Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Biomolecular condensates as regulators of enzymatic reactions

Open compartments, termed biomolecular condensates, are involved in cellular reactions. This Comment highlights their ability to enhance robustness and control of reactions in space and time, going beyond mere acceleration or inhibition. They enable reaction engineering at the mesoscale, not just by altering concentrations but also by modifying the local environment.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reaction engineering via biomolecular condensates as open microreactors, the effects and design principles at the molecular and mesoscale levels.
Fig. 2: Reaction engineering with biomolecular condensates, the impact on reaction performance and control.

References

  1. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Nat. Rev. Mol. Cell Biol. 18, 285–298 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lyon, A. S., Peeples, W. B. & Rosen, M. K. Nat. Rev. Mol. Cell Biol. 22, 215–235 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Peeples, W. & Rosen, M. K. Nat. Chem. Biol. 17, 693–702 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gil-Garcia, M. et al. Nat. Commun. 15, 3322 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stoffel, F. et al. Nat. Commun. https://doi.org/10.1038/s41467-025-61013-8 (2025).

  6. Nakashima, K. K., Baaij, J. F. & Spruijt, E. Soft Matter 14, 361–367 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Love, C. et al. Angew. Chem. Int. Ed. 59, 5950–5957 (2020).

    Article  CAS  Google Scholar 

  8. Dai, Y., You, L. & Chilkoti, A. Nat. Rev. Bioeng. 1, 466–480 (2023).

    Article  CAS  Google Scholar 

  9. Castellana, M. et al. Nat. Biotechnol. 32, 1011–1018 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bauermann, J., Laha, S., McCall, P. M., Jülicher, F. & Weber, C. A. J. Am. Chem. Soc. 144, 19294–19304 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Posey, A. E. et al. J. Am. Chem. Soc. 146, 28268–28281 (2024).

    Article  CAS  PubMed  Google Scholar 

  12. Riback, J. A. et al. Mol. Cell 83, 3095–3107.e9 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Testa, A. et al. Nat. Commun. 12, 6293 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Henninger, J. E. et al. Cell 184, 207–225.e24 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Klosin, A. et al. Science 367, 464–468 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the European Research Council through the Horizon 2020 research and innovation programme (grant agreement no. 101002094) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

P.A. led the manuscript and secured funding. M.P., F.S., M.G.-G. and L.F. contributed to discussions and to writing the manuscript.

Corresponding author

Correspondence to Paolo Arosio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks Yongdae Shin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papp, M., Stoffel, F., Gil-Garcia, M. et al. Biomolecular condensates as regulators of enzymatic reactions. Nat Chem Eng 2, 394–397 (2025). https://doi.org/10.1038/s44286-025-00242-6

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44286-025-00242-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing