Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Rekindling the use of acetylene as a chemical building block

Abstract

Acetylene, produced from coal or natural gas, was a cornerstone of the chemical industry until the 1960s. However, the long-term global availability of inexpensive petroleum before 1973 accelerated the production of olefins, diminishing acetylene’s market prominence because of their similar downstream applications. As petroleum prices fluctuate, acetylene has regained economic viability in certain regions, notably accounting for approximately one-third of the global vinyl chloride production, despite its high carbon footprint. Environmental and economic assessments show that replacing coal with biochar in acetylene-derived vinyl chloride production not only lowers the carbon footprint but also could remain economically viable compared with the ethylene route. Despite this potential, research on acetylene has been largely overlooked for decades. Here we provide an analysis of acetylene production technologies, propose sustainable production initiatives and quantify their economic and environmental performance, and explore potential applications. By showcasing this promising trajectory, we seek to rekindle interest and foster collaborative efforts in advancing sustainable acetylene production and broadening its use as a building block.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The acetylene timeline.
Fig. 2: C2H2 production routes and past and current applications.
Fig. 3: Commercial C2H2 production routes.
Fig. 4: Emerging C2H2 synthesis routes.
Fig. 5: Potential green C2H2 synthesis routes.
Fig. 6: Environmental and economic comparison of C2H2 manufacture.

Similar content being viewed by others

References

  1. Davy, E. Notice of carburet of potassium, and of a new gaseous bi-carburet of hydrogen. J. Frankl. Inst. 19, 216 (1837).

    Article  Google Scholar 

  2. Rasmussen, S. C. Acetylene and Its Polymers: 150+ Years of History (Springer, 2018).

  3. Carolina, N. Discovery of the Commercial Processes for Making Calcium Carbide and Acetylene (American Chemical Society, 1998).

  4. Trotus, I. T., Zimmermann, T. & Schüth, F. Catalytic reactions of acetylene: a feedstock for the chemical industry revisited. Chem. Rev. 114, 1761–1782 (2014). Systematic review of catalytic C2H2 applications.

    Article  CAS  PubMed  Google Scholar 

  5. Jiang, C. & Hu, J. Conversion of Methane to Acetylene 93–116 (Royal Society of Chemistry, 2023). The most comprehensive book chapter on CH4-to-C2H2 routes, covering calcium carbide, partial combustion, hot plasma, warm/cold plasma and thermal pyrolysis.

  6. Bixler, G. H. & Coberly, C. W. Wulff process acetylene. Ind. Eng. Chem. 45, 2596–2606 (1953).

    Article  CAS  Google Scholar 

  7. Weissermel, K. & Arpe, H.-J. Industrial Organic Chemistry (Wiley, 2008).

  8. Crafts, J. M. A lecture upon acetylene. Science 3, 377–392 (1896).

    Article  CAS  PubMed  Google Scholar 

  9. Schobert, H. Production of acetylene and acetylene-based chemicals from coal. Chem. Rev. 114, 1743–1760 (2014). Systematic review of coal-based C2H2 synthesis, encompassing commercial calcium carbide route and all related attempts.

  10. Crynes, B. L., Albright, L. F. & Tan, L. F. in Encyclopedia of Physical Science and Technology 3rd edn (ed. Meyers, R.) 613–626 (Academic Press, 2003).

  11. Shlyapin, D. A., Afonasenko, T. N., Glyzdova, D. V., Leont’eva, N. N. & Lavrenov, A. V. Acetylene production technologies in the 21st century: main trends of their development in the paradigm of low-carbon economy of the future. Catal. Ind. 14, 251–267 (2022).

    Article  Google Scholar 

  12. Chauhan, R., Sartape, R., Minocha, N., Goyal, I. & Singh, M. R. Advancements in environmentally sustainable technologies for ethylene production. Energy Fuels 37, 12589–12622 (2023).

    Article  CAS  Google Scholar 

  13. Zhang, S. et al. Life cycle assessment of acetylene production from calcium carbide and methane in China. J. Clean. Prod. 322, 129055 (2021). Comparison of three commercial C2H2 synthesis routes—calcium carbide, partial combustion and hot plasma—via life cycle assessment.

    Article  CAS  Google Scholar 

  14. Jiang, P. et al. Towards carbon neutrality of calcium carbide-based acetylene production with sustainable biomass resources. Green Energy Environ. 9, 1068–1078 (2024).

    Article  CAS  Google Scholar 

  15. Huo, H. et al. Case study of a novel low rank coal to calcium carbide process based on techno-economic assessment. Energy 228, 120566 (2021).

    Article  CAS  Google Scholar 

  16. Saeki, Y. & Emura, T. Technical progresses for PVC production. Prog. Polym. Sci. 27, 2055–2131 (2002).

    Article  CAS  Google Scholar 

  17. Jiang, M. et al. Tracing fossil-based plastics, chemicals and fertilizers production in China. Nat. Commun. 15, 3854 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, Y. et al. Life cycle assessment of beneficial use of calcium carbide sludge in cement clinker production: a case study in China. J. Clean. Prod. 418, 138003 (2023).

    Article  CAS  Google Scholar 

  19. Stournaras, Y. A. Are Oil Price Movements Perverse? A Critical Explanation of Oil Price Levels 19501985 (Oxford Institute for Energy Studies, 1985).

  20. Gadea, M. D., Gómez-Loscos, A. & Montañés, A. Oil price and economic growth: a long story? Econometrics 4, 41 (2016).

    Article  Google Scholar 

  21. Yan, B., Lu, W. & Cheng, Y. China goes green: cleaner production of chemicals. Green Process. Synth 1, 33–47 (2012).

    CAS  Google Scholar 

  22. Singh, R. P., Kumar, S., Dubey, S. & Singh, A. A review on working and applications of oxy-acetylene gas welding. Mater. Today Proc. 38, 34–39 (2021).

    Article  CAS  Google Scholar 

  23. Khodabakhshi, S., Fulvio, P. F. & Andreoli, E. Carbon black reborn: structure and chemistry for renewable energy harnessing. Carbon 162, 604–649 (2020).

    Article  CAS  Google Scholar 

  24. Zhu, Y., Yang, J., Mei, F., Li, X. & Zhao, C. Bio-based 1,4-butanediol and tetrahydrofuran synthesis: perspective. Green Chem. 24, 6450–6466 (2022).

    Article  CAS  Google Scholar 

  25. Chiang, C. K. et al. Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39, 1098–1101 (1977).

    Article  CAS  Google Scholar 

  26. Zimmermann, H. & Walzl, R. in Ullmann’s Encyclopedia of Industrial Chemistry Vol. 13, 466–529 (Wiley, 2009).

  27. Pässler, P. et al. in Ullmann’s Encyclopedia of Industrial Chemistry Vol. 13, 466–529 (Wiley, 2011). The most comprehensive introduction of C2H2, covering its physical and chemical properties, industrial applications, synthesis routes, safety precautions, transportation and storage.

  28. Bilera, I. V. & Lebedev, Y. A. Plasma-chemical production of acetylene from hydrocarbons: history and current status (a review). Pet. Chem. 62, 329–351 (2022).

    Article  CAS  Google Scholar 

  29. Bowker, M. et al. Advancing critical chemical processes for a sustainable future: challenges for industry and the Max Planck-Cardiff centre on the fundamentals of heterogeneous catalysis (FUNCAT). Angew. Chem. Int. Ed. 61, e202209016 (2022). Review pointing out the importance of C2H2 production derived from biomethane.

    Article  CAS  Google Scholar 

  30. Ma, H., Wang, Y., Qi, Y., Rout, K. R. & Chen, D. Critical review of catalysis for ethylene oxychlorination. ACS Catal. 10, 9299–9319 (2020).

    Article  CAS  Google Scholar 

  31. Faust Akl, D. et al. Reaction-induced formation of stable mononuclear Cu(I)Cl species on carbon for low-footprint vinyl chloride production. Adv. Mater. 35, 2211464 (2023).

    Article  CAS  Google Scholar 

  32. Cannon, S., Levine, S. & Ritter, A. Natural Gas Conversion into Clean Hydrogen and Carbon for Li-Ion Battery Electrodes Using Renewable Energy (Penn Collection, 2022).

  33. Satam, C. C. & Realff, M. J. Comparison of two routes for the bio-based production of economically important C4 streams. J. Adv. Manuf. Process. 2, e10054 (2020).

    Article  CAS  Google Scholar 

  34. De Bari, I. et al. From cardoon lignocellulosic biomass to bio-1,4 butanediol: an integrated biorefinery model. Processes 8, 1585 (2020).

    Article  Google Scholar 

  35. Zhang, N., Wang, S., Gibril, M. E. & Kong, F. The copolymer of polyvinyl acetate containing lignin-vinyl acetate monomer: synthesis and characterization. Eur. Polym. J. 123, 109411 (2020).

    Article  CAS  Google Scholar 

  36. Swathy, K. K., Verma, R. & Kumar, L. in Polymeric Foams: Fundamentals and Types of Foams Vol. 1 (ed. Gupta R. K.) 205–221 (American Chemical Society, 2023).

  37. Okoro, O. V., Nie, L., Alimoradi, H. & Shavandi, A. Waste apple pomace conversion to acrylic acid: economic and potential environmental impact assessments. Fermentation 8, 21 (2022).

    Article  CAS  Google Scholar 

  38. Zhang, J. et al. Advances in the catalytic production of acrylonitrile. Chem. Catal. 4, 100825 (2024).

    Article  CAS  Google Scholar 

  39. Reesh Abu, M. I. Acrylonitrile process enhancement through waste minimization: effect of reaction conditions and degree of backmixing. Sustainability 13, 7923 (2021).

    Article  Google Scholar 

  40. Pal, P. & Nayak, J. Acetic acid production and purification: critical review towards process intensification. Sep. Purif. Rev. 46, 44–61 (2017).

    Article  CAS  Google Scholar 

  41. Sarchami, T., Batta, N. & Berruti, F. Production and separation of acetic acid from pyrolysis oil of lignocellulosic biomass: a review. Biofuels Bioprod. Bioref. 15, 1912–1937 (2021).

    Article  CAS  Google Scholar 

  42. Wang, H. et al. Carbon-calcium composite conversion of calcium carbide-acetylene system: on the imperative roles of carbon capture and solid waste recycling. Appl. Energy 327, 120139 (2022).

    Article  CAS  Google Scholar 

  43. Guo, J. & Zheng, D. Thermodynamic analysis of low-rank-coal-based oxygen-thermal acetylene manufacturing process system. Ind. Eng. Chem. Res. 51, 13414–13422 (2012).

    Article  CAS  Google Scholar 

  44. Ma, S. et al. Energy and exergy analysis of a new calcium carbide production process. Fuel Process. Technol. 226, 107070 (2022).

    Article  CAS  Google Scholar 

  45. Radoiu, M. T., Chen, Y. & Depew, M. C. Catalytic conversion of methane to acetylene induced by microwave irradiation. Appl. Catal. B 43, 187–193 (2003).

    Article  CAS  Google Scholar 

  46. Holmen, A., Olsvik, O. & Rokstad, O. A. Pyrolysis of natural gas: chemistry and process concepts. Fuel Process. Technol. 42, 249–267 (1995).

    Article  CAS  Google Scholar 

  47. Gyrdymova, Y., Lebedev, A., Du, Y.-J. & Rodygin, K. Production of acetylene from viable feedstock: promising recent approaches. ChemPlusChem 89, e202400247 (2024).

    Article  CAS  PubMed  Google Scholar 

  48. Fincke, J. R. et al. Plasma thermal conversion of methane to acetylene. Plasma Chem. Plasma Process. 22, 105–136 (2002).

    Article  CAS  Google Scholar 

  49. Yan, B., Xu, P., Guo, C. Y., Jin, Y. & Cheng, Y. Experimental study on coal pyrolysis to acetylene in thermal plasma reactors. Chem. Eng. J. 207–208, 109–116 (2012).

    Article  Google Scholar 

  50. Xia, W. et al. The plasma energy route to industrial carbon neutrality in China. Chin. J. Theor. Appl. Mech. 55, 2779–2795 (2023).

    Google Scholar 

  51. Guo, X. et al. Analysis and prospect on plasma pyrolysis technology for coal-to-acetylene production. Environ. Prot. Chem. Ind. 41, 229–234 (2021).

    Google Scholar 

  52. Scapinello, M., Delikonstantis, E. & Stefanidis, G. D. The panorama of plasma-assisted non-oxidative methane reforming. Chem. Eng. Process. Process Intensif. 117, 120–140 (2017). The most comprehensive introduction of non-oxidative methane coupling via plasma methods.

    Article  CAS  Google Scholar 

  53. Kado, S., Sekine, Y. & Fujimoto, K. Direct synthesis of acetylene from methane by direct current pulse discharge. Chem. Commun. 24, 2485–2486 (1999).

    Article  Google Scholar 

  54. Han, Q. et al. Conversion of methane to C2 and C3 hydrocarbons over TiO2/ZSM-5 core-shell particles in an electric field. RSC Adv. 9, 34793–34803 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wnukowski, M., van de Steeg, A. W., Hrycak, B., Jasiński, M. & van Rooij, G. J. Influence of hydrogen addition on methane coupling in a moderate pressure microwave plasma. Fuel 288, 119674 (2021).

    Article  CAS  Google Scholar 

  56. Zhang, X., Dai, B., Zhu, A., Gong, W. & Liu, C. The simultaneous activation of methane and carbon dioxide to C2 hydrocarbons under pulse corona plasma over La2O3/γ-Al2O3 catalyst. Catal. Today 72, 223–227 (2002).

    Article  CAS  Google Scholar 

  57. Ma, Y. et al. Direct conversion of methane to ethylene and acetylene over an iron-based metal-organic framework. J. Am. Chem. Soc. 145, 20792–20800 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Julian, I., Ramirez, H., Hueso, J. L., Mallada, R. & Santamaria, J. Non-oxidative methane conversion in microwave-assisted structured reactors. Chem. Eng. J. 377, 119764 (2019).

    Article  CAS  Google Scholar 

  59. Suib, S. L. & Zerger, R. P. A direct, continuous, low-power catalytic conversion of methane to higher hydrocarbons via microwave plasmas. J. Catal. 139, 383–391 (1993).

    Article  CAS  Google Scholar 

  60. Ortiz-Bravo, C. A., Chagas, C. A. & Toniolo, F. S. Oxidative coupling of methane (OCM): an overview of the challenges and opportunities for developing new technologies. J. Nat. Gas Sci. Eng. 96, 104254 (2021).

    Article  CAS  Google Scholar 

  61. Sakbodin, M., Wu, Y., Oh, S. C., Wachsman, E. D. & Liu, D. Hydrogen-permeable tubular membrane reactor: promoting conversion and product selectivity for non-oxidative activation of methane over an Fe©SiO2 catalyst. Angew. Chem. Int. Ed. 55, 16149–16152 (2016).

    Article  CAS  Google Scholar 

  62. Oh, S. C. et al. Direct non-oxidative methane conversion in a millisecond catalytic wall reactor. Angew. Chem. Int. Ed. 58, 7083–7086 (2019).

    Article  CAS  Google Scholar 

  63. Xie, P. et al. Nanoceria-supported single-atom platinum catalysts for direct methane conversion. ACS Catal. 8, 4044–4048 (2018). The highest C2H2 selectivity from non-oxidative methane coupling via catalytic thermal pyrolysis.

    Article  CAS  Google Scholar 

  64. Zhang, H. et al. Pt/CeO2 as catalyst for nonoxidative coupling of methane: oxidative regeneration. J. Phys. Chem. Lett. 14, 6778–6783 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Talpade, A. D. et al. Catalytic reactivity of Pt sites for non-oxidative coupling of methane (NOCM). Chem. Eng. J. 481, 148675 (2024).

    Article  CAS  Google Scholar 

  66. Eggart, D. et al. Operando XAS study of Pt-doped CeO2 for the nonoxidative conversion of methane. ACS Catal. 12, 3897–3908 (2022).

    Article  CAS  Google Scholar 

  67. Hohn, K. L., Witt, P. M., Davis, M. B. & Schmidt, L. D. Methane coupling to acetylene over Pt-coated monoliths at millisecond contact times. Catal. Lett. 54, 113–118 (1998).

    Article  CAS  Google Scholar 

  68. Zhang, S. B. X. Y. et al. Role and dynamics of transition metal carbides in methane coupling. Chem. Sci. 14, 5899–5905 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Han, S. J., Lee, S. W., Kim, H. W., Kim, S. K. & Kim, Y. T. Nonoxidative direct conversion of methane on silica-based iron catalysts: effect of catalytic surface. ACS Catal. 9, 7984–7997 (2019).

    Article  CAS  Google Scholar 

  70. Guo, X. et al. Direct, nonoxidative conversion of methane to ethylene, aromatics and hydrogen. Science 344, 616–619 (2014). The breakthrough of non-oxidative methane coupling.

    Article  CAS  PubMed  Google Scholar 

  71. Teh, W. J. et al. Selective electroreduction of acetylene to 1,3-butadiene on iodide-induced Cuẟ+–Cu0 sites. Nat. Catal 7, 1382–1393 (2024). The new acetylene application.

  72. Zhao, B. H. et al. Economically viable electrocatalytic ethylene production with high yield and selectivity. Nat. Sustain. 6, 827–837 (2023).

    Article  Google Scholar 

  73. Shi, R. et al. Room-temperature electrochemical acetylene reduction to ethylene with high conversion and selectivity. Nat. Catal. 4, 565–574 (2021).

    Article  CAS  Google Scholar 

  74. Zhao, Z. H. et al. Photocatalytic acetylene hydrochlorination by pairing proton reduction and chlorine oxidation over g-C3N4/BiOCl catalysts. J. Am. Chem. Soc. 146, 29441–29449 (2024).

    Article  CAS  PubMed  Google Scholar 

  75. Wang, A., Cao, H., Zhang, L. & Wang, A. Co/SiO2 catalyst for methoxycarbonylation of acetylene: on catalytic performance and active species. Molecules 29, 1987 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li, X. et al. Palladium and ruthenium dual‐single‐atom sites on porous ionic polymers for acetylene dialkoxycarbonylation: synergetic effects stabilize the active site and increase CO adsorption. Angew. Chem. Int. Ed. 62, e202307570 (2023).

    Article  CAS  Google Scholar 

  77. Li, G. et al. Production of calcium carbide from fine biochars. Angew. Chem. Int. Ed. 49, 8480–8483 (2010). Systematic study of the biochar to CaC2 process.

    Article  CAS  Google Scholar 

  78. Dimitrakellis, P., Delikonstantis, E., Stefanidis, G. D. & Vlachos, D. G. Plasma technology for lignocellulosic biomass conversion toward an electrified biorefinery. Green Chem. 24, 2680–2721 (2022).

    Article  CAS  Google Scholar 

  79. Zhang, M. et al. Pyrolysis of polyolefins using rotating arc plasma technology for production of acetylene. Energies 10, 513 (2017).

    Article  Google Scholar 

  80. Zhang, M. et al. Gas production from polyethylene terephthalate using rotating arc plasma. Chem. Eng. Process. Process Intensif. 128, 257–262 (2018).

    Article  CAS  Google Scholar 

  81. Kolb, T., Kroker, T. & Gericke, K.-H. Conversion of biogas like mixtures to C2 hydrocarbon in a plug flow reactor supported by a DBD at atmospheric pressure. Vacuum 88, 144–148 (2013).

    Article  CAS  Google Scholar 

  82. Zeng, Y. et al. Biogas reforming for hydrogen-rich syngas production over a Ni-K/Al2O3 catalyst using a temperature-controlled plasma reactor. Int. J. Hydrog. Energy 48, 6192–6203 (2023).

    Article  CAS  Google Scholar 

  83. Li, M. et al. Reengineering of the carbon-to-acetylene process featuring negative carbon emission. Green Chem. 25, 8584–8592 (2023).

    Article  CAS  Google Scholar 

  84. McEnaney, M. J. et al. A cyclic electrochemical strategy to produce acetylene from CO2, CH4, or alternative carbon sources. Sustain. Energy Fuels 4, 2752–2759 (2020). The CO2–C2H2 cycles.

    Article  CAS  Google Scholar 

  85. Fawzy, S., Osman, A. I., Yang, H., Doran, J. & Rooney, D. W. Industrial biochar systems for atmospheric carbon removal: a review. Environ. Chem. Lett. 19, 3023–3055 (2021).

    Article  CAS  Google Scholar 

  86. Alberici, S., Grimme, W. & Toop, G. Biomethane Production Potentials in the EU (European Biogas Association, 2022).

  87. Mitchell, S., Martín, A. J., Guillén-Gosálbez, G. & Pérez-Ramírez, J. The future of chemical sciences is sustainable. Angew. Chem. Int. Ed. 63, e202318676 (2024).

    Article  CAS  Google Scholar 

  88. Rodin, V., Lindorfer, J., Böhm, H. & Vieira, L. Assessing the potential of carbon dioxide valorisation in Europe with focus on biogenic CO2. J. CO2 Util. 41, 101219 (2020).

    Article  CAS  Google Scholar 

  89. Glaser, B., Parr, M., Braun, C. & Kopolo, G. Biochar is carbon negative. Nat. Geosci. 2, 2 (2009).

    Article  CAS  Google Scholar 

  90. Nabera, A., Martín, A. J., Istrate, R., Pérez-Ramírez, J. & Guillén-Gosálbez, G. Integrating climate policies in the sustainability analysis of green chemicals. Green Chem. 26, 6461–6469 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sacchi, R. et al. PRospective EnvironMental Impact asSEment (premise): a streamlined approach to producing databases for prospective life cycle assessment using integrated assessment models. Renew. Sustain. Energy Rev. 160, 112311 (2022).

    Article  Google Scholar 

  92. Johnston, P., Carthey, N. & Hutchings, G. J. Discovery, development and commercialization of gold catalysts for acetylene hydrochlorination. J. Am. Chem. Soc. 137, 14548–14557 (2015).

    Article  CAS  PubMed  Google Scholar 

  93. Malta, G. et al. Identification of single-site gold catalysis in acetylene hydrochlorination. Science 355, 1399–1403 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This publication was created as part of NCCR Catalysis (grant number 180544), a National Centre of Competence in Research funded by the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Z.Z. and J.P.-R. conceived this Perspective. Z.Z. and A.N. produced figures. A.N. and G.G.-G. completed the life cycle assessment and techno-economic study. Z.Z. and A.N. co-wrote the paper. G.G.-G. and J.P.-R. revised the paper. J.P.-R. supervised the project. All authors reviewed, edited and enriched each section of the Perspective.

Corresponding author

Correspondence to Javier Pérez-Ramírez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks Yi Cheng, Jian Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–3,Tables 1–8 and References.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Nabera, A., Guillén-Gosálbez, G. et al. Rekindling the use of acetylene as a chemical building block. Nat Chem Eng 2, 99–109 (2025). https://doi.org/10.1038/s44286-025-00185-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44286-025-00185-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing