Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Using pseudo-steady-state operation to redefine stability in CO2 electrolysis

Abstract

Whereas chemical reactors can be run for years with limited maintenance, no reactor is inherently stable. Catalysts and components naturally degrade over time. If degradation is slow enough and understood, however, performance losses with time need not impede commercialization. For example, thermochemical reactions can be run at progressively increasing temperatures to compensate for degrading catalysts. In recent years, various electrochemical reactions have been investigated to support the renewable electrification of various sectors, with stability being a key necessity for future use. Unfortunately, in fields such as CO2 electrolysis, more efforts have been placed on achieving stability instead of characterizing degradation, which is a lost opportunity. This Perspective provides a critical reflection on stability—a flawed performance metric—and advocates for a switch in mindset toward characterizing pseudo-steady-state operation. A classification of transient versus pseudo-steady-state degradation mechanisms present in CO2 electrolysis is also provided, along with recommended characterization practices. Collectively, it is advocated that redefining stability is the best way to improve it.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of transient and pseudo-steady-state variables in a CO2 electrolyzer.
Fig. 2: Overview of known degradation mechanisms in a CO2RR cell.
Fig. 3: Characterizing the pseudo-steady-state CO2RR cell performance and degradation mechanisms.
Fig. 4: Increasing utility spectrum of CO2 electrolysis stability data.

Similar content being viewed by others

References

  1. Clark, E. L. et al. Standards and protocols for data acquisition and reporting for studies of the electrochemical reduction of carbon dioxide. ACS Catal. 8, 6560–6570 (2018).

    Article  CAS  Google Scholar 

  2. Birdja, Y. Y. & Vaes, J. Towards a critical evaluation of electrocatalyst stability for CO2 electroreduction. ChemElectroChem 7, 4713–4717 (2020).

    Article  CAS  Google Scholar 

  3. Ma, M. et al. Insights into the carbon balance for CO2 electroreduction on Cu using gas diffusion electrode reactor designs. Energy Environ. Sci. 13, 977–985 (2020).

    Article  CAS  Google Scholar 

  4. Iglesias van Montfort, H.-P. et al. An advanced guide to assembly and operation of CO2 electrolyzers. ACS Energy Lett. 8, 4156–4161 (2023).

    Article  CAS  Google Scholar 

  5. Dutta, N., Bagchi, D., Chawla, G. & Peter, S. C. A guideline to determine Faradaic efficiency in electrochemical CO2 reduction. ACS Energy Lett. 9, 323–328 (2024).

    Article  CAS  Google Scholar 

  6. Schreiber, M. W. Industrial CO2 electroreduction to ethylene: main technical challenges. Curr. Opin. Electrochem. 44, 101438 (2024).

    Article  CAS  Google Scholar 

  7. Shin, H., Hansen, K. U. & Jiao, F. Techno-economic assessment of low-temperature carbon dioxide electrolysis. Nat. Sustain. 4, 911–919 (2021).

    Article  Google Scholar 

  8. Li, M. et al. Local ionic transport enables selective PGM-free bipolar membrane electrode assembly. Nat. Commun. 15, 8222 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lees, E. W., Bui, J. C., Romiluyi, O., Bell, A. T. & Weber, A. Z. Exploring CO2 reduction and crossover in membrane electrode assemblies. Nat. Chem. Eng. 1, 340–353 (2024).

    Article  Google Scholar 

  10. Vavra, J. et al. Solution-based Cu+ transient species mediate the reconstruction of copper electrocatalysts for CO2 reduction. Nat. Catal. 7, 89–97 (2024).

    Article  CAS  Google Scholar 

  11. Kok, J., de Ruiter, J., van der Stam, W. & Burdyny, T. Interrogation of oxidative pulsed methods for the stabilization of copper electrodes for CO2 electrolysis. J. Am. Chem. Soc. 146, 19509–19520 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sahin, B. et al. Fine-tuned combination of cell and electrode designs unlocks month-long stable low temperature Cu-based CO2 electrolysis. J. CO2 Util. 82, 102766 (2024).

    Article  CAS  Google Scholar 

  13. Han, J. et al. Structuring Cu membrane electrode for maximizing ethylene yield from CO2 electroreduction. Adv. Mater. 36, 2313926 (2024).

    Article  CAS  Google Scholar 

  14. Deen, W. M. Analysis of Transport Phenomena 2nd edn (Oxford Univ. Press, 2013)

  15. Pavel, C. C. et al. Highly efficient platinum group metal free based membrane-electrode assembly for anion exchange membrane water electrolysis. Angew. Chem. Int. Ed. 53, 1378–1381 (2014).

    Article  CAS  Google Scholar 

  16. Ito, H. et al. Experimental investigation of electrolytic solution for anion exchange membrane water electrolysis. Int. J. Hydrogen Energy 43, 17030–17039 (2018).

    Article  CAS  Google Scholar 

  17. Li, D. et al. Phenyl oxidation impacts the durability of alkaline membrane water electrolyzer. ACS Appl. Mater. Interfaces 11, 9696–9701 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Li, D. et al. Highly quaternized polystyrene ionomers for high performance anion exchange membrane water electrolysers. Nat. Energy 5, 378–385 (2020).

    Article  CAS  Google Scholar 

  19. Lindquist, G. A. et al. Oxidative instability of ionomers in hydroxide-exchange-membrane water electrolyzers. Energy Environ. Sci. 16, 4373–4387 (2023).

    Article  CAS  Google Scholar 

  20. Gabardo, C. M. et al. Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly. Joule 3, 2777–2791 (2019).

    Article  CAS  Google Scholar 

  21. Endrődi, B. et al. High carbonate ion conductance of a robust PiperION membrane allows industrial current density and conversion in a zero-gap carbon dioxide electrolyzer cell. Energy Environ. Sci. 13, 4098–4105 (2020).

    Article  Google Scholar 

  22. Biemolt, J., Singh, J., Prats Vergel, G., Pelzer, H. M. & Burdyny, T. Preventing salt formation in zero-gap CO2 electrolyzers by quantifying cation accumulation. ACS Energy Lett. 10, 807–814 (2025).

    Article  CAS  Google Scholar 

  23. Hao, S. et al. Improving the operational stability of electrochemical CO2 reduction reaction via salt precipitation understanding and management. Nat. Energy https://doi.org/10.1038/s41560-024-01695-4 (2025).

  24. Joensen, B. Ó. et al. Unveiling transport mechanisms of cesium and water in operando zero-gap CO2 electrolyzers. Joule 8, 1754–1771 (2024).

    Article  CAS  Google Scholar 

  25. Samu, A. A., Szenti, I., Kukovecz, Á., Endrődi, B. & Janáky, C. Systematic screening of gas diffusion layers for high performance CO2 electrolysis. Commun. Chem. 6, 41 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Forner-Cuenca, A. et al. Engineered water highways in fuel cells: radiation grafting of gas diffusion layers. Adv. Mater. 27, 6317–6322 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. El-Nagar, G. A., Haun, F., Gupta, S., Stojkovikj, S. & Mayer, M. T. Unintended cation crossover influences CO2 reduction selectivity in Cu-based zero-gap electrolysers. Nat. Commun. 14, 2062 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Plank, C. et al. A review on the distribution of relaxation times analysis: a powerful tool for process identification of electrochemical systems. J. Power Sources 594, 233845 (2024).

    Article  CAS  Google Scholar 

  29. Ranz, M., Grabner, B., Schweighofer, B., Wegleiter, H. & Trattner, A. Dynamics of anion exchange membrane electrolysis: unravelling loss mechanisms with electrochemical impedance spectroscopy, reference electrodes and distribution of relaxation times. J. Power Sources 605, 234455 (2024).

    Article  CAS  Google Scholar 

  30. Bohn, L. et al. Reference electrode types for zero-gap CO2 electrolyzers: benefits and limitations. Adv. Sci. 11, 2402095 (2024).

    Article  CAS  Google Scholar 

  31. Hansen, K. U., Cherniack, L. H. & Jiao, F. Voltage loss diagnosis in CO2 electrolyzers using five-electrode technique. ACS Energy Lett. 7, 4504–4511 (2022).

    Article  CAS  Google Scholar 

  32. Xu, Q. et al. Identifying and alleviating the durability challenges in membrane-electrode-assembly devices for high-rate CO electrolysis. Nat. Catal. 6, 1042–1051 (2023).

    Article  CAS  Google Scholar 

  33. Disch, J. et al. High-resolution neutron imaging of salt precipitation and water transport in zero-gap CO2 electrolysis. Nat. Commun. 13, 6099 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yang, S. et al. Halide-guided active site exposure in bismuth electrocatalysts for selective CO2 conversion into formic acid. Nat. Catal. 6, 796–806 (2023).

    Article  CAS  Google Scholar 

  35. Choi, W. et al. Exploring the influence of cell configurations on Cu catalyst reconstruction during CO2 electroreduction. Nat. Commun. 15, 8345 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Larrazábal, G. O. et al. Analysis of mass flows and membrane cross-over in CO2 reduction at high current densities in an MEA-type electrolyzer. ACS Appl. Mater. Interfaces 11, 41281–41288 (2019).

    Article  PubMed  Google Scholar 

  37. Vavra, J., Shen, T.-H., Stoian, D., Tileli, V. & Buonsanti, R. Real-time monitoring reveals dissolution/redeposition mechanism in copper nanocatalysts during the initial stages of the CO2 reduction reaction. Angew. Chem. Int. Ed. 60, 1347–1354 (2021).

    Article  CAS  Google Scholar 

  38. Malkow, T., Pilenga, A. & Tsotridis, G. EU Harmonised Test Procedure: Electrochemical Impedance Spectroscopy for Water Electrolysis Cells EUR 29267 EN (Publications Office of the European Union, 2018).

  39. Lazanas, A. C. & Prodromidis, M. I. Electrochemical impedance spectroscopy—a tutorial. ACS Meas. Sci. Au 3, 162–193 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Birkner, L. et al. Dynamic accelerated stress test and coupled on-line analysis program to elucidate aging processes in proton exchange membrane fuel cells. Sci. Rep. 14, 3999 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kuhnert, E., Hacker, V. & Bodner, M. A review of accelerated stress tests for enhancing MEA durability in PEM water electrolysis cells. Int. J. Energy Res. 2023, 3183108 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

T.B. acknowledges the Dutch Research Council (NWO) for providing the FlexEChem Grant (NWA.1237.18.002) via the NWA-themed call ‘Opslag en conversie’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Burdyny.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks Justin Bui, Guoxiong Wang and Haotian Wang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burdyny, T. Using pseudo-steady-state operation to redefine stability in CO2 electrolysis. Nat Chem Eng 2, 350–357 (2025). https://doi.org/10.1038/s44286-025-00210-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44286-025-00210-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing