Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Resilience of renewable power systems under climate risks

Abstract

Climate change is expected to intensify the effects of extreme weather events on power systems and increase the frequency of severe power outages. The large-scale integration of environment-dependent renewables during energy decarbonization could induce increased uncertainty in the supply–demand balance and climate vulnerability of power grids. This Perspective discusses the superimposed risks of climate change, extreme weather events and renewable energy integration, which collectively affect power system resilience. Insights drawn from large-scale spatiotemporal data on historical US power outages induced by tropical cyclones illustrate the vital role of grid inertia and system flexibility in maintaining the balance between supply and demand, thereby preventing catastrophic cascading failures. Alarmingly, the future projections under diverse emission pathways signal that climate hazards — especially tropical cyclones and heatwaves — are intensifying and can cause even greater impacts on the power grids. High-penetration renewable power systems under climate change may face escalating challenges, including more severe infrastructure damage, lower grid inertia and flexibility, and longer post-event recovery. Towards a net-zero future, this Perspective then explores approaches for harnessing the inherent potential of distributed renewables for climate resilience through forming microgrids, aligned with holistic technical solutions such as grid-forming inverters, distributed energy storage, cross-sector interoperability, distributed optimization and climate–energy integrated modelling.

Key points

  • Large-scale integration of environment-dependent renewables coupled with intensifying climate extremes introduces superimposed risks on future net-zero power systems, expected to increase the frequency of severe power outages.

  • High-penetration renewable power systems under climate change may face escalating challenges, including more severe infrastructure damage, lower grid inertia and flexibility, and longer post-event recovery.

  • Achieving a climate-resilient power system in a net-zero future requires approaches for harnessing the inherent potential of distributed renewables through forming microgrids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Superimposed risks for future high-penetration renewable power systems.
Fig. 2: Tropical-cyclone-induced power outages in the United States during 2017–2022.
Fig. 3: Expected increases in heatwaves and major tropical cyclones from 2020 to 2050 along the US East and Gulf coasts.
Fig. 4: Topological flexibility of power systems.

Similar content being viewed by others

References

  1. Luderer, G. et al. Impact of declining renewable energy costs on electrification in low-emission scenarios. Nat. Energy 7, 32–42 (2022).

    Article  Google Scholar 

  2. Clarke, L. et al. in Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) 615–670 (IPCC, Cambridge Univ. Press, 2022).

  3. Bistline, J. et al. Emissions and energy impacts of the Inflation Reduction Act. Science 380, 1324–1327 (2023).

    Article  Google Scholar 

  4. A European Green Deal, commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (European Commission, 2019).

  5. China’s 14th Five-Year Plan (2021–2025), english.www.gov.cn/ (The State Council of the People’s Republic of China, 2021).

  6. Hanna, R. & Victor, D. G. Marking the decarbonization revolutions. Nat. Energy 6, 568–571 (2021).

    Article  Google Scholar 

  7. Xu, L., Guo, Q., Sheng, Y., Muyeen, S. M. & Sun, H. On the resilience of modern power systems: a comprehensive review from the cyber-physical perspective. Renew. Sust. Energ. Rev. 152, 111642 (2021).

    Article  Google Scholar 

  8. Electric Emergency Incident and Disturbance Report (Form OE-417), oe.netl.doe.gov/oe417.aspx (US Department of Energy, 2022).

  9. Surging Power Outages and Climate Change, www.climatecentral.org/ (Climate Central, 2022).

  10. U.S. Billion-Dollar Weather and Climate Disasters, www.ncei.noaa.gov/access/billions/ (NOAA, 2023).

  11. Lawrence, J. et al. in Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner H.-O. et al.) 1517–1600 (IPCC, Cambridge Univ. Press, 2022).

  12. Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436, 686–688 (2005).

    Article  Google Scholar 

  13. Wang, S. & Toumi, R. Recent migration of tropical cyclones toward coasts. Science 371, 514–517 (2021).

    Article  Google Scholar 

  14. Knutson, T. et al. Tropical cyclones and climate change assessment. Part II: Projected response to anthropogenic warming. Bull. Am. Meteorol. Soc. 101, 303–322 (2020).

    Article  Google Scholar 

  15. Meinshausen, M. et al. The Shared Socio-economic Pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model. Dev. 13, 3571–3605 (2020).

    Article  Google Scholar 

  16. Moore, F. C. et al. Determinants of emissions pathways in the coupled climate–social system. Nature 603, 103–111 (2022).

    Article  Google Scholar 

  17. Perkins, S. E., Alexander, L. V. & Nairn, J. R. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett. 39, L20714 (2012).

    Article  Google Scholar 

  18. Hirabayashi, Y. et al. Global flood risk under climate change. Nat. Clim. Change 3, 816–821 (2013).

    Article  Google Scholar 

  19. Knutson, T. R. Tropical cyclones and climate change. Nat. Geosci. 3, 157–163 (2010).

    Article  Google Scholar 

  20. Gori, A., Lin, N., Xi, D. & Emanuel, K. Tropical cyclone climatology change greatly exacerbates US extreme rainfall–surge hazard. Nat. Clim. Change 12, 171–178 (2022).

    Article  Google Scholar 

  21. Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Change 8, 469–477 (2018).

    Article  Google Scholar 

  22. Zscheischler, J. et al. A typology of compound weather and climate events. Nat. Rev. Earth Env. 1, 333–347 (2020).

    Article  Google Scholar 

  23. Kemfert, C. et al. The expansion of natural gas infrastructure puts energy transitions at risk. Nat. Energy 7, 582–587 (2022).

    Article  Google Scholar 

  24. Veers, P. et al. Grand challenges in the science of wind energy. Science 10.1126/science.aau2027 (2019).

  25. Jenkins, J. D., Luke, M. & Thernstrom, S. Getting to zero carbon emissions in the electric power sector. Joule 2, 2498–2510 (2018).

    Article  Google Scholar 

  26. Electricity Generation, Capacity, and Sales in the United States. www.eia.gov/energyexplained/electricity/electricity-in-the-us-generation-capacity-and-sales.php (US Energy Information Administration, 2023).

  27. Cochran, J., Mai, T. & Bazilian, M. Meta-analysis of high penetration renewable energy scenarios. Renew. Sust. Energ. Rev. 29, 246–253 (2014).

    Article  Google Scholar 

  28. Patt, A., Pfenninger, S. & Lilliestam, J. Vulnerability of solar energy infrastructure and output to climate change. Clim. Change 121, 93–102 (2013).

    Article  Google Scholar 

  29. Rose, S., Jaramillo, P., Small, M. J., Grossmann, I. & Apt, J. Quantifying the hurricane risk to offshore wind turbines. Proc. Natl Acad. Sci. USA 109, 3247–3252 (2012).

    Article  Google Scholar 

  30. Denholm, P. et al. The challenges of achieving a 100% renewable electricity system in the United States. Joule 5, 1331–1352 (2021).

    Article  Google Scholar 

  31. Perera, A. T. D., Nik, V. M., Chen, D., Scartezzini, J. L. & Hong, T. Quantifying the impacts of climate change and extreme climate events on energy systems. Nat. Energy 5, 150–159 (2020).

    Article  Google Scholar 

  32. Perera, A. T. D. et al. Challenges resulting from urban density and climate change for the EU energy transition. Nat. Energy 8, 397–412 (2023).

    Article  Google Scholar 

  33. Feng, K., Ouyang, M. & Lin, N. Tropical cyclone–blackout–heatwave compound hazard resilience in a changing climate. Nat. Commun. 13, 4421 (2022).

    Article  Google Scholar 

  34. Stern, P. C., Sovacool, B. K. & Dietz, T. Towards a science of climate and energy choices. Nat. Clim. Change 6, 547–555 (2016).

    Article  Google Scholar 

  35. Hoffert, M. I. Advanced technology paths to global climate stability: energy for a greenhouse planet. Science 298, 981–987 (2002).

    Article  Google Scholar 

  36. Davis, S. J. et al. Net-zero emissions energy systems. Science 360, eaas9793 (2018).

    Article  Google Scholar 

  37. Craig, M. T. et al. Overcoming the disconnect between energy system and climate modeling. Joule 6, 1405–1417 (2022).

    Article  Google Scholar 

  38. Craig, M. T. et al. A review of the potential impacts of climate change on bulk power system planning and operations in the United States. Renew. Sust. Energ. Rev. 98, 255–267 (2018).

    Article  Google Scholar 

  39. Qiu, M., Ratledge, N., Azevedo, I. M., Diffenbaugh, N. S. & Burke, M. Drought impacts on the electricity system, emissions, and air quality in the western United States. Proc. Natl Acad. Sci. USA 120, e2300395120 (2023).

    Article  Google Scholar 

  40. Grinsted, A., Ditlevsen, P. & Christensen, J. H. Normalized US hurricane damage estimates using area of total destruction, 1900−2018. Proc. Natl Acad. Sci. USA 116, 23942–23946 (2019).

    Article  Google Scholar 

  41. Cohen, D. T. 60 Million Live in the Path of Hurricanes (US Census Bureau, 2018).

  42. The Power Outage Monitoring Product, poweroutage.us/ (Poweroutage, 2023).

  43. Ji, C. et al. Large-scale data analysis of power grid resilience across multiple US service regions. Nat. Energy 1, 1–8 (2016).

    Article  Google Scholar 

  44. Ji, C. et al. Resilience of energy infrastructure and services: modeling, data analytics, and metrics. Proc. IEEE 105, 1354–1366 (2017).

    Article  Google Scholar 

  45. Afsharinejad, A. H., Ji, C. & Wilcox, R. Large-scale data analytics for resilient recovery services from power failures. Joule 5, 2504–2520 (2021).

    Article  Google Scholar 

  46. Tielens, P. & van Hertem, D. The relevance of inertia in power systems. Renew. Sust. Energ. Rev. 55, 999–1009 (2016).

    Article  Google Scholar 

  47. Panteli, M. & Mancarella, P. The grid: stronger, bigger, smarter? Presenting a conceptual framework of power system resilience. IEEE Power Energy Mag. 13, 58–66 (2015).

    Article  Google Scholar 

  48. Denholm, P., Mai, T., Kenyon, R. W., Kroposki, B. & O’Malley, M. Inertia and the Power Grid: A Guide Without the Spin (National Renewable Energy Laboratory, 2020).

  49. Kannan, A., Nuschke, M., Dobrin, B. P. & Strauß-Mincu, D. Frequency stability analysis for inverter dominated grids during system split. Electr. Power Syst. Res. 188, 106550 (2020).

    Article  Google Scholar 

  50. Inertia: Basic Concepts and Impacts on the ERCOT Grid (Electricity Reliability Council of Texas, 2018).

  51. Lannoye, E., Flynn, D. & O’Malley, M. Evaluation of power system flexibility. IEEE Trans. Power Syst. 27, 922–931 (2012).

    Article  Google Scholar 

  52. Nosair, H. & Bouffard, F. Reconstructing operating reserve: flexibility for sustainable power systems. IEEE Trans. Sustain. Energy 6, 1624–1637 (2015).

    Article  Google Scholar 

  53. Hurricane Fiona Situation Reports, www.energy.gov/ceser/hurricane-fiona-situation-reports (US Department of Energy, 2022).

  54. Movahednia, M., Kargarian, A., Ozdemir, C. E. & Hagen, S. C. Power grid resilience enhancement via protecting electrical substations against flood hazards: a stochastic framework. IEEE Trans. Industr. Inform. 18, 2132–2143 (2021).

    Article  Google Scholar 

  55. Nofal, O. M. & van de Lindt, J. W. Understanding flood risk in the context of community resilience modeling for the built environment: research needs and trends. Sustain. Resilient Infrastruct. 7, 171–187 (2022).

    Article  Google Scholar 

  56. Kozlov, M. Hurricane Ida forces researchers to rethink their future. Nature 597, 313 (2021).

    Article  Google Scholar 

  57. Hurricane Response, www.energy.gov/ceser/hurricane-response (US Department of Energy, 2023).

  58. Zhang, C. Resilient cooling strategies — a critical review and qualitative assessment. Energy Build. 251, 111312 (2021).

    Article  Google Scholar 

  59. Watts, N. et al. Health and climate change: policy responses to protect public health. Lancet 386, 1861–1914 (2015).

    Article  Google Scholar 

  60. Matthews, T., Wilby, R. L. & Murphy, C. An emerging tropical cyclone–deadly heat compound hazard. Nat. Clim. Change 9, 602–606 (2019).

    Article  Google Scholar 

  61. NWS New Orleans/Baton Rouge Hurricane Ida Post Tropical Cyclone Report, www.weather.gov/lix/pshhurricaneida (NOAA, 2021).

  62. ERCOT Issues Weather Watch, www.ercot.com/news/release/2023-08-04-ercot-issues-weather (Electricity Reliability Council of Texas, 2023).

  63. Panteli, M., Mancarella, P., Trakas, D. N., Kyriakides, E. & Hatziargyriou, N. D. Metrics and quantification of operational and infrastructure resilience in power systems. IEEE Trans. Power Syst. 32, 4732–4742 (2017).

    Article  Google Scholar 

  64. Edwards, P. N. History of climate modeling. Wiley Interdiscip. Rev. Clim. Change 2, 128–139 (2011).

    Article  Google Scholar 

  65. Meehl, G. A., Boer, G. J., Covey, C., Latif, M. & Stouffer, R. J. The Coupled Model Intercomparison Project (CMIP). Bull. Am. Meteorol. Soc. 81, 313–318 (2000).

    Article  Google Scholar 

  66. Sobel, A. H. et al. Human influence on tropical cyclone intensity. Science 353, 242–246 (2016).

    Article  Google Scholar 

  67. Murakami, H. & Wang, B. Patterns and frequency of projected future tropical cyclone genesis are governed by dynamic effects. Commun. Earth Environ. 3, 77 (2022).

    Article  Google Scholar 

  68. Bhatia, K., Vecchi, G., Murakami, H., Underwood, S. & Kossin, J. Projected response of tropical cyclone intensity and intensification in a global climate model. J. Clim. 31, 8281–8303 (2018).

    Article  Google Scholar 

  69. Kossin, J. P., Emanuel, K. A. & Vecchi, G. A. The poleward migration of the location of tropical cyclone maximum intensity. Nature 509, 349–352 (2014).

    Article  Google Scholar 

  70. Emanuel, K., Sundararajan, R. & Williams, J. Hurricanes and global warming: results from downscaling IPCC AR4 simulations. Bull. Am. Meteorol. Soc. 89, 347–368 (2008).

    Article  Google Scholar 

  71. Emanuel, K. Response of global tropical cyclone activity to increasing CO2: results from downscaling CMIP6 models. J. Clim. 34, 57–70 (2021).

    Article  Google Scholar 

  72. Meiler, S. et al. Intercomparison of regional loss estimates from global synthetic tropical cyclone models. Nat. Commun. 13, 6156 (2022).

    Article  Google Scholar 

  73. Chand, S. S. et al. Declining tropical cyclone frequency under global warming. Nat. Clim. Change 12, 655–661 (2022).

    Article  Google Scholar 

  74. Knutson, T. R. et al. Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nat. Geosci. 1, 359–364 (2008).

    Article  Google Scholar 

  75. Xi, D. & Lin, N. Investigating the physical drivers for the increasing tropical cyclone rainfall hazard in the United States. Geophys. Res. Lett. 49, e2022GL099196 (2022).

    Article  Google Scholar 

  76. Marsooli, R., Lin, N., Emanuel, K. & Feng, K. Climate change exacerbates hurricane flood hazards along US Atlantic and Gulf Coasts in spatially varying patterns. Nat. Commun. 10, 3785 (2019).

    Article  Google Scholar 

  77. Gori, A., Lin, N., Schenkel, B. & Chavas, D. North Atlantic tropical cyclone size and storm surge reconstructions from 1950–present. J. Geophys. Res. Atmos. 128, e2022JD037312 (2023).

    Article  Google Scholar 

  78. Bates, P. D. et al. Combined modeling of US fluvial, pluvial, and coastal flood hazard under current and future climates. Water Resour. Res. 57, e2020WR028673 (2021).

    Article  Google Scholar 

  79. Xi, D., Lin, N. & Gori, A. Increasing sequential tropical cyclone hazards along the US East and Gulf coasts. Nat. Clim. Change 13, 258–265 (2023).

    Article  Google Scholar 

  80. Hurricanes Nate, Maria, Irma, and Harvey Situation Reports, www.energy.gov/ceser/articles/hurricanes-nate-maria-irma-and-harvey-situation-reports (US Department of Energy, 2023).

  81. 2015–2019 American Community 5-Year Data Profile, www.census.gov/acs/www/data/data-tables-and-tools/data-profiles/2019/ (US Census Bureau, 2023).

  82. Staffell, I., Pfenninger, S. & Johnson, N. A global model of hourly space heating and cooling demand at multiple spatial scales. Nat. Energy https://doi.org/10.1038/s41560-023-01341-5 (2023).

    Article  Google Scholar 

  83. Nik, V. M. Making energy simulation easier for future climate — synthesizing typical and extreme weather data sets out of regional climate models (RCMs). Appl. Energy 177, 204–226 (2016).

    Article  Google Scholar 

  84. Watson, E. B. & Etemadi, A. H. Modeling electrical grid resilience under hurricane wind conditions with increased solar and wind power generation. IEEE Trans. Power Syst. 35, 929–937 (2019).

    Article  Google Scholar 

  85. Bennett, J. A. et al. Extending energy system modelling to include extreme weather risks and application to hurricane events in Puerto Rico. Nat. Energy 6, 240–249 (2021).

    Article  Google Scholar 

  86. Ceferino, L., Lin, N. & Xi, D. Bayesian updating of solar panel fragility curves and implications of higher panel strength for solar generation resilience. Reliab. Eng. Syst. Saf. 229, 108896 (2023).

    Article  Google Scholar 

  87. Offshore Wind Resource Assessment (National Renewable Energy Laboratory, 2022).

  88. James M., Haldar S., Varghese R., Bhattacharya S. & Pakrashi V. in Wind Energy Engineering 2nd edition (ed. Letcher, T. M.) 413–422 (Academic, 2023).

  89. O’Malley, M. et al. Enabling power system transformation globally: a system operator research agenda for bulk power system issues. IEEE Power Energy Mag. 19, 45–55 (2021).

    Article  Google Scholar 

  90. As Solar Capacity Grows, Duck Curves Are Getting Deeper in California, www.eia.gov/todayinenergy/detail.php?id=56880# (US Energy Information Administration, 2023).

  91. Ceferino, L., Lin, N. & Xi, D. Stochastic modeling of solar irradiance during hurricanes. Stoch. Environ. Res. Risk Assess. 36, 2681–2693 (2022).

    Article  Google Scholar 

  92. Today’s Outlook, www.caiso.com/Pages/default.aspx (California ISO, 2023).

  93. How Do Wind Turbines Survive Severe Storms? www.energy.gov/eere/articles/how-do-wind-turbines-survive-severe-storms (US Department of Energy, 2017).

  94. Reconstruction of the Punta Lima Wind Farm and Related Transactions, aeepr.com/es-pr (Puerto Rico Electric Power Authority, 2021).

  95. Vazquez, D. A. Z., Qiu, F., Fan, N. & Sharp, K. Wildfire mitigation plans in power systems: a literature review. IEEE Trans. Power Syst. 37, 3540–3551 (2022).

    Article  Google Scholar 

  96. Holttinen, H. et al. System impact studies for near 100% renewable energy systems dominated by inverter based variable generation. IEEE Trans. Power Syst. 37, 3249–3258 (2020).

    Article  Google Scholar 

  97. Cheng, Z., Duan, J. & Chow, M. Y. To centralize or to distribute: that is the question: a comparison of advanced microgrid management systems. IEEE Ind. Electron. Mag. 12, 6–24 (2018).

    Article  Google Scholar 

  98. Hu, Z. & Li, F. Cost–benefit analyses of active distribution network management. Part I: Annual benefit analysis. IEEE Trans. Smart Grid 3, 1067–1074 (2012).

    Article  Google Scholar 

  99. Moreno, R. et al. Microgrids against wildfires: distributed energy resources enhance system resilience. IEEE Power Energy Mag. 20, 78–89 (2022).

    Article  Google Scholar 

  100. Perera, A. T. D., Zhao, B., Wang, Z., Soga, K. & Hong, T. Optimal design of microgrids to improve wildfire resilience for vulnerable communities at the wildland–urban interface. Appl. Energy 335, 120744 (2023).

    Article  Google Scholar 

  101. Puerto Rico Energy Public Policy Act 17, www.pr.gov/ (Gobierno de Puerto Rico, 2019).

  102. Zhang, H., Xiang, W., Lin, W. & Wen, J. Grid forming converters in renewable energy sources dominated power grid: control strategy, stability, application, and challenges. J. Mod. Power Syst. Clean. Energy 9, 1239–1256 (2021).

    Article  Google Scholar 

  103. Lasseter, R. H., Chen, Z. & Pattabiraman, D. Grid-forming inverters: a critical asset for the power grid. IEEE J. Emerg. Sel. Top. Power Electron. 8, 925–935 (2019).

    Article  Google Scholar 

  104. Poolla, B. K., Groß, D. & Dörfler, F. Placement and implementation of grid-forming and grid-following virtual inertia and fast frequency response. IEEE Trans. Power Syst. 34, 3035–3046 (2019).

    Article  Google Scholar 

  105. Lin, Y. et al. Research Roadmap on Grid-forming Inverters (National Renewable Energy Laboratory, 2020).

  106. Xu, L., Guo, Q., Wang, Z. & Sun, H. Modeling of time-delayed distributed cyber-physical power systems for small-signal stability analysis. IEEE Trans. Smart Grid 12, 3425–3437 (2021).

    Article  Google Scholar 

  107. Taul, M. G., Wang, X., Davari, P. & Blaabjerg, F. Current limiting control with enhanced dynamics of grid-forming converters during fault conditions. IEEE J. Emerg. Sel. Top. Power Electron. 8, 1062–1073 (2019).

    Article  Google Scholar 

  108. Braff, W. A., Mueller, J. M. & Trancik, J. E. Value of storage technologies for wind and solar energy. Nat. Clim. Change 6, 964–969 (2016).

    Article  Google Scholar 

  109. Denholm, P. & Hand, M. Grid flexibility and storage required to achieve very high penetration of variable renewable electricity. Energy Policy 39, 1817–1830 (2011).

    Article  Google Scholar 

  110. Chicco, G., Riaz, S., Mazza, A. & Mancarella, P. Flexibility from distributed multienergy systems. Proc. IEEE 108, 1496–1517 (2020).

    Article  Google Scholar 

  111. Heinisch, V. et al. Inter-comparison of spatial models for high shares of renewable electricity in Switzerland. Appl. Energy 350, 121700 (2023).

    Article  Google Scholar 

  112. Sorrenti, I., Rasmussen, T. B. H., You, S. & Wu, Q. The role of power-to-X in hybrid renewable energy systems: a comprehensive review. Renew. Sustain. Energy Rev. 165, 112380 (2022).

    Article  Google Scholar 

  113. Carpinelli, G. et al. Optimal integration of distributed energy storage devices in smart grids. IEEE Trans. Smart Grid 4, 985–995 (2013).

    Article  Google Scholar 

  114. He, G. et al. Utility-scale portable energy storage systems. Joule 5, 379–392 (2021).

    Article  Google Scholar 

  115. Perera, A. T. D., Javanroodi, K. & Nik, V. M. Climate resilient interconnected infrastructure: co-optimization of energy systems and urban morphology. Appl. Energy 285, 116430 (2021).

    Article  Google Scholar 

  116. Gonzalez, J. M. et al. Designing diversified renewable energy systems to balance multisector performance. Nat. Sustain. 6, 415–427 (2023).

    Article  Google Scholar 

  117. Mancarella, P. MES (multi-energy systems): an overview of concepts and evaluation models. Energy 65, 1–17 (2014).

    Article  Google Scholar 

  118. Perera, A. T. D. & Hong, T. Vulnerability and resilience of urban energy ecosystems to extreme climate events: a systematic review and perspectives. Renew. Sust. Energ. Rev. 173, 113038 (2023).

    Article  Google Scholar 

  119. Turner, S. W., Voisin, N., Fazio, J., Hua, D. & Jourabchi, M. Compound climate events transform electrical power shortfall risk in the Pacific Northwest. Nat. Commun. 10, 8 (2019).

    Article  Google Scholar 

  120. Chen, B. et al. Energy-circuit-based integrated energy management system: theory, implementation, and application. Proc. IEEE 110, 1897–1926 (2022).

    Article  Google Scholar 

  121. Boyd, S., Parikh, N., Chu, E., Peleato, B. & Eckstein, J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1–122 (2011).

    Article  Google Scholar 

  122. Gholami, A. & Sun, X. A. Towards resilient operation of multimicrogrids: an MISOCP-based frequency-constrained approach. IEEE Trans. Control. Netw. Syst. 6, 925–936 (2018).

    Article  MathSciNet  Google Scholar 

  123. Sun, K. & Sun, X. A. A two-level ADMM algorithm for AC OPF with global convergence guarantees. IEEE Trans. Power Syst. 36, 5271–5281 (2021).

    Article  Google Scholar 

  124. Kocuk, B., Dey, S. S. & Sun, X. A. Strong SOCP relaxations for the optimal power flow problem. Oper. Res. 64, 1177–1196 (2016).

    Article  MathSciNet  Google Scholar 

  125. Gholami, A., Sun, K., Zhang, S. & Sun, X. A. An ADMM-based distributed optimization method for solving security-constrained alternating current optimal power flow. Oper. Res. https://doi.org/10.1287/opre.2023.2486 (2023).

  126. Gholami, A. & Sun, X. A. Stability of multimicrogrids: new certificates, distributed control, and Braess’s paradox. IEEE Trans. Control. Netw. Syst. 9, 308–319 (2021).

    Article  MathSciNet  Google Scholar 

  127. Gholami, A. & Sun, X. A. The impact of damping in second-order dynamical systems with applications to power grid stability. SIAM J. Appl. Dyn. Syst. 21, 405–437 (2022).

    Article  MathSciNet  Google Scholar 

  128. Xu, L., Guo, Q., He, G. & Sun, H. The impact of synchronous distributed control period on inverter-based cyber-physical microgrids stability with time delay. Appl. Energy 301, 117440 (2021).

    Article  Google Scholar 

  129. Zheng, X. et al. Impact of climate simulation resolutions on future energy system reliability assessment: a Texas case study. iEnergy, https://doi.org/10.23919/IEN.2023.0014 (2023).

  130. Lockwood, J. W. et al. Correlation between sea‐level rise and aspects of future tropical cyclone activity in CMIP6 models. Earths Future 10, e2021EF002462 (2022).

    Article  Google Scholar 

  131. Schneider, T. et al. Harnessing AI and computing to advance climate modeling and prediction. Nat. Clim. Change. 13, 887–889 (2023).

    Article  Google Scholar 

  132. Brown, C. & Wilby, R. L. An alternate approach to assessing climate risks. EOS Trans. Am. Geophys. Union. 93, 401–402 (2012).

    Article  Google Scholar 

  133. Xu, L., Guo, Q., Yang, T. & Sun, H. Robust routing optimization for smart grids considering cyber-physical interdependence. IEEE Trans. Smart Grid 10, 5620–5629 (2018).

    Article  Google Scholar 

  134. Hottenroth, H. et al. Beyond climate change. Multi-attribute decision making for a sustainability assessment of energy system transformation pathways. Renew. Sust. Energ. Rev. 156, 111996 (2022).

    Article  Google Scholar 

  135. Nateghi, R., Guikema, S. D. & Quiring, S. M. Comparison and validation of statistical methods for predicting power outage durations in the event of hurricanes. Risk Anal 31, 1897–1906 (2011).

    Article  Google Scholar 

  136. Cordova, S. et al. An efficient forecasting-optimization scheme for the intraday unit commitment process under significant wind and solar power. IEEE Trans. Sustain. Energy 9, 1899–1909 (2018).

    Article  Google Scholar 

  137. Reddy, S. S., Bijwe, P. R. & Abhyankar, A. R. Real-time economic dispatch considering renewable power generation variability and uncertainty over scheduling period. IEEE Syst. J. 9, 1440–1451 (2014).

    Article  Google Scholar 

  138. Saffir-Simpson Hurricane Wind Scale, www.nhc.noaa.gov/aboutsshws.php (NOAA, 2023).

  139. NLDAS: North American Land Data Assimilation System, climatedataguide.ucar.edu/climate-data/nldas-north-american-land-data-assimilation-system (US National Center for Atmospheric Research, 2023).

Download references

Acknowledgements

L.Xu, K.F. and N.L. were supported by US National Science Foundation grant numbers 1652448 and 2103754 (as part of the Megalopolitan Coastal Transformation Hub) and Princeton University Innovation Fund. H.V.P. was supported by US National Science Foundation grant number ECCS-2039716. The authors thank N. Zhang at USC Iovine and Young Academy for developing the original artwork for this article.

Author information

Authors and Affiliations

Authors

Contributions

L.Xu and N.L conceived the article. L.Xu, K.F. and N.L. wrote the initial draft. A.T.D.P., H.V.P., L.Xie, C.J., X.A.S., Q.G. and M.O. participated in initial discussions and contributed to the writing or reviewing of the article.

Corresponding author

Correspondence to Luo Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Electrical Engineering thanks Jianzhong Wu and Tom Matthews for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Feng, K., Lin, N. et al. Resilience of renewable power systems under climate risks. Nat Rev Electr Eng 1, 53–66 (2024). https://doi.org/10.1038/s44287-023-00003-8

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44287-023-00003-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing