Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Multifunctional membrane–catalyst systems for chemical upgrading of shale gas

Abstract

Many chemical transformations that are desirable at large scales either lack economically or environmentally sustainable catalytic solutions or require significant improvement. In many cases, identifying catalytic active centers that can perform these reactions under desired conditions and at acceptable rates, stabilities and selectivity has been difficult. One possible approach to overcome this issue is to design membrane–catalyst systems that can increase catalytic rates or selectivity. In general, this membrane–catalyst concept has been challenging to implement, optimize and even thoroughly study as the development of membranes and catalysts is usually undertaken in different scientific communities. Approaches where these two building blocks are co-optimized have not been rigorously explored. In this Perspective, strategies for integrating membrane and catalyst functionalities at molecular scales is explored, with the aim to develop reactive systems for difficult chemical transformations. Specifically, the challenges and opportunities of membrane–catalyst systems for oxidative and non-oxidative shale-gas conversion chemistries are critically examined.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Opportunities offered by membrane–catalyst systems relative to traditional co-fed reactors.
Fig. 2: Features of OCM membrane–catalyst systems that can act as detriments to stability and C2+ yield.
Fig. 3: Strategies for co-designing membrane and catalyst functionalities for OCM.
Fig. 4: Design considerations for PDH membrane–catalyst systems.
Fig. 5: Performance of catalysts and membrane–catalyst systems during PDH, based on experimental results.

Similar content being viewed by others

References

  1. Xin, H. & Linic, S. Analyzing relationships between surface perturbations and local chemical reactivity of metal sites: alkali promotion of O2 dissociation on Ag(111). J. Chem. Phys. 144, 234704 (2016).

    Article  PubMed  Google Scholar 

  2. Xin, H., Holewinski, A. & Linic, S. Predictive structure–reactivity models for rapid screening of Pt-based multimetallic electrocatalysts for the oxygen reduction reaction. ACS Catal. 2, 12–16 (2012).

    Article  CAS  Google Scholar 

  3. Schwach, P., Pan, X. & Bao, X. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects. Chem. Rev. 117, 8497–8520 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. McFarland, E. Unconventional chemistry for unconventional natural gas. Science 338, 340–342 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Wortman, J., Igenegbai, V. O., Almallahi, R., Motagamwala, A. H. & Linic, S. Optimizing hierarchical membrane/catalyst systems for oxidative coupling of methane using additive manufacturing. Nat. Mater. 22, 1523–1530 (2023).

    Article  CAS  PubMed  Google Scholar 

  6. Almallahi, R., Wortman, J. & Linic, S. Overcoming limitations in propane dehydrogenation by codesigning catalyst-membrane systems. Science 383, 1325–1331 (2024).

    Article  CAS  PubMed  Google Scholar 

  7. Farrell, B. L., Igenegbai, V. O. & Linic, S. A viewpoint on direct methane conversion to ethane and ethylene using oxidative coupling on solid catalysts. ACS Catal. 6, 4340–4346 (2016).

    Article  CAS  Google Scholar 

  8. Igenegbai, V. O., Almallahi, R., Meyer, R. J. & Linic, S. Oxidative coupling of methane over hybrid membrane/catalyst active centers: chemical requirements for prolonged lifetime. ACS Energy Lett. 4, 1465–1470 (2019).

    Article  CAS  Google Scholar 

  9. Xu, S. J. & Thomson, W. J. Perovskite-type oxide membranes for the oxidative coupling of methane. AlChE J. 43, 2731–2740 (1997).

    Article  CAS  Google Scholar 

  10. Dimitrakopoulos, G., Koo, B., Yildiz, B. & Ghoniem, A. F. Highly durable C2 hydrocarbon production via the oxidative coupling of methane using a BaFe0.9Zr0.1O3−δ mixed ionic and electronic conducting membrane and La2O3 catalyst. ACS Catal. 11, 3638–3661 (2021).

    Article  CAS  Google Scholar 

  11. Czuprat, O., Schiestel, T., Voss, H. & Caro, J. Oxidative coupling of methane in a BCFZ perovskite hollow fiber membrane reactor. Ind. Eng. Chem. Res. 49, 10230–10236 (2010).

    Article  CAS  Google Scholar 

  12. Othman, N. H., Wu, Z. & Li, K. An oxygen permeable membrane microreactor with an in-situ deposited Bi1.5Y0.3Sm0.2O3−δ catalyst for oxidative coupling of methane. J. Membr. Sci. 488, 182–193 (2015).

    Article  CAS  Google Scholar 

  13. Garcia-Fayos, J., Lobera, M. P., Balaguer, M. & Serra, J. M. Catalyst screening for oxidative coupling of methane integrated in membrane reactors. Front. Mater. 5, 31 (2018).

    Article  Google Scholar 

  14. Wang, H., Cong, Y. & Yang, W. High selectivity of oxidative dehydrogenation of ethane to ethylene in an oxygen permeable membrane reactor. Chem. Commun. 2002, 1468–1469 (2002).

  15. García-Fayos, J., Ruhl, R., Navarrete, L., Bouwmeester, H. J. & Serra, J. M. Enhancing oxygen permeation through Fe2NiO4–Ce0.8Tb0.2O2−δ composite membranes using porous layers activated with Pr6O11 nanoparticles. J. Mater. Chem. A 6, 1201–1209 (2018).

    Article  Google Scholar 

  16. Serra, J. M., Garcia-Fayos, J., Baumann, S., Schulze-Küppers, F. & Meulenberg, W. Oxygen permeation through tape-cast asymmetric all-La0.6Sr0.4Co0.2Fe0.8O3−δ membranes. J. Membr. Sci. 447, 297–305 (2013).

    Article  CAS  Google Scholar 

  17. Baumann, S. et al. Ultrahigh oxygen permeation flux through supported Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes. J. Membr. Sci. 377, 198–205 (2011).

    Article  CAS  Google Scholar 

  18. Schiestel, T. et al. Hollow fibre perovskite membranes for oxygen separation. J. Membr. Sci. 258, 1–4 (2005).

    Article  CAS  Google Scholar 

  19. Tan, X. et al. Oxygen permeation behavior of La0.6Sr0.4Co0.8Fe0.2O3 hollow fibre membranes with highly concentrated CO2 exposure. J. Membr. Sci. 389, 216–222 (2012).

    Article  CAS  Google Scholar 

  20. Cruellas, A. et al. Oxidative coupling of methane in membrane reactors; a techno-economic assessment. Processes 8, 274 (2020).

    Article  CAS  Google Scholar 

  21. Li, S., Jin, W., Xu, N. & Shi, J. Synthesis and oxygen permeation properties of La0.2Sr0.8Co0.2Fe0.8O3−δ membranes. Solid State Ionics 124, 161–170 (1999).

    Article  CAS  Google Scholar 

  22. Di Felice, L. et al. New high temperature sealing technique and permeability data for hollow fiber BSCF perovskite membranes. Chem. Eng. Process. Process Intensification 107, 206–219 (2016).

    Article  Google Scholar 

  23. He, B., Zhang, K., Ling, Y., Xu, J. & Zhao, L. A surface modified La0.6Sr0.4Co0.2Fe0.8O3−δ ultrathin membrane for highly efficient oxygen separation. J. Membr. Sci. 464, 55–60 (2014).

    Article  CAS  Google Scholar 

  24. Wang, Z., Kathiraser, Y., Soh, T. & Kawi, S. Ultra-high oxygen permeable BaBiCoNb hollow fiber membranes and their stability under pure CH4 atmosphere. J. Membr. Sci. 465, 151–158 (2014).

    Article  CAS  Google Scholar 

  25. Wang, H., Cong, Y. & Yang, W. Oxidative coupling of methane in Ba0.5Sr0.5Co0.8Fe0.2O3−δ tubular membrane reactors. Catal. Today 104, 160–167 (2005).

    Article  CAS  Google Scholar 

  26. Igenegbai, V. O., Meyer, R. J. & Linic, S. In search of membrane-catalyst materials for oxidative coupling of methane: performance and phase stability studies of gadolinium-doped barium cerate and the impact of Zr doping. Appl. Catal. B 230, 29–35 (2018).

    Article  CAS  Google Scholar 

  27. Xu, S. J. & Thomson, W. J. Stability of La0.6Sr0.4Co0.2Fe0.8O3−δ perovskite membranes in reducing and nonreducing environments. Ind. Eng. Chem. Res. 37, 1290–1299 (1998).

    Article  CAS  Google Scholar 

  28. Zavyalova, U., Holena, M., Schlögl, R. & Baerns, M. Statistical analysis of past catalytic data on oxidative methane coupling for new insights into the composition of high-performance catalysts. ChemCatChem 3, 1935–1947 (2011).

    Article  CAS  Google Scholar 

  29. Kumar, G., Lau, S. L. J., Krcha, M. D. & Janik, M. J. Correlation of methane activation and oxide catalyst reducibility and its implications for oxidative coupling. ACS Catal. 6, 1812–1821 (2016).

    Article  CAS  Google Scholar 

  30. Thyssen, V. V., Vilela, V. B., de Florio, D. Z., Ferlauto, A. S. & Fonseca, F. C. Direct conversion of methane to C2 hydrocarbons in solid-state membrane reactors at high temperatures. Chem. Rev. 122, 3966–3995 (2021).

    Article  PubMed  Google Scholar 

  31. Vamvakeros, A. et al. Real time chemical imaging of a working catalytic membrane reactor during oxidative coupling of methane. Chem. Commun. 51, 12752–12755 (2015).

    Article  CAS  Google Scholar 

  32. Vamvakeros, A. et al. Real-time tomographic diffraction imaging of catalytic membrane reactors for the oxidative coupling of methane. Catal. Today 364, 242–255 (2021).

    Article  CAS  Google Scholar 

  33. Backhaus-Ricoult, M. SOFC—a playground for solid state chemistry. Solid State Sci. 10, 670–688 (2008).

    Article  CAS  Google Scholar 

  34. Wang, D. et al. Preparation of a Gd0.1Ce0.9O2−δ interlayer for intermediate-temperature solid oxide fuel cells by spray coating. J. Alloys Compd. 505, 118–124 (2010).

    Article  CAS  Google Scholar 

  35. Fang, S., Yoo, C.-Y. & Bouwmeester, H. J. Performance and stability of niobium-substituted Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes. Solid State Ionics 195, 1–6 (2011).

    Article  CAS  Google Scholar 

  36. Wachsman, E. Functionally gradient bilayer oxide membranes and electrolytes. Solid State Ionics 152, 657–662 (2002).

    Article  Google Scholar 

  37. Brisotto, M. et al. High temperature stability of Ba0.5Sr0.5Co0.8Fe0.2O3−δ and La0.6Sr0.4Co1−yFeyO3−δ oxygen separation perovskite membranes. J. Eur. Ceram. Soc. 36, 1679–1690 (2016).

    Article  CAS  Google Scholar 

  38. Zhang, Z. et al. Facile fabrication and improved carbon dioxide tolerance of a novel bilayer-structured ceramic oxygen permeating membrane. J. Membr. Sci. 472, 10–18 (2014).

    Article  CAS  Google Scholar 

  39. Kim, J. P., Park, J. H., Magnone, E. & Lee, Y. Significant improvement of the oxygen permeation flux of tubular Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes covered by a thin La0.6Sr0.4Ti0.3Fe0.7O3−δ layer. Mater. Lett. 65, 2168–2170 (2011).

    Article  CAS  Google Scholar 

  40. Liu, R. R. et al. Influence of water vapor on long-term performance and accelerated degradation of solid oxide fuel cell cathodes. J. Power Sources 196, 7090–7096 (2011).

    Article  CAS  Google Scholar 

  41. Takanabe, K. & Iglesia, E. Mechanistic aspects and reaction pathways for oxidative coupling of methane on Mn/Na2WO4/SiO2 catalysts. J. Phys. Chem. C 113, 10131–10145 (2009).

    Article  CAS  Google Scholar 

  42. Gambo, Y., Jalil, A. A., Triwahyono, S. & Abdulrasheed, A. A. Recent advances and future prospect in catalysts for oxidative coupling of methane to ethylene: a review. J. Ind. Eng. Chem. 59, 218–229 (2018).

    Article  CAS  Google Scholar 

  43. Takanabe, K. & Iglesia, E. Rate and selectivity enhancements mediated by OH radicals in the oxidative coupling of methane catalyzed by Mn/Na2WO4/SiO2. Angew. Chem. Int. Ed. 47, 7689–7693 (2008).

    Article  CAS  Google Scholar 

  44. Aydin, Z. et al. Effects of N2O and water on activity and selectivity in the oxidative coupling of methane over Mn–Na2WO4/SiO2: role of oxygen species. ACS Catal. 12, 1298–1309 (2022).

    Article  CAS  Google Scholar 

  45. Zhu, C. et al. Electrochemical conversion of methane to ethylene in a solid oxide electrolyzer. Nat. Commun. 10, 1173 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ramaiyan, K. P., Denoyer, L. H., Benavidez, A. & Garzon, F. H. Selective electrochemical oxidative coupling of methane mediated by Sr2Fe1.5Mo0.5O6−δ and its chemical stability. Commun. Chem. 4, 1–9 (2021).

    Article  Google Scholar 

  47. Lu, Z. G. & Zhu, J. H. Thermal evaporation of pure Ag in SOFC-relevant environments. Electrochem. Solid State Lett. 10, B179 (2007).

    Article  CAS  Google Scholar 

  48. Bansal, N. P., Salem, J. & Zhu, D. (eds) Advances in Solid Oxide Fuel Cells III: Ceramic and Engineering Science Proceedings Vol. 28 (Wiley, 2007); https://doi.org/10.1002/9780470339534

  49. Nagy, A. J., Mestl, G. & Schlögl, R. The role of subsurface oxygen in the silver-catalyzed, oxidative coupling of methane. J. Catal. 188, 58–68 (1999).

    Article  CAS  Google Scholar 

  50. Burnat, D., Nurk, G., Holzer, L., Kopecki, M. & Heel, A. Lanthanum doped strontium titanate–ceria anodes: deconvolution of impedance spectra and relationship with composition and microstructure. J. Power Sources 385, 62–75 (2018).

    Article  CAS  Google Scholar 

  51. Gross, M. D., Vohs, J. M. & Gorte, R. J. A strategy for achieving high performance with SOFC ceramic anodes. Electrochem. Solid State Lett. 10, B65 (2007).

    Article  CAS  Google Scholar 

  52. Dogu, D. et al. Effect of lanthanum and chlorine doping on strontium titanates for the electrocatalytically-assisted oxidative dehydrogenation of ethane. Appl. Catal. B 227, 90–101 (2018).

    Article  CAS  Google Scholar 

  53. Sarsani, S., West, D., Liang, W. & Balakotaiah, V. Autothermal oxidative coupling of methane with ambient feed temperature. Chem. Eng. J. 328, 484–496 (2017).

    Article  CAS  Google Scholar 

  54. Sarkar, B., West, D. H. & Balakotaiah, V. Bifurcation analysis of oxidative coupling of methane in monolith, gauze or wire-mesh reactors. Catal. Today https://doi.org/10.1016/j.cattod.2020.12.040 (2021).

  55. Dautzenberg, F. M., Schlatter, J. C., Fox, J. M., Rostrup-Nielsen, J. R. & Christiansen, L. J. Catalyst and reactor requirements for the oxidative coupling of methane. Catal. Today 13, 503–509 (1992).

    Article  CAS  Google Scholar 

  56. Vandewalle, L. A., Marin, G. B. & Van Geem, K. M. CFD-based assessment of steady-state multiplicity in a gas–solid vortex reactor for oxidative coupling of methane. Chem. Eng. Process. Process Intensification 165, 108434 (2021).

    Article  CAS  Google Scholar 

  57. Tharakaraman, S. S. et al. Development of an active and mechanically stable catalyst for the oxidative coupling of methane in a gas–solid vortex reactor. Ind. Eng. Chem. Res. 61, 7748–7759 (2022).

    Article  CAS  Google Scholar 

  58. Zeng, Z. et al. A review of heat transfer and thermal management methods for temperature gradient reduction in solid oxide fuel cell (SOFC) stacks. Appl. Energy 280, 115899 (2020).

    Article  Google Scholar 

  59. Cao, Z. et al. Simultaneous overcome of the equilibrium limitations in BSCF oxygen-permeable membrane reactors: water splitting and methane coupling. Catal. Today 193, 2–7 (2012).

    Article  CAS  Google Scholar 

  60. Iftikhar, S. et al. LaNixFe1−xO3 as flexible oxygen or carbon carriers for tunable syngas production and CO2 utilization. Catal. Today 416, 113854 (2023).

    Article  CAS  Google Scholar 

  61. Fleischer, V. et al. Investigation of the role of the Na2WO4/Mn/SiO2 catalyst composition in the oxidative coupling of methane by chemical looping experiments. J. Catal. 360, 102–117 (2018).

    Article  CAS  Google Scholar 

  62. Zhao, K. et al. Lithium carbonate-promoted mixed rare earth oxides as a generalized strategy for oxidative coupling of methane with exceptional yields. Nat. Commun. 14, 7749 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Neal, L. M., Yusuf, S., Sofranko, J. A. & Li, F. Oxidative dehydrogenation of ethane: a chemical looping approach. Energy Technology 4, 1200–1208 (2016).

    Article  CAS  Google Scholar 

  64. Motagamwala, A. H., Almallahi, R., Wortman, J., Igenegbai, V. O. & Linic, S. Stable and selective catalysts for propane dehydrogenation operating at thermodynamic limit. Science 373, 217–222 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Saerens, S. et al. The positive role of hydrogen on the dehydrogenation of propane on Pt (111). ACS Catal. 7, 7495–7508 (2017).

    Article  CAS  Google Scholar 

  66. Sattler, J. J., Ruiz-Martinez, J., Santillan-Jimenez, E. & Weckhuysen, B. M. Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem. Rev. 114, 10613–10653 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Sattler, A. et al. Catalytic limitations on alkane dehydrogenation under H2 deficient conditions relevant to membrane reactors. Energy Environ. Sci. 15, 2120–2129 (2022).

    Article  CAS  Google Scholar 

  68. Ziaka, Z., Minet, R. & Tsotsis, T. Propane dehydrogenation in a packed-bed membrane reactor. AIChE J. 39, 3 (1993).

    Article  Google Scholar 

  69. Gbenedio, E., Wu, Z., Hatim, I., Kingsbury, B. F. & Li, K. A multifunctional Pd/alumina hollow fibre membrane reactor for propane dehydrogenation. Catal. Today 156, 93–99 (2010).

    Article  CAS  Google Scholar 

  70. Schäfer, R., Noack, M., Kölsch, P., Stöhr, M. & Caro, J. Comparison of different catalysts in the membrane-supported dehydrogenation of propane. Catal. Today 82, 15–23 (2003).

    Article  Google Scholar 

  71. Weyten, H., Keizer, K., Kinoo, A., Luyten, J. & Leysen, R. Dehydrogenation of propane using a packed‐bed catalytic membrane reactor. AlChE J. 43, 1819–1827 (1997).

    Article  CAS  Google Scholar 

  72. Borry, R. W. III, Lu, C., Kim, Y.-H. & Iglesia, E. Non-oxidative catalytic conversion of methane with continuous hydrogen removal. Stud. Surf. Sci. Catal. 119, 403–410 (1998).

  73. Sakbodin, M., Wu, Y., Oh, S. C., Wachsman, E. D. & Liu, D. Hydrogen‐permeable tubular membrane reactor: promoting conversion and product selectivity for non‐oxidative activation of methane over an Fe©SiO2 catalyst. Angew. Chem. 128, 16383–16386 (2016).

    Article  Google Scholar 

  74. Liu, L., Liu, D. & Zhang, C. High-temperature hydrogen/propane separations in asymmetric carbon molecular sieve hollow fiber membranes. J. Membr. Sci. 642, 119978 (2022).

    Article  CAS  Google Scholar 

  75. Wang, Z. et al. High H2 permeable SAPO-34 hollow fiber membrane for high temperature propane dehydrogenation application. AIChE J. 66, e16278 (2020).

  76. De Vos, R. M. & Verweij, H. High-selectivity, high-flux silica membranes for gas separation. Science 279, 1710–1711 (1998).

    Article  Google Scholar 

  77. Kanezashi, M. & Asaeda, M. Hydrogen permeation characteristics and stability of Ni-doped silica membranes in steam at high temperature. J. Membr. Sci. 271, 86–93 (2006).

    Article  CAS  Google Scholar 

  78. Choi, S. et al. Modeling and process simulation of hollow fiber membrane reactor systems for propane dehydrogenation. AlChE J. 63, 4519–4531 (2017).

    Article  CAS  Google Scholar 

  79. van Veen, H. M., Bracht, M., Hamoen, E. & Alderliesten, P. T. in Membrane Science and Technology Vol. 4 (eds Burggraaf, A. J. & Cot, L.) 641–680 (Elsevier, 1996).

  80. Choi, S. et al. Material properties and operating configurations of membrane reactors for propane dehydrogenation. AlChE J. 61, 922–935 (2015).

    Article  CAS  Google Scholar 

  81. Wismann, S. T. et al. Electrified methane reforming: a compact approach to greener industrial hydrogen production. Science 364, 756–759 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Weng, G. et al. A high-efficiency electrochemical proton-conducting membrane reactor for ammonia production at intermediate temperatures. Joule 7, 1333–1346 (2023).

    Article  CAS  Google Scholar 

  83. Liu, L. et al. Alkane dehydrogenation in scalable and electrifiable carbon membrane reactor. Cell. Rep. Phys Sci. 4, 12 (2023).

    Google Scholar 

  84. Liu, S., Tan, X., Shao, Z. & Diniz da Costa, J. C. Ba0.5Sr0.5Co0.8Fe0.2O3−δ ceramic hollow-fiber membranes for oxygen permeation. AlChE J. 52, 3452–3461 (2006).

    Article  CAS  Google Scholar 

  85. Chi, Y., Li, T., Wang, B., Wu, Z. & Li, K. Morphology, performance and stability of multi-bore capillary La0.6Sr0.4Co0.2Fe0.8O3−δ oxygen transport membranes. J. Membr. Sci. 529, 224–233 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences (DE-SC0021008).

Author information

Authors and Affiliations

Authors

Contributions

J.W. and S.L. conceived of the concept of this Perspective. J. Zhao and J. Zhang produced figures. J.W. and S.L. wrote the paper. All authors edited and revised this paper. S.L. supervised the project.

Corresponding author

Correspondence to Suljo Linic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Engineering thanks Theo T. Tsotsis, Weishen Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wortman, J., Zhao, J., Zhang, J. et al. Multifunctional membrane–catalyst systems for chemical upgrading of shale gas. Nat Chem Eng 2, 539–550 (2025). https://doi.org/10.1038/s44286-025-00252-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44286-025-00252-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing