Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Electrothermal synthesis of commodity chemicals

Abstract

Electrothermal synthesis of commodity chemicals has received notable interest in recent decades as renewable electricity becomes more available and environmental challenges are increasingly recognized. Representative electrothermal approaches, such as Joule heating, microwaves, induction heating and plasma, have rapidly evolved from operating in millimeter-sized micro-reactors toward modular and even industrial-scale systems. Meanwhile, new chemical engineering concepts, such as dynamic and programmable operation for non-equilibrium chemical reactions using nanosecond- to millisecond-long energy pulsing, spatial and temporal heating by electrifying various reactor components (for example, the reactor walls, catalyst bed or reactant in porous media), and field-enhanced reactions and catalysis, have been discovered to improve synthesis outcomes. Despite the rapid progress of this field, there remain many knowledge gaps and technical hurdles. Here we review the critical engineering advances, analyze the unaddressed challenges and discuss the potential directions for the electrothermal synthesis of commodity chemicals toward its broader implementation for future chemical manufacturing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrothermal chemical syntheses using resistive heating (Joule heating), induction heating, microwaves and plasma.
Fig. 2: Model resistive heater designs.
Fig. 3: Scale-up strategies and system design considerations for resistively heated reactors.
Fig. 4: Non-resistive heating for electrothermal chemical synthesis.
Fig. 5: Potential future directions for electrothermal chemical synthesis.

Similar content being viewed by others

References

  1. Mallapragada, D. S. et al. Decarbonization of the chemical industry through electrification: barriers and opportunities. Joule 7, 23–41 (2023).

    Article  CAS  Google Scholar 

  2. Dong, Q. et al. Programmable heating and quenching for efficient thermochemical synthesis. Nature 605, 470–476 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Spagnolo, D. A., Cornett, L. J. & Chuang, K. T. Direct electro-steam reforming: a novel catalytic approach. Int. J. Hydrogen Energy 17, 839–846 (1992).

    Article  CAS  Google Scholar 

  4. Wismann, S. T. et al. Electrified methane reforming: a compact approach to greener industrial hydrogen production. Science 364, 756–759 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Dong, Q. et al. Depolymerization of plastics by means of electrified spatiotemporal heating. Nature 616, 488–494 (2023).

    Article  CAS  PubMed  Google Scholar 

  6. Ledesma, E. B., Idamakanti, M., Bollini, P., Harold, M. P. & Ratnakar, R. R. Decarbonizing steam-methane reforming: enhancing activity through Joule heating of a Ni/ZrO2-coated FeCrAl coil. ChemCatChem 16, e202301110 (2024).

    Article  CAS  Google Scholar 

  7. Renda, S. et al. Electrically driven SiC-based structured catalysts for intensified reforming processes. Catal. Today 383, 31–43 (2022).

    Article  CAS  Google Scholar 

  8. Zheng, L. et al. Direct electrification of Rh/Al2O3 washcoated SiSiC foams for methane steam reforming: an experimental and modelling study. Int. J. Hydrogen Energy 48, 14681–14696 (2023).

    Article  CAS  Google Scholar 

  9. Rieks, M., Bellinghausen, R., Kockmann, N. & Mleczko, L. Experimental study of methane dry reforming in an electrically heated reactor. Int. J. Hydrogen Energy 40, 15940–15951 (2015).

    Article  CAS  Google Scholar 

  10. Zheng, L., Ambrosetti, M., Beretta, A., Groppi, G. & Tronconi, E. Electrified CO2 valorization driven by direct Joule heating of catalytic cellular substrates. Chem. Eng. J. 466, 143154 (2023).

    Article  CAS  Google Scholar 

  11. Yu, K., Wang, C., Zheng, W. & Vlachos, D. G. Dynamic electrification of dry reforming of methane with in situ catalyst regeneration. ACS Energy Lett. 8, 1050–1057 (2023).

    Article  CAS  Google Scholar 

  12. Zheng, L. et al. Electrified methane steam reforming on a washcoated SiSiC foam for low-carbon hydrogen production. AIChE J. 69, e17620 (2023).

    Article  CAS  PubMed  Google Scholar 

  13. Yu, K., Sourav, S., Zheng, W. & Vlachos, D. G. Dynamic electrification steers the selectivity of CO2 hydrogenation. Chem. Eng. J. 481, 148528 (2024).

    Article  CAS  Google Scholar 

  14. Hu, G. et al. A Joule-heated carbon nanofiber aerogel-supported catalyst for hydrogen production via methanol steam reforming. Carbon 214, 118311 (2023).

    Article  CAS  Google Scholar 

  15. Selvam, E., Yu, K., Ngu, J., Najmi, S. & Vlachos, D. G. Recycling polyolefin plastic waste at short contact times via rapid joule heating. Nat. Commun. 15, 5662 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dou, L. et al. Enhancing CO2 methanation over a metal foam structured catalyst by electric internal heating. Chem. Commun. 56, 205–208 (2020).

    Article  CAS  Google Scholar 

  17. Liu, L. et al. Alkane dehydrogenation in scalable and electrifiable carbon membrane reactor. Cell Rep. Phys. Sci. 4, 101692 (2023).

    Article  CAS  Google Scholar 

  18. Wang, W. et al. Boosting methylcyclohexane dehydrogenation over Pt-based structured catalysts by internal electric heating. Nano Res. 16, 12215–12222 (2023).

    Article  CAS  Google Scholar 

  19. Wyss, K. M. et al. Synthesis of clean hydrogen gas from waste plastic at zero net cost. Adv. Mater. 35, 2306763 (2023).

    Article  CAS  Google Scholar 

  20. Lin, C. H. et al. Electrified thermochemical reaction systems with high-frequency metamaterial reactors. Joule https://doi.org/10.1016/j.joule.2024.07.017 (2024).

  21. Dotsenko, V. P., Bellusci, M., Masi, A., Pietrogiacomi, D. & Varsano, F. Improving the performances of supported NiCo catalyst for reforming of methane powered by magnetic induction. Catal. Today 418, 114049 (2023).

    Article  Google Scholar 

  22. Yang, H. et al. Distributed electrified heating for efficient hydrogen production. Nat. Commun. 15, 3868 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kale, S. S. et al. Iron carbide or iron carbide/cobalt nanoparticles for magnetically-induced CO2 hydrogenation over Ni/SiRAlOx catalysts. Catal. Sci. Technol. 9, 2601–2607 (2019).

    Article  CAS  Google Scholar 

  24. Varsano, F. et al. Dry reforming of methane powered by magnetic induction. Int. J. Hydrogen Energy 44, 21037–21044 (2019).

    Article  CAS  Google Scholar 

  25. Meloni, E., Martino, M. & Palma, V. Microwave assisted steam reforming in a high efficiency catalytic reactor. Renew. Energy 197, 893–901 (2022).

    Article  CAS  Google Scholar 

  26. Marin, C. M. et al. Designing perovskite catalysts for controlled active-site exsolution in the microwave dry reforming of methane. Appl. Catal. B 284, 119711 (2021).

    Article  CAS  Google Scholar 

  27. Hu, J. et al. Microwave-driven heterogeneous catalysis for activation of dinitrogen to ammonia under atmospheric pressure. Chem. Eng. J. 397, 125388 (2020).

    Article  CAS  Google Scholar 

  28. Tiwari, S., Khan, T. S., Tavadze, P. & Hu, J. Activation of two highly stable molecules – nitrogen and methane to co-produce ammonia and ethylene. Chem. Eng. J. 413, 127501 (2021).

    Article  CAS  Google Scholar 

  29. Ramírez, A., Hueso, J. L., Mallada, R. & Santamaría, J. Ethylene epoxidation in microwave heated structured reactors. Catal. Today 273, 99–105 (2016).

    Article  Google Scholar 

  30. Wang, Y. et al. Microwave-driven upcycling of single-use plastics using zeolite catalyst. Chem. Eng. J. 465, 142918 (2023).

    Article  CAS  Google Scholar 

  31. Selvam, E. et al. Plastic waste upgrade to olefins via mild slurry microwave pyrolysis over solid acids. Chem. Eng. J. 454, 140332 (2023).

    Article  CAS  Google Scholar 

  32. Deng, Y. et al. Microwave-assisted conversion of methane over H-(Fe)-ZSM-5: evidence for formation of hot metal sites. Chem. Eng. J. 420, 129670 (2021).

    Article  CAS  Google Scholar 

  33. Kwak, Y. et al. Microwave-assisted, performance-advantaged electrification of propane dehydrogenation. Sci. Adv. 9, eadi8219 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Julian, I. et al. From bench scale to pilot plant: a 150× scaled-up configuration of a microwave-driven structured reactor for methane dehydroaromatization. Catal. Today 383, 21–30 (2022).

    Article  CAS  Google Scholar 

  35. Ramírez, A. et al. Escaping undesired gas-phase chemistry: microwave-driven selectivity enhancement in heterogeneous catalytic reactors. Sci. Adv. 5, eaau9000 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ramírez, A., Hueso, J. L., Mallada, R. & Santamaría, J. In situ temperature measurements in microwave-heated gas–solid catalytic systems. Detection of hot spots and solid–fluid temperature gradients in the ethylene epoxidation reaction. Chem. Eng. J. 316, 50–60 (2017).

    Article  Google Scholar 

  37. Wanten, B., Gorbanev, Y. & Bogaerts, A. Plasma-based conversion of CO2 and CH4 into syngas: a dive into the effect of adding water. Fuel 374, 132355 (2024).

    Article  CAS  Google Scholar 

  38. Yi, Y. et al. Plasma-catalytic ammonia reforming of methane over Cu-based catalysts for the production of HCN and H2 at reduced temperature. ACS Catal. 11, 1765–1773 (2021).

    Article  CAS  Google Scholar 

  39. Mehta, P. et al. Overcoming ammonia synthesis scaling relations with plasma-enabled catalysis. Nat. Catal. 1, 269–275 (2018).

    Article  Google Scholar 

  40. Fulcheri, L., Rohani, V.-J., Wyse, E., Hardman, N. & Dames, E. An energy-efficient plasma methane pyrolysis process for high yields of carbon black and hydrogen. Int. J. Hydrogen Energy 48, 2920–2928 (2023).

    Article  CAS  Google Scholar 

  41. Cui, Z. et al. Plasma-catalytic methanol synthesis from CO2 hydrogenation over a supported Cu cluster catalyst: insights into the reaction mechanism. ACS Catal. 12, 1326–1337 (2022).

    Article  CAS  Google Scholar 

  42. Tiwari, S. et al. Post-plasma catalysis: charge effect on product selectivity in conversion of methane and nitrogen plasma to ethylene and ammonia. Catal. Sci. Technol. 13, 2966–2981 (2023).

    Article  CAS  Google Scholar 

  43. Wang, X., Qian, C., Tang, S.-Y. & Zhou, S. Ammonia synthesis via nitrogen-coupled methane conversion at ambient temperature and plasma conditions. Ind. Eng. Chem. Res. 62, 18416–18426 (2023).

    Article  CAS  Google Scholar 

  44. Kamarinopoulou, N. S., Wittreich, G. R. & Vlachos, D. G. Direct HCN synthesis via plasma-assisted conversion of methane and nitrogen. Sci. Adv. 10, eadl4246 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, Y. et al. Pulsed laser induced plasma and thermal effects on molybdenum carbide for dry reforming of methane. Nat. Commun. 15, 5495 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, L., Yi, Y., Wu, C., Guo, H. & Tu, X. One-step reforming of CO2 and CH4 into high-value liquid chemicals and fuels at room temperature by plasma-driven catalysis. Angew. Chem. Int. Ed. 56, 13679–13683 (2017).

    Article  CAS  Google Scholar 

  47. Scapinello, M., Delikonstantis, E. & Stefanidis, G. D. Direct methane-to-ethylene conversion in a nanosecond pulsed discharge. Fuel 222, 705–710 (2018).

    Article  CAS  Google Scholar 

  48. Yang, X. et al. Measurements of atoms and metastable species in N2 and H2–N2 nanosecond pulse plasmas. Plasma Sources Sci. Technol. 31, 015017 (2022).

    Article  CAS  Google Scholar 

  49. Yamano, R., Ogo, S., Nakano, N., Higo, T. & Sekine, Y. Non-conventional low-temperature reverse water–gas shift reaction over highly dispersed Ru catalysts in an electric field. EES Catal. 1, 125–133 (2023).

    Article  CAS  Google Scholar 

  50. Mortensen, P. M., Østberg, M. & Nielsen, P. E. Induction heating of endothermic reactions. Patent WO2017/036794 A1 (2017)

  51. Li, Y., Zhang, X. & Liang, Q. Electrothermal toluene oxidation by utilizing Joule heat from Pd/FeCrAl electrified metallic monolith catalyst. Appl. Surf. Sci. 658, 159827 (2024).

    Article  CAS  Google Scholar 

  52. Zhu, Q. et al. Novel metallic electrically heated monolithic catalysts towards VOC combustion. Catal. Sci. Technol. 9, 6638–6646 (2019).

    Article  CAS  Google Scholar 

  53. Our technology: meet the Joule Hive thermal battery. Electrified Thermal Solutions https://electrifiedthermal.com/technology/ (2024).

  54. Liu, D., Yao, Y., Hu, L. & Dong, Q. High-temperature shock heating for thermochemical reactions. Patent WO/2021/183949 (2022).

  55. Buglioni, L., Raymenants, F., Slattery, A., Zondag, S. D. A. & Noël, T. Technological innovations in photochemistry for organic synthesis: flow chemistry, high-throughput experimentation, scale-up, and photoelectrochemistry. Chem. Rev. 122, 2752–2906 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Xu, Z. et al. Chemical upcycling of polyethylene, polypropylene, and mixtures to high-value surfactants. Science 381, 666–671 (2023).

    Article  CAS  PubMed  Google Scholar 

  57. Xie, H. et al. A stable atmospheric-pressure plasma for extreme-temperature synthesis. Nature 623, 964–971 (2023).

    Article  CAS  PubMed  Google Scholar 

  58. Ritter, S. K. Microwave chemistry remains hot, fast, and a tad mystical. c&en https://cen.acs.org/articles/92/i4/Microwave-Chemistry-Remains-Hot-Fast.html (2014).

  59. Liu, N. et al. Unraveling nonequilibrium generation of atomic nitrogen and hydrogen in plasma-aided ammonia synthesis. ACS Energy Lett. 9, 2031–2036 (2024).

    Article  CAS  Google Scholar 

  60. Wang, L., Yi, Y., Guo, H. & Tu, X. Atmospheric pressure and room temperature synthesis of methanol through plasma-catalytic hydrogenation of CO2. ACS Catal. 8, 90–100 (2018).

    Article  CAS  Google Scholar 

  61. Psarellis, Y. M., Kavousanakis, M. E., Dauenhauer, P. J. & Kevrekidis, I. G. Writing the programs of programmable catalysis. ACS Catal. 13, 7457–7471 (2023).

    Article  CAS  Google Scholar 

  62. Ardagh, M. A., Abdelrahman, O. A. & Dauenhauer, P. J. Principles of dynamic heterogeneous catalysis: surface resonance and turnover frequency response. ACS Catal. 9, 6929–6937 (2019).

    Article  CAS  Google Scholar 

  63. Wittreich, G. R., Liu, S., Dauenhauer, P. J. & Vlachos, D. G. Catalytic resonance of ammonia synthesis by simulated dynamic ruthenium crystal strain. Sci. Adv. 8, eabl6576 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wismann, S. T. Electrified methane reforming: understanding the dynamic interplay. Ind. Eng. Chem. Res. 58, 23380–23388 (2019).

    Article  CAS  Google Scholar 

  65. Baker-Fales, M., Chen, T.-Y. & Vlachos, D. G. Scale-up of microwave-assisted, continuous flow, liquid phase reactors: application to 5-hydroxymethylfurfural production. Chem. Eng. J. 454, 139985 (2023).

    Article  CAS  Google Scholar 

  66. Blackwell, B. et al. Induction-heated reactors for gas phase catalyzed reactions. US patent 7,070,743 B2 (2006).

  67. Schroeder, E. & Christopher, P. Chemical production using light: are sustainable photons cheap enough? ACS Energy Lett. 7, 880–884 (2022).

    Article  CAS  Google Scholar 

  68. Weinstein, L. A. et al. Concentrating solar power. Chem. Rev. 115, 12797–12838 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Fang, S. & Hu, Y. H. Thermo-photo catalysis: a whole greater than the sum of its parts. Chem. Soc. Rev. 51, 3609–3647 (2022).

    Article  CAS  PubMed  Google Scholar 

  70. Yanagi, R., Zhao, T., Solanki, D., Pan, Z. & Hu, S. Charge separation in photocatalysts: mechanisms, physical parameters, and design principles. ACS Energy Lett. 7, 432–452 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

L.H. acknowledges the financial support from the US Department of Energy, Office of Science, Basic Energy Sciences under award no. DE-SC0023357 and the US Department of Energy, Office of Science Energy Earthshot Initiative as part of the Non-equilibrium Energy Transfer for Efficient Reactions (NEETER) at Oak Ridge National Laboratory under contract no. DE-AC05-00OR22725. Q.D. acknowledges the assistance and support from Purdue library for the preparation and submission of the paper. S.H. acknowledges the financial support provided by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, of the US Department of Energy through grant no. DE-SC0021953 and Yale Planetary Solutions seed grant program.

Author information

Authors and Affiliations

Authors

Contributions

Q.D., L.H. and S.H. contributed to the discussions and wrote the paper.

Corresponding authors

Correspondence to Qi Dong, Shu Hu or Liangbing Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks James Tour and Enrico Tronconi for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Q., Hu, S. & Hu, L. Electrothermal synthesis of commodity chemicals. Nat Chem Eng 1, 680–690 (2024). https://doi.org/10.1038/s44286-024-00134-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44286-024-00134-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing