Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Towards integrated textile display systems

Abstract

We receive approximately 80% of our external environmental information through vision, making display technology an essential component of modern life. The evolution of device structures has led to the iterative development of display technology from rigid bulk to flexible films. Recently, next-generation displays have woven electroluminescent units directly into polymer composite fibres to form textile displays. Such displays are flexible and breathable, like clothing, suggesting applications such as wearables and smart textiles. In particular, they would allow users to interact with electronic devices by touching the clothing. This Perspective provides a summary of the evolution of textile displays. We then discuss recent achievements in the field, including applications of textile displays, advances in active materials, designs of interfaces between the active layer and fibre electrodes, developments in display modules, and integration of textile displays with multiple electronic functions. Finally, we highlight the potential challenges of textile displays for practical applications and suggesting future research directions in this exciting field.

Key points

  • Textile displays offer unprecedented flexibility that is similar to normal textiles, conforming to irregular shapes and enabling wearing comfort. Users can enjoy display functionalities seamlessly integrated into their garments or accessories.

  • Luminescent materials as the basic foundation for textile displays need to be designed with high optoelectronic performance and operation durability to make textile displays suitable for practical wearable applications.

  • An effective interface among fibre electrodes is essential to realize the efficient electrical connection and uniform electric-field distribution needed to enable reliable operation of textile displays.

  • Challenges in resolution performance, driving modules and application explorations should be addressed for practical applications of textile displays.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Integration and applications.
Fig. 2: Evolution toward textile displays.
Fig. 3: Design of effective interfaces.
Fig. 4: Advances in display modules.
Fig. 5: Roadmap to realizing display textiles within ten years.

Similar content being viewed by others

References

  1. Larson, C. et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 351, 1071–1074 (2016).

    Article  Google Scholar 

  2. Tan, Y. J. et al. A transparent, self-healing and high-κ dielectric for low-field-emission stretchable optoelectronics. Nat. Mater. 19, 182–188 (2020).

    Article  Google Scholar 

  3. Koo, J. H., Kim, D. C., Shim, H. J., Kim, T. H. & Kim, D. H. Flexible and stretchable smart display: materials, fabrication, device design, and system integration. Adv. Funct. Mater. 28, 1801834 (2018).

    Article  Google Scholar 

  4. Shi, X. et al. Large-area display textiles integrated with functional systems. Nature 591, 240–245 (2021).

    Article  Google Scholar 

  5. Shi, X., Chen, P. & Peng, H. Making large-scale, functional, electronic textiles. Nature 591, 240–245 (2021).

    Article  Google Scholar 

  6. Tian, X. et al. Wireless body sensor networks based on metamaterial textiles. Nat. Electron. 2, 243–251 (2019).

    Article  Google Scholar 

  7. Chen, G. R., Li, Y. Z., Bick, M. & Chen, J. Smart textiles for electricity generation. Chem. Rev. 120, 3668–3720 (2020).

    Article  Google Scholar 

  8. Weng, W., Chen, P. N., He, S. S., Sun, X. M. & Peng, H. S. Smart electronic textiles. Angew. Chem. Int. Edn 55, 6140–6169 (2016).

    Article  Google Scholar 

  9. Carey, T. et al. Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics. Nat. Commun. 8, 1202 (2017).

    Article  Google Scholar 

  10. Neubrech, F., Duan, X. & Liu, N. Dynamic plasmonic color generation enabled by functional materials. Sci. Adv. 6, eabc2709 (2020).

    Article  Google Scholar 

  11. He, Q. et al. P–N junction-based ZnO wearable textile nanogenerator for biomechanical energy harvesting. Nano Energy 85, 105938 (2021).

    Article  Google Scholar 

  12. Chen, C. et al. Functional fiber materials to smart fiber devices. Chem. Rev. 123, 613–662 (2023).

    Article  Google Scholar 

  13. Zhang, W. et al. A single-pixel RGB device in a colorful alphanumeric electrofluorochromic display. Adv. Mater. 32, 2003121 (2020).

    Article  Google Scholar 

  14. Song, Y. J. et al. Fibertronic organic light-emitting diodes toward fully addressable, environmentally robust, wearable displays. ACS Nano 14, 1133–1140 (2020).

    Article  Google Scholar 

  15. Pan, Y. et al. Recent advances in alternating current-driven organic light-emitting devices. Adv. Mater. 29, 1701441 (2017).

    Article  Google Scholar 

  16. Levitt, A. et al. MXene-based fibers, yarns, and fabrics for wearable energy storage devices. Adv. Funct. Mater. 30, 2000739 (2020).

    Article  Google Scholar 

  17. Zeng, K. et al. Design, fabrication and assembly considerations for electronic systems made of fibre devices. Nat. Rev. Mater. 8, 552–561 (2023).

    Article  Google Scholar 

  18. Song, J., Lee, H., Jeong, E. G., Choi, K. C. & Yoo, S. Organic light-emitting diodes: pushing toward the limits and beyond. Adv. Mater. 32, 1907539 (2020).

    Article  Google Scholar 

  19. Zhang, Z. et al. Textile display for electronic and brain-interfaced communications. Adv. Mater. 30, 1800323 (2018).

    Article  Google Scholar 

  20. Müller-Putz, G. R., Riedl, R. & Wriessnegger, S. C. Electroencephalography (EEG) as a research tool in the information systems discipline: foundations, measurement, and applications. Commun. Assoc. Inform. Syst. 37, 912–948 (2015).

    Google Scholar 

  21. Perkel, J. The internet of things comes to the lab. Nature 542, 125–126 (2017).

    Article  Google Scholar 

  22. Yang, Y. Multi-tier computing networks for intelligent IoT. Nat. Electron. 2, 4–5 (2019).

    Article  Google Scholar 

  23. LITME Smart Fiber. Applications. Tayho http://en.tayho.com.cn/product/Applications5.htm (2023).

  24. Macedonia, M. It’s the end of the tube as we know it. Computer 39, 83–85 (2006).

    Article  Google Scholar 

  25. Normile, D. Field emitters finding home in electronics. Science 281, 632–633 (1998).

    Article  Google Scholar 

  26. Son, D. et al. An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat. Nanotech. 13, 1057–1065 (2018).

    Article  Google Scholar 

  27. Ji, Y., Fan, F., Zhang, Z., Cheng, J. & Chang, S. Active terahertz liquid crystal device with carbon nanotube film as both alignment layer and transparent electrodes. Carbon 190, 376e383 (2022).

    Article  Google Scholar 

  28. Penterman, R. et al. Single-substrate liquid-crystal displays by photo-enforced stratification. Nature 417, 55–58 (2002).

    Article  Google Scholar 

  29. Yoshida, K. et al. Electrically driven organic laser using integrated OLED pumping. Nature 621, 746–752 (2023).

    Article  Google Scholar 

  30. Fusella, M. A. et al. Plasmonic enhancement of stability and brightness in organic light-emitting devices. Nature 585, 379–382 (2020).

    Article  Google Scholar 

  31. Kwon, S. et al. Recent progress of fiber shaped lighting devices for smart display applications — a fibertronic perspective. Adv. Mater. 32, 1903488 (2020).

    Article  Google Scholar 

  32. Huang, Y., Hsiang, E. L., Deng, M. Y. & Wu, S. T. Mini-LED, micro-LED and OLED displays: present status and future perspectives. Light Sci. Appl. 9, 105 (2020).

    Article  Google Scholar 

  33. Cinquino, M. et al. Light-emitting textiles: device architectures, working principles, and applications. Micromachines 12, 652 (2021).

    Article  Google Scholar 

  34. Cho, S., Chang, T., Yu, T. & Lee, C. H. Smart electronic textiles for wearable sensing and display. Biosensors 12, 222 (2022).

    Article  Google Scholar 

  35. Liu, Y., Feng, J., Bi, Y., Yin, D. & Sun, H. Recent developments in flexible organic light-emitting devices. Adv. Mater. Technol. 4, 1800371 (2019).

    Article  Google Scholar 

  36. Yin, D. et al. Highly flexible fabric‐based organic light‐emitting devices for conformal wearable displays. Adv. Mater. Technol. 5, 1900942 (2020).

    Article  Google Scholar 

  37. Hong, G. et al. A brief history of OLEDs — emitter development and industry milestones. Adv. Mater. 33, 2005630 (2021).

    Article  Google Scholar 

  38. Hwang, Y. H. et al. Bright-multicolor, highly efficient, and addressable phosphorescent organic light-emitting fibres: toward wearable textile information displays. Adv. Funct. Mater. 31, 2009336 (2021).

    Article  Google Scholar 

  39. Kong, S. U. et al. Anode-patterned monorail-structure fiber-based organic light-emitting diodes with long lifetime and high performance for truly wearable displays. Adv. Opt. Mater. 11, 2203130 (2023).

    Article  Google Scholar 

  40. O’Connor, B., An, K. H., Zhao, Y., Pipe, K. P. & Shtein, M. Fiber shaped organic light emitting device. Adv. Mater. 19, 3897–3900 (2007).

    Article  Google Scholar 

  41. Jeong, S. Y. et al. Foldable and washable textile-based OLEDs with a multi-functional near-room-temperature encapsulation layer for smart e-textiles. npj Flex. Electron. 5, 15 (2021).

    Article  Google Scholar 

  42. Scholz, S., Kondakov, D., Lüssem, B. & Leo, K. Degradation mechanisms and reactions in organic light-emitting devices. Chem. Rev. 115, 8449–8503 (2015).

    Article  Google Scholar 

  43. Pei, Q., Yu, G., Zhang, C., Yang, Y. & Heeger, A. J. Polymer light-emitting electrochemical cells. Science 269, 1086–1088 (1995).

    Article  Google Scholar 

  44. Zhang, Z. et al. A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell. Nat. Photon. 9, 233–238 (2015).

    Article  Google Scholar 

  45. Yang, H., Lightner, C. R. & Dong, L. Light-emitting coaxial nanofibers. ACS Nano 6, 622–628 (2012).

    Article  Google Scholar 

  46. Lee, S. et al. Water washable and flexible light-emitting fibers based on electrochemiluminescent Gels. ACS Appl. Mater. Interf. 14, 17709–17718 (2022).

    Article  Google Scholar 

  47. Costa, R. D. et al. Luminescent ionic transition-metal complexes for light-emitting electrochemical cells. Angew. Chem. Int. Edn 51, 8178–8211 (2012).

    Article  Google Scholar 

  48. Yang, Z. & Su, H. Recent advances in optical engineering of light-emitting electrochemical cells. Adv. Funct. Mater. 30, 1906788 (2020).

    Article  Google Scholar 

  49. Cherenack, K., Zysset, C., Kinkeldei, T., Münzenrieder, N. & Tröster, G. Woven electronic fibers with sensing and display functions for smart textiles. Adv. Mater. 22, 5178–5182 (2010).

    Article  Google Scholar 

  50. Lee, H. E. et al. Wireless powered wearable micro light-emitting diodes. Nano Energy 55, 454–462 (2019).

    Article  Google Scholar 

  51. Nashed, M. N., Hardy, D. A., Hughes-Riley, T. & Dias, T. A novel method for embedding semiconductor dies within textile yarn to create electronic textiles. Fibers 7, 12 (2019).

    Article  Google Scholar 

  52. Choi, H. W. et al. Smart textile lighting/display system with multifunctional fibre devices for large scale smart home and IoT applications. Nat. Commun. 13, 814 (2022).

    Article  Google Scholar 

  53. Rein, M. et al. Diode fibres for fabric-based optical communications. Nature 560, 214–218 (2018).

    Article  Google Scholar 

  54. Yang, Z., Wang, W., Pan, J. & Ye, C. Alternating current electroluminescent devices with inorganic phosphors for deformable displays. Cell Rep. Phys. Sci. 1, 100213 (2020).

    Article  Google Scholar 

  55. Li, S., Peele, B. N., Larson, C. M., Zhao, H. & Shepherd, R. F. A stretchable multicolor display and touch interface using photopatterning and transfer printing. Adv. Mater. 28, 9770–9775 (2016).

    Article  Google Scholar 

  56. Liang, G. et al. Coaxial-structured weavable and wearable electroluminescent fibers. Adv. Electron. Mater. 3, 1700401 (2017).

    Article  Google Scholar 

  57. Qu, C. et al. Multifunctional displays and sensing platforms for the future: a review on flexible alternating current electroluminescence devices. ACS Appl. Electron. Mater. 3, 5188–5210 (2021).

    Article  Google Scholar 

  58. Andrén, B., Brunnström, K. & Wang, K. P-37: readability of displays in bright outdoor surroundings. SID Symp. Dig. Technical Pap. 45, 1100–1103 (2014).

    Article  Google Scholar 

  59. Jou, J. H., Kumar, S., Agrawal, A., Li, T. H. & Sahoo, S. Approaches for fabricating high efficiency organic light emitting diodes. J. Mater. Chem. C 3, 2974–3002 (2015).

    Article  Google Scholar 

  60. Jiang, K. et al. Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew. Chem. Int. Edn 54, 5360–5363 (2015).

    Article  Google Scholar 

  61. Shi, H. H. et al. Sustainable electronic textiles towards scalable commercialization. Nat. Mater. 22, 1294–1303 (2023).

    Article  Google Scholar 

  62. Zhang, H. & Rogers, J. A. Recent advances in flexible inorganic light emitting diodes: from materials design to integrated optoelectronic platforms. Adv. Opt. Mater. 7, 1800936 (2019).

    Article  Google Scholar 

  63. Liu, Y. et al. Robust memristive fiber for woven textile memristor. Adv. Funct. Mater. 32, 2201510 (2022).

    Article  Google Scholar 

  64. Yang, Z., Zhang, Y., Itoh, T. & Maeda, R. Flexible implantable microtemperature sensor fabricated on polymer capillary by programmable UV lithography with multilayer alignment for biomedical applications. J. Microelectromech. Syst. 23, 21–29 (2014).

    Article  Google Scholar 

  65. Kim, Y., Zhang, Y. & Hayase, M. Fiber-based temperature microsensor by using three-dimensional photomask. Jpn J. Appl. Phys. 56, 06GG13 (2017).

    Article  Google Scholar 

  66. Sun, H., Zhang, Y., Zhang, J., Sun, X. & Peng, H. Energy harvesting and storage in 1D devices. Nat. Rev. Mater. 2, 17023 (2017).

    Article  Google Scholar 

  67. Parsons, G. N. & Clark, R. D. Area-selective deposition: fundamentals, applications, and future outlook. Chem. Mater. 32, 4920–4953 (2020).

    Article  Google Scholar 

  68. Ma, J., Liu, Y., Gao, C. & Xu, Z. Sequence spinning axially encoded metafibers. Matter 6, 3940–3955 (2023).

    Article  Google Scholar 

  69. Wu, H. Y. et al. Seamlessly-integrated textile electric circuit enabled by self-connecting interwoven points. Chin. J. Polym. Sci. 40, 1323–1330 (2022).

    Article  Google Scholar 

  70. Park, S. et al. Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural activity. Nat. Commun. 12, 3435 (2021).

    Article  Google Scholar 

  71. Zuo, Y. et al. Flexible color-tunable electroluminescent devices by designing dielectric-distinguishing double-stacked emissive layers. Adv. Funct. Mater. 30, 2005200 (2020).

    Article  Google Scholar 

  72. Liao, M. et al. Industrial scale production of fibre batteries by a solution-extrusion method. Nat. Nanotechnol. 17, 372–377 (2022).

    Article  Google Scholar 

  73. Nguyen, V. H. et al. Advances in flexible metallic transparent electrodes. Small 18, 2106006 (2022).

    Article  Google Scholar 

  74. Spencer, J. A. et al. A review of band structure and material properties of transparent conducting and semiconducting oxides: Ga2O3, Al2O3, In2O3, ZnO, SnO2, CdO, NiO, CuO, and Sc2O3. Appl. Phys. Rev. 9, 011315 (2022).

    Article  Google Scholar 

  75. Won, D. et al. Digital selective transformation and patterning of highly conductive hydrogel bioelectronics by laser-induced phase separation. Sci. Adv. 8, eabo3209 (2022).

    Article  Google Scholar 

  76. Liang, J. et al. Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano 8, 1590–1600 (2014).

    Article  Google Scholar 

  77. Zhao, Y. et al. A self-healing electrically conductive organogel composite. Nat. Electron. 6, 206–215 (2023).

    Article  Google Scholar 

  78. Liu, A. P. & Ueda, K. Propagation losses of pump light in rectangular double-clad fibers. Opt. Eng. 35, 3130–3134 (1996).

    Article  Google Scholar 

  79. Dhawan, A., Seyam, A. M., Ghosh, T. K. & Muth, J. F. Woven fabric-based electrical circuits. Part I. Evaluating interconnect methods. Text. Res. J. 74, 913–919 (2004).

    Article  Google Scholar 

  80. Liu, P. et al. Polymer solar cell textiles with interlaced cathode and anode fibers. J. Mater. Chem. A 6, 19947–19953 (2018).

    Article  Google Scholar 

  81. Babaarslan, O. & Hacioğullari, S. Ö. Effect of fibre cross-sectional shape on the properties of POY continuous filaments yarns. Fibers Polym. 14, 146–151 (2013).

    Article  Google Scholar 

  82. Gao, Z. & Chen, L. A review of multi-scale numerical modeling of three-dimensional woven fabric. Compos. Struct. 263, 113685 (2021).

    Article  Google Scholar 

  83. Jordan, J. V., Kemper, M., Renkens, W. & Gloy, Y. Magnetic weft insertion for weaving machines. Text. Res. J. 88, 1677–1685 (2018).

    Article  Google Scholar 

  84. limeneh, D. Y., Ayele, M., Tesfaye, T., Liyew, E. Z. & Tesema, A. F. Effect of weave structure on comfort property of fabric. J. Nat. Fibers 19, 4148–4155 (2022).

    Article  Google Scholar 

  85. Begum, M. S. & Milašius, R. Factors of weave estimation and the effect of weave structure on fabric properties: a review. Fibers 10, 74 (2022).

    Article  Google Scholar 

  86. Jinno, H. et al. Stretchable and waterproof elastomer-coated organic photovoltaics for washable electronic textile applications. Nat. Energy 2, 780–785 (2017).

    Article  Google Scholar 

  87. He, J. et al. Scalable production of high-performing woven lithium-ion fibre batteries. Nature 597, 57–63 (2021).

    Article  Google Scholar 

  88. Henry, P. Textile physics. Nature 200, 1138–1139 (1963).

    Article  Google Scholar 

  89. Bell, J. Moisture in textiles. Nature 188, 823–824 (1960).

    Article  Google Scholar 

  90. Choi, S. et al. Highly flexible and efficient fabric-based organic light-emitting devices for clothing-shaped wearable displays. Sci. Rep. 7, 6424 (2017).

    Article  Google Scholar 

  91. Song, S. et al. Textile-fibre-embedded multiluminescent devices: a new approach to soft display systems. Mater. Today 32, 46–58 (2020).

    Article  Google Scholar 

  92. Liu, X. et al. High-efficiency multi-string LED driver based on constant current bus with time-multiplexing control. Electron. Lett. 52, 746–748 (2016).

    Article  Google Scholar 

  93. Kwon, S. et al. Weavable and highly efficient organic light-emitting fibres for wearable electronics: a scalable, low-temperature process. Nano Lett. 18, 347–356 (2018).

    Article  Google Scholar 

  94. Song, Y. J. et al. Fibretronic organic light-emitting diodes toward fully addressable, environmentally robust, wearable displays. ACS Nano 14, 1133–1140 (2020).

    Article  Google Scholar 

  95. Gao, H. et al. Advances in pixel driving technology for micro-LED displays. Nanoscale 15, 17232–17248 (2023).

    Article  Google Scholar 

  96. Zeng, W. et al. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv. Mater. 26, 5310–5336 (2014).

    Article  Google Scholar 

  97. Hamedi, M., Forchheimer, R. & Inganas, O. Towards woven logic from organic electronic fibres. Nat. Mater. 6, 357–362 (2007).

    Article  Google Scholar 

  98. Liu, Y. et al. Highly reliable textile-type memristor by designing aligned nanochannels. Adv. Mater. 35, 2301321 (2023).

    Article  Google Scholar 

  99. Zhang, Z., Wang, Y., Jia, S. & Fan, C. Body-conformable light-emitting materials and devices. Nat. Photon. 18, 114–126 (2023).

    Article  Google Scholar 

  100. Lee, S. et al. Truly form-factor–free industrially scalable system integration for electronic textile architectures with multifunctional fiber devices. Sci. Adv. 9, eadf4049 (2023).

    Article  Google Scholar 

  101. Xu, X., Xie, S., Zhang, Y. & Peng, H. The rise of fiber electronics. Angew. Chem. Int. Edn 58, 13643–13653 (2019).

    Article  Google Scholar 

  102. Kim, H., Pyun, K. R., Lee, M.-T., Lee, H. B. & Ko, S. H. Recent advances in sustainable wearable energy devices with nanoscale materials and macroscale structures. Adv. Funct. Mater. 32, 2110535 (2022).

    Article  Google Scholar 

  103. Chen, G. et al. Electronic textiles for wearable point-of-care systems. Chem. Rev. 122, 3259–3291 (2022).

    Article  Google Scholar 

  104. Yoon, J. et al. Robust and stretchable indium gallium zinc oxide-based electronic textiles formed by cilia-assisted transfer printing. Nat. Commun. 7, 11477 (2016).

    Article  Google Scholar 

  105. Lin, R. et al. Digitally-embroidered liquid metal electronic textiles for wearable wireless systems. Nat. Commun. 13, 2190 (2022).

    Article  Google Scholar 

  106. Zhou, F. & Chai, Y. Near-sensor and in-sensor computing. Nat. Electron. 3, 664–671 (2020).

    Article  Google Scholar 

  107. Niu, S. et al. A wireless body area sensor network based on stretchable passive tags. Nat. Electron. 2, 361–368 (2019).

    Article  Google Scholar 

  108. Kim, T. et al. Efficient and stable blue quantum dot light-emitting diode. Nature 586, 385–389 (2020).

    Article  Google Scholar 

  109. Won, Y. H. et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 575, 634–638 (2019).

    Article  Google Scholar 

  110. Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014).

    Article  Google Scholar 

  111. Comiskey, B. et al. An electrophoretic ink for all-printed reflective electronic displays. Nature 394, 253–255 (1998).

    Article  Google Scholar 

  112. Chen, Y. et al. Flexible active-matrix electronic ink display. Nature 423, 136 (2003).

    Article  Google Scholar 

  113. Palffy-Muhoray, P. Liquid crystals new designs in cholesteric colour. Nature 391, 745–746 (1998).

    Article  Google Scholar 

  114. Hwang, S. et al. Integration of multiple electronic components on a microfibre towards an emerging electronic textile platform. Nat. Commun. 13, 3173 (2022).

    Article  Google Scholar 

  115. Happey, F. Spinning and drawing. Nature 219, 771 (1968).

    Article  Google Scholar 

  116. Yan, W. et al. Single fibre enables acoustic fabrics via nanometre-scale vibrations. Nature 603, 616–623 (2022).

    Article  Google Scholar 

  117. Yan, H. et al. A high-mobility electron-transporting polymer for printed transistors. Nature 457, 679–686 (2009).

    Article  Google Scholar 

  118. Chen, C. et al. Perovskite solar cells based on screen-printed thin films. Nature 612, 266–271 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (grants 2022YFA1203001 and 2022YFA1203002), the Science and Technology Commission of Shanghai Municipality (grant 21511104900) and the National Natural Science Foundation of China (grants T2321003, 22335003, T2222005 and 22175042).

Author information

Authors and Affiliations

Authors

Contributions

Z.W. and Y.L. contributed equally to this work. Z.W. researched data for the article. All authors substantially contributed to discussion of content. Z.W., Y.L., Z.Z. and P.C. wrote the manuscript. Z.W., P.C. and H.P. reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Peining Chen or Huisheng Peng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Electrical Engineering thanks Caroline Murawski, who co-reviewed with Giuseppe Ciccone; John S. Y. Ho; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Liu, Y., Zhou, Z. et al. Towards integrated textile display systems. Nat Rev Electr Eng 1, 466–477 (2024). https://doi.org/10.1038/s44287-024-00063-4

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44287-024-00063-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing