psychometric properties of the State-Trait Inventory for Cognitive and Somatic Anxiety (STICSA): Comparison to the State-Trait Anxiety Inventory (STAI). Psychol. Assess. 19, 369–381 (2007).

    Google Scholar 

  62. Wong, A. H. K. & Lovibond, P. F. Excessive generalisation of conditioned fear in trait anxious individuals under ambiguity. Behav. Res. Ther. 107, 53–63 (2018).

    Google Scholar 

  63. Lissek, S. et al. Classical fear conditioning in the anxiety disorders: a meta-analysis. Behav. Res. Ther. 43, 1391–1424 (2005).

    Google Scholar 

  64. Brown, V. M., Price, R. & Dombrovski, A. Y. Anxiety as a disorder of uncertainty: implications for understanding maladaptive anxiety, anxious avoidance, and exposure therapy. Cogn. Affect. Behav. Neurosci. 23, 844–868 (2023).

    Google Scholar 

  65. Miceli, M. & Castelfranchi, C. Anxiety as an “epistemic” emotion: An uncertainty theory of anxiety. Anxiety Stress Coping 18, 291–319 (2005).

    Google Scholar 

  66. Stegmann, Y. et al. Individual differences in human fear generalization—pattern identification and implications for anxiety disorders. Transl. Psychiatry 9, 307 (2019).

    Google Scholar 

  67. Zaman, J., Yu, K., Andreatta, M., Wieser, M. J. & Stegmann, Y. Examining the impact of cue similarity and fear learning on perceptual tuning. Sci. Rep. 13, 13009 (2023).

    Google Scholar 

  68. Lee, J. C., Hayes, B. K. & Lovibond, P. F. Peak shift and rules in human generalization. J. Exp. Psychol. Learn. Mem. Cogn. 44, 1955–1970 (2018).

    Google Scholar 

  69. Verra, L., Spitzer, B., Schuck, N. W. & Zika, O. Raw data for: Increased generalisation in trait anxiety is driven by aversive value transfer, not reduced perceptual discrimination. Zenodo. https://doi.org/10.5281/zenodo.15676095 (2025).

  70. Verra, L., Spitzer, B., Schuck, N. W. & Zika, O. luiantav/vp_gen_cp: v1.0.0 (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.17734148 (2025)

Download references

Acknowledgements

Funding: LV was funded by the International Max Planck Research School on the Life Course (LIFE, www.imprs-life.mpg.de; participating institutions: Max Planck Institute for Human Development, Freie Universität Berlin, Humboldt-Universität zu Berlin, University of Michigan, University of Virginia, University of Zurich). BS was supported by DFG grant 462752742 and ERC grant 101000972. NWS was funded by an Independent Max Planck Research Group grant awarded by the Max Planck Society (M.TN.A.BILD0004), the Federal Ministry of Education and Research (BMBF) and the Free and Hanseatic City of Hamburg under the Excellence Strategy of the Federal Government and the Länder and a Starting Grant from the European Union (ERC-StG-REPLAY-852669). OZ was supported by a Max Planck Research Group grant awarded by the Max Planck Society (M.TN.A.BILD0004) to NWS and ERC Preparatory Fellowship awarded to O.Z. by Bielefeld University. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Author notes
  1. These authors contributed equally: Nicolas W. Schuck, Ondrej Zika.

Authors and Affiliations

  1. Max Planck Institute for Human Development, Berlin, Germany

    Luianta Verra, Bernhard Spitzer, Nicolas W. Schuck & Ondrej Zika

  2. Institute of Psychology, Universität Hamburg, Hamburg, Germany

    Luianta Verra & Nicolas W. Schuck

  3. Faculty of Psychology, Technische Universität Dresden, Dresden, Germany

    Bernhard Spitzer

  4. Max Planck UCL Centre for Computational Psychiatry and Aging Research, Berlin, Germany

    Nicolas W. Schuck

  5. Faculty of Psychology and Sports Science, Department of Psychology, Biological and Cognitive Neurosciences, Bielefeld University, Bielefeld, Germany

    Ondrej Zika

  6. Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden

    Ondrej Zika

  7. Department of Clinical Psychology and Psychotherapy, Babeș-Bolyai University, Cluj-Napoca, Romania

    Ondrej Zika

  8. School of Psychology, University College Dublin, Dublin, Ireland

    Ondrej Zika

Authors
  1. Luianta Verra
    View author publications

    Search author on:PubMed Google Scholar

  2. Bernhard Spitzer
    View author publications

    Search author on:PubMed Google Scholar

  3. Nicolas W. Schuck
    View author publications

    Search author on:PubMed Google Scholar

  4. Ondrej Zika
    View author publications

    Search author on:PubMed Google Scholar

Contributions

The following list of author contributions is based on the CRediT taxonomy. Conceptualisation: L.V., O.Z, N.W.S.; Data curation: L.V.; Formal analysis: L.V., O.Z., N.W.S.; Funding acquisition: L.V, N.W.S.; Investigation: L.V.; Methodology: L.V, O.Z., N.W.S.; Project administration: L.V., O.Z.; Software: L.V., O.Z. N.W.S.; Resources: N.W.S; Supervision: O.Z., N.W.S., B.S.; Validation: L.V., O.Z.; Visualisation: L.V.; Writing - original draft: L.V., O.Z., N.W.S.; Writing- review & editing: L.V., O.Z, N.W.S., B.S.

Corresponding authors

Correspondence to Nicolas W. Schuck or Ondrej Zika.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Psychology thanks Jonas Zaman for their contribution to the peer review of this work. Primary Handling Editors: Troby Ka-Yan Lui. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary Information

Reporting Summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verra, L., Spitzer, B., Schuck, N.W. et al. Increased generalisation in trait anxiety is driven by aversive value transfer. Commun Psychol (2026). https://doi.org/10.1038/s44271-026-00415-w

Download citation

  • Received: 29 September 2025

  • Accepted: 28 January 2026

  • Published: 10 February 2026

  • DOI: https://doi.org/10.1038/s44271-026-00415-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Editors
  • Editorial Board
  • Open Access
  • Journal Metrics
  • Calls for Papers
  • Referees
  • Article Processing Charges
  • Contact
  • Editorial policies
  • Conferences
  • Editorial Values Statement

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Psychology (Commun Psychol)

ISSN 2731-9121 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing