Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A systematic map of machine learning for urban climate change mitigation

Abstract

Many cities are interested in leveraging artificial intelligence and machine learning (ML) to help urban climate change mitigation (UCCM). Researchers and practitioners, however, are only beginning to understand how ML can contribute to achieving climate targets in cities. Here, we systematically map 2,300 peer-reviewed articles published between 1994 and 2024 that explore the use of ML in UCCM. We find that, despite fast growth in this research area, the use of generative artificial intelligence and large language models remains negligible, which contrasts to their increasing adoption in other urban domains. Among 40 identified application areas, ML research focuses predominantly on high-impact mitigation options denoted by the Intergovernmental Panel on Climate Change. This trend may partly be driven by data availability and commercial interest, which risk perpetuating geographic inequities and diverting efforts toward less impactful mitigation options. We therefore offer recommendations to guide the impactful deployment of ML solutions in UCCM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The most researched impact areas by cluster.
Fig. 2: Geographic distribution of research and impact area clusters.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and its Supplementary Information. The steps for curating the data from the WoS and the ‘AI conferences info’ repository are provided in the text. The repository operates under a CC-BY-SA-4.0 license.

Code availability

Code developed for this study is available via Code Ocean at https://codeocean.com/capsule/6679595/tree.

References

  1. Lwasa, S. et al. Urban systems and other settlements. In Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) (Cambrige Univ. Press, 2022).

  2. Shukla, P. et al (eds). Climate Change 2022: Mitigation of Climate Change (Cambridge Univ. Press, 2022).

  3. Sethi, M., Lamb, W., Minx, J. & Creutzig, F. Climate change mitigation in cities: a systematic scoping of case studies. Environ. Res. Lett. 15, 093008 (2020).

    Article  Google Scholar 

  4. Kaack, L. H. et al. Aligning artificial intelligence with climate change mitigation. Nat. Clim. Change 12, 518–527 (2022).

    Article  Google Scholar 

  5. Rolnick, D. et al. Tackling climate change with machine learning. ACM Comput. Surveys 55, 1–96 (2022).

    Article  Google Scholar 

  6. Milojevic-Dupont, N. & Creutzig, F. Machine learning for geographically differentiated climate change mitigation in urban areas. Sustain. Cities Soc. 64, 102526 (2021).

    Article  Google Scholar 

  7. Kim, H. et al. A systematic review of the smart energy conservation system: from smart homes to sustainable smart cities. Renew. Sustain. Energy Rev. 140, 110755 (2021).

    Article  Google Scholar 

  8. Lai, C. S. et al. A review of technical standards for smart cities. Clean Technol. 2, 290–310 (2020).

    Article  Google Scholar 

  9. Pereira, G. V., Parycek, P., Falco, E. & Kleinhans, R. Smart governance in the context of smart cities: a literature review. Inform. Polity 23, 143–162 (2018).

    Article  Google Scholar 

  10. Gracias, J. S., Parnell, G. S., Specking, E., Pohl, E. A. & Buchanan, R. Smart cities–a structured literature review. Smart Cities 6, 1719–1743 (2023).

    Article  Google Scholar 

  11. Casali, Y., Aydin, N. Y. & Comes, T. Machine learning for spatial analyses in urban areas: a scoping review. Sustain. Cities Soc. 85, 104050 (2022).

    Article  Google Scholar 

  12. Haddaway, N. R., Bernes, C., Jonsson, B.-G. & Hedlund, K. The benefits of systematic mapping to evidence-based environmental management. Ambio 45, 613–620 (2016).

    Article  Google Scholar 

  13. Haddaway, N., Macura, B., Whaley, P. & Pullin, A. ROSES flow diagram for systematic reviews, version 1.0. Figshare https://doi.org/10.6084/m9.figshare.5897389.v3 (2018).

  14. James, K. L., Randall, N. P. & Haddaway, N. R. A methodology for systematic mapping in environmental sciences. Environ. Evidence 5, 1–13 (2016).

    Article  Google Scholar 

  15. Lamb, W. F., Callaghan, M. W., Creutzig, F., Khosla, R. & Minx, J. C. The literature landscape on 1.5 C climate change and cities. Curr. Opin. Environ. Sustain. 30, 26–34 (2018).

    Article  Google Scholar 

  16. Sethi, M. & Creutzig, F. Leaders or laggards in climate action? Assessing GHG trends and mitigation targets of global megacities. PLOS Clim. 2, e0000113 (2023).

    Article  Google Scholar 

  17. Li, X. et al. Short-term forecast of bicycle usage in bike sharing systems: a spatial-temporal memory network. IEEE Trans. Intell. Transp. Syst. 23, 10923–10934 (2021).

    Article  Google Scholar 

  18. Yusuf, J., Hasan, A. J., Garrido, J., Ula, S. & Barth, M. J. A comparative techno-economic assessment of bidirectional heavy duty and light duty plug-in electric vehicles operation: a case study. Sustain. Cities Soc. 95, 104582 (2023).

    Article  Google Scholar 

  19. Aziz, H. A., Zhu, F. & Ukkusuri, S. V. Learning-based traffic signal control algorithms with neighborhood information sharing: an application for sustainable mobility. J. Intell. Transp. Syst. 22, 40–52 (2018).

    Article  Google Scholar 

  20. Seyrfar, A., Ataei, H., Movahedi, A. & Derrible, S. Data-driven approach for evaluating the energy efficiency in multifamily residential buildings. Pract. Periodical Struct. Des. Constr. 26, 04020074 (2021).

    Article  Google Scholar 

  21. Zhang, J. et al. The Traj2Vec model to quantify residents’ spatial trajectories and estimate the proportions of urban land-use types. Int. J. Geogr. Inform. Sci. 35, 193–211 (2021).

    Article  Google Scholar 

  22. Nutkiewicz, A., Mastrucci, A., Rao, N. D. & Jain, R. K. Cool roofs can mitigate cooling energy demand for informal settlement dwellers. Renew. Sustain. Energy Rev. 159, 112183 (2022).

    Article  Google Scholar 

  23. Linton, S., Clarke, A. & Tozer, L. Technical pathways to deep decarbonization in cities: eight best practice case studies of transformational climate mitigation. Energy Res. Soc. Sci. 86, 102422 (2022).

    Article  Google Scholar 

  24. Verbeek, A. & Lundqvist, M. Artificial Intelligence, Blockchain and the Future of Europe: How Disruptive Technologies Create Opportunities for a Green and Digital Economy, Technical Report (European Investment Bank, 2021).

  25. Maslej, N. et al. The AI Index 2023 Annual Report, Technical Report (Institute for Human-Centered AI, Stanford University, 2023).

  26. Kitsara, I. Artificial Intelligence and the Digital Divide: From an Innovation Perspective. In Platforms and Artificial Intelligence: The Next Generation of Competences (ed. Bounfour, A.) 245–265 (Springer, 2022).

  27. Hao, X., Zhou, Y., Wang, H. & Ouyang, M. Plug-in electric vehicles in China and the USA: a technology and market comparison. Mitig. Adapt. Strateg. Glob. Change 25, 329–353 (2020).

    Article  Google Scholar 

  28. Ugarteche, O., de León, C. & García, J. China and the energy matrix in Latin America: governance and geopolitical perspective. Energy Policy 177, 113435 (2023).

    Article  Google Scholar 

  29. A Renovation Wave for Europe—Greening our Buildings, Creating Jobs, Improving Lives, Technical Report (European Commission, 2020).

  30. Bakó, F., Berkes, J. & Szigeti, C. Households’ electricity consumption in Hungarian urban areas. Energies 14, 2899 (2021).

    Article  Google Scholar 

  31. Stensjö, I. P., Ferreira, C. C. & Loura, R. M. Classification and grouping of Brazilian cities in heating and cooling degrees-day: 1960 to 2013. Urbe Rev. Brasil. de Gestão Urbana 9, 286–300 (2017).

    Article  Google Scholar 

  32. Praene, J. P., Malet-Damour, B., Radanielina, M. H., Fontaine, L. & Riviere, G. GIS-based approach to identify climatic zoning: a hierarchical clustering on principal component analysis. Build. Environ. 164, 106330 (2019).

    Article  Google Scholar 

  33. Wu, T.-G. et al. Identifying low-PM2.5 exposure commuting routes for cyclists through modeling with the random forest algorithm based on low-cost sensor measurements in three Asian cities. Environ. Pollut. 294, 118597 (2022).

    Article  Google Scholar 

  34. Palme, M., Inostroza, L. & Salvati, A. Technomass and cooling demand in South America: a superlinear relationship? Build. Res. Inform. 46, 864–880 (2018).

    Article  Google Scholar 

  35. Petropoulos, G. P., Kalivas, D. P., Georgopoulou, I. A. & Srivastava, P. K. Urban vegetation cover extraction from hyperspectral imagery and geographic information system spatial analysis techniques: case of Athens, Greece. J. Appl. Remote Sens. 9, 096088 (2015).

    Article  Google Scholar 

  36. Li, X. et al. Developing urban residential reference buildings using clustering analysis of satellite images. Energy Build. 169, 417–429 (2018).

    Article  Google Scholar 

  37. Yigit, S. A machine-learning-based method for thermal design optimization of residential buildings in highly urbanized areas of Turkey. J. Build. Eng. 38, 102225 (2021).

    Article  Google Scholar 

  38. Adeogba, E., Barty, P., O’Dwyer, E. & Guo, M. Waste-to-resource transformation: gradient boosting modeling for organic fraction municipal solid waste projection. ACS Sustain. Chem. Eng. 7, 10460–10466 (2019).

    Article  Google Scholar 

  39. Jiang, F., Ma, J. & Li, Z. Pedestrian volume prediction with high spatiotemporal granularity in urban areas by the enhanced learning model. Sustain. Cities Soc. 79, 103653 (2022).

    Article  Google Scholar 

  40. Manchella, K., Umrawal, A. K. & Aggarwal, V. Flexpool: a distributed model-free deep reinforcement learning algorithm for joint passengers and goods transportation. IEEE Trans. Intell. Transp. Syst. 22, 2035–2047 (2021).

    Article  Google Scholar 

  41. Lork, C. et al. An uncertainty-aware deep reinforcement learning framework for residential air conditioning energy management. Appl. Energy 276, 115426 (2020).

    Article  Google Scholar 

  42. Tien, P. W., Wei, S., Darkwa, J., Wood, C. & Calautit, J. K. Machine learning and deep learning methods for enhancing building energy efficiency and indoor environmental quality—a review. Energy AI 10, 100198 (2022).

    Article  Google Scholar 

  43. Campbell-Arvai, V. & Lindquist, M. From the ground up: using structured community engagement to identify objectives for urban green infrastructure planning. Urban For. Urban Green. 59, 127013 (2021).

    Article  Google Scholar 

  44. Ntakolia, C., Anagnostis, A., Moustakidis, S. & Karcanias, N. Machine learning applied on the district heating and cooling sector: a review. Energy Syst. 13, 1–30 (2022).

    Article  Google Scholar 

  45. Rong, K. & Luo, Y. Toward born sharing: the sharing economy evolution enabled by the digital ecosystems. Technol. Forecast. Soc. Change 196, 122776 (2023).

    Article  Google Scholar 

  46. Adler, P. & Florida, R. The rise of urban tech: how innovations for cities come from cities. Reg. Stud. 55, 1787–1800 (2021).

    Article  Google Scholar 

  47. Albuquerque, V., Sales Dias, M. & Bacao, F. Machine learning approaches to bike-sharing systems: a systematic literature review. ISPRS Int. J. Geo-Inform. 10, 62 (2021).

    Article  Google Scholar 

  48. Shaygan, M., Meese, C., Li, W., Zhao, X. G. & Nejad, M. Traffic prediction using artificial intelligence: review of recent advances and emerging opportunities. Transp. Res. C 145, 103921 (2022).

    Article  Google Scholar 

  49. Font Vivanco, D. et al. Rebound effect and sustainability science: a review. J. Ind. Ecol. 26, 1543–1563 (2022).

    Article  Google Scholar 

  50. Sovacool, B. K., Newell, P., Carley, S. & Fanzo, J. Equity, technological innovation and sustainable behaviour in a low-carbon future. Nat. Hum. Behav. 6, 326–337 (2022).

    Article  Google Scholar 

  51. McMillan, L. & Varga, L. A review of the use of artificial intelligence methods in infrastructure systems. Eng. Appl. Artif. Intell. 116, 105472 (2022).

    Article  Google Scholar 

  52. Taiwo, R., Ben Seghier, M. E. A. & Zayed, T. Toward sustainable water infrastructure: the state-of-the-art for modeling the failure probability of water pipes. Water Resour. Res. 59, e2022WR033256 (2023).

    Article  Google Scholar 

  53. Burley Farr, K., Song, K., Yeo, Z. Y., Johnson, E. & Hsu, A. Cities and regions tackle climate change mitigation but often focus on less effective solutions. Commun. Earth Environ. 4, 439 (2023).

    Article  Google Scholar 

  54. Chen, S. & Jia, K. How local governments prioritize multiple conflicting goals: beyond the sole-goal perspective. Public Admin. 101, 522–538 (2023).

    Article  Google Scholar 

  55. Meena, M. et al. Municipal solid waste: Opportunities, challenges and management policies in India: a review. Waste Manag. Bull. 1, 4–18 (2023).

    Article  Google Scholar 

  56. Moroni, S. & Chiffi, D. Uncertainty and planning: cities, technologies and public decision-making. Perspect. Sci. 30, 237–259 (2022).

    Article  Google Scholar 

  57. Bright, J. et al. Generative AI is already widespread in the public sector: evidence from a survey of UK public sector professionals. Digit. Gov.: Res. Pract. 6, 1–13 (2025).

    Article  Google Scholar 

  58. Zhu, D. & Liu, H. City AI: a strategic framework for urban artificial intelligence application and development. Urban Informatics 4, 1–14 (2025).

    Article  Google Scholar 

  59. Li, Z. et al. Urban computing in the era of large language models. Preprint at https://doi.org/10.48550/arXiv.2504.02009 (2025).

  60. Luccioni, S., Jernite, Y. & Strubell, E. Power hungry processing: watts driving the cost of AI deployment? In Proc. 2024 ACM Conference on Fairness, Accountability, and Transparency 85–99 (Association for Computing Machinery, 2024).

  61. Dodge, J. et al. Measuring the carbon intensity of AI in cloud instances. In Proc. 2022 ACM Conference on Fairness, Accountability, and Transparency 1877–1894 (Association for Computing Machinery, 2022).

  62. Zhao, F., Fashola, O. I., Olarewaju, T. I. & Onwumere, I. Smart city research: a holistic and state-of-the-art literature review. Cities 119, 103406 (2021).

    Article  Google Scholar 

  63. João, B., Nascimento, D., Souza, C. L. D. & Serralvo, F. A. A systematic review of smart cities and the internet of things as a research topic. Cadernos EBAPE.BR. 17, 1115–1130 (2020).

    Google Scholar 

  64. Pasgaard, M. & Strange, N. A quantitative analysis of the causes of the global climate change research distribution. Glob. Environ. Change 23, 1684–1693 (2013).

    Article  Google Scholar 

  65. Tennant, J. P. Web of Science and Scopus are not global databases of knowledge. Eur. Sci. Edit. 46, e51987 (2020).

    Article  Google Scholar 

  66. Asubiaro, T., Onaolapo, S. & Mills, D. Regional disparities in Web of Science and Scopus journal coverage. Scientometrics 129, 1469–1491 (2024).

    Article  Google Scholar 

  67. Boeing, G., Pilgram, C. & Lu, Y. Urban street network design and transport-related greenhouse gas emissions around the world. Transp. Res. D 127, 103961 (2024).

    Article  Google Scholar 

  68. Xiao, C. S. et al. Design effects of cycle infrastructure changes: an exploratory analysis of cycle levels. Transp. Res. Interdisc. Perspect. 22, 100949 (2023).

    Google Scholar 

  69. Oyedemi, T. D. Digital coloniality and ‘next billion users’: the political economy of Google Station in Nigeria. Inform. Commun. Soc. 24, 329–343 (2021).

    Article  Google Scholar 

  70. Birhane, A. et al. The values encoded in machine learning research. In Proc. 2022 ACM Conference on Fairness, Accountability, and Transparency 173–184 (Association for Computing Machinery, 2022).

  71. Birhane, A. Algorithmic colonization of Africa. SCRIPTed 17, 389 (2020).

    Article  Google Scholar 

  72. Sietsma, A. J., Ford, J. D. & Minx, J. C. The next generation of machine learning for tracking adaptation texts. Nat. Clim. Change 14, 31–39 (2024).

    Article  Google Scholar 

  73. Vinuesa, R. et al. The role of artificial intelligence in achieving the Sustainable Development Goals. Nat. Commun. 11, 233 (2020).

    Article  Google Scholar 

  74. Sculley, D. et al. Hidden technical debt in machine learning systems. In Advances in Neural Information Processing Systems 28 (eds Cortes C., Lawrence N., Lee D., Sugiyama M. & Garnett R.) (Curran Associates, Inc., 2015).

  75. Bulkeley, H. Cities and the governing of climate change. Ann. Rev. Environ. Resour. 35, 229–253 (2010).

    Article  Google Scholar 

  76. Jiang, W. Bike sharing usage prediction with deep learning: a survey. Neur. Comput. Appl. 34, 15369–15385 (2022).

    Article  Google Scholar 

  77. Repke, T. & Callaghan, M. NACSOS-nexus: NLP assisted classification, synthesis and online screening with new and extended usage scenarios. Preprint at https://doi.org/10.48550/arXiv.2405.04621 (2024).

  78. Webersinke, N., Kraus, M., Bingler, J. & Leippold, M. ClimateBERT: a pretrained language model for climate-related text. In Proc. AAAI 2022 Fall Symposium: The Role of AI in Responding to Climate Challenges (2022); https://doi.org/10.48550/arXiv.2212.13631

  79. Callaghan, M. & Müller-Hansen, F. Statistical stopping criteria for automated screening in systematic reviews. Syst. Rev. 9, 1–14 (2020).

    Article  Google Scholar 

  80. Ivanova, D. et al. Quantifying the potential for climate change mitigation of consumption options. Environ. Res. Lett. 15, 093001 (2020).

    Article  Google Scholar 

  81. Standard country or area codes for statistical use. United Nations Statistics Division https://unstats.un.org/unsd/methodology/m49/ (2025).

  82. Hamel, R. E. The dominance of English in the international scientific periodical literature and the future of language use in science. Aila Rev. 20, 53–71 (2007).

    Article  Google Scholar 

  83. Petersen, K. & Gerken, J. M. On the road to interactive LLM-based systematic mapping studies. Inform. Softw. Technol. 178, 107611 (2025).

    Article  Google Scholar 

  84. Losi, E., Manservigi, L., Spina, P. R. & Venturini, M. Data-driven approach for the detection of faults in district heating networks. Sustain. Energy Grids Netw. 38, 101355 (2024).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported through a scholarship for M.J.H. by the Heinrich Böll Foundation. We thank F. Pachter for supporting with the coding of the articles and M. Callaghan for advising on prioritized abstract screening.

Author information

Authors and Affiliations

Authors

Contributions

N.M.-D. and L.H.K. conceived of the study, and N.M.-D., L.H.K. and M.J.H. designed the search queries. T.R. managed the process for prioritized abstract screening and was responsible for the fine-tuning of the classifier. M.J.H., N.M.-D. and L.H.K. performed the manual coding. M.J.H. led the analysis of relevant papers. All authors analyzed the results and interpreted the findings. M.J.H. created the figures and developed the initial draft. M.J.H. and L.H.K. wrote the draft with the help of N.M.-D. L.H.K. and F.C. supervised the research. All authors participated in the editing of the paper.

Corresponding author

Correspondence to Marie Josefine Hintz.

Ethics declarations

Competing interests

L.H.K., N.M.-D. and F.C. are affiliated with Climate Change AI. M.J.H. is affiliated with Urban AI.

Peer review

Peer review information

Nature Cities thanks Anne Sietsma and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 Numbers of studies per mitigation potential level

Supplementary information

Supplementary Information

Supplementary Information 1–3.

Reporting Summary

Supplementary Data 1

Dataframe with all the relevant papers included in our sample, consisting of three tabs (the first tab includes all relevant papers from the first round of coding, the second tab those from the extended timeframe and search queries, and the third tab all relevant papers from conference proceedings).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hintz, M.J., Milojevic-Dupont, N., Creutzig, F. et al. A systematic map of machine learning for urban climate change mitigation. Nat Cities (2025). https://doi.org/10.1038/s44284-025-00328-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44284-025-00328-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing