Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Electrochemical impedance spectroscopy in vivo for neurotechnology and bioelectronics

Abstract

Electrochemical impedance spectroscopy (EIS) is a well‐established electrochemical technique that provides invaluable information regarding the properties and functionality of electrodes within bioelectronic devices. EIS is the primary technique that reports on electrode properties in vivo using the implanted device itself. Nevertheless, there are many inconsistencies in the way this technique is implemented and reported on. Without a clear understanding of the experiment and experimental set‐up, it is challenging to draw meaningful conclusions and for results to be extrapolated across studies to benefit and advance the field. This Review discusses in vivo EIS experiments, specifically focusing on challenges in the experimental set‐up, the equipment used, data presentation and circuit modelling for neural interfaces. We propose guidelines for methodical reporting and a consistent, standardized use of terminology, paramount in understanding the performance of electrodes functioning at neural interfaces and promoting the transferability of findings across studies.

Key points

  • Electrochemical impedance spectroscopy is a valuable tool for evaluating the stability of electrodes at a neural interface.

  • Consideration of the equipment limitations and electrochemical set-up (electrode configuration and locations) is critical for meaningful interpretation of impedance measurements.

  • Caution is advised when drawing conclusions from a single frequency measurement. It is recommended that the linearity assumption is supported by an accompanying full-spectrum measurement or a Lissajous plot.

  • Models used in the electrical circuit modelling of impedance spectra should be validated and all elements should represent physical properties at the electrode interface.

  • The development of an on-the-probe reference electrode would enable more robust in vivo measurements and the ability to separate electrode surface changes from tissue impedance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The relationship between the Nyquist and Bode representations of impedance spectra.
Fig. 2: Circuit modelling of impedance spectroscopy.
Fig. 3: Overview of two-electrode and three-electrode set-ups for recording impedance spectra in vitro and in vivo.
Fig. 4: Considerations in the equipment used to collect electrochemical impedance spectroscopy data, presented as Lissajous plots and accuracy contour plots.
Fig. 5: Interpretation of impedance data.
Fig. 6: Impedance spectra as Nyquist plots representing changes in tissue impedance.

Similar content being viewed by others

References

  1. Hatsopoulos, N. G. & Donoghue, J. P. The science of neural interface systems. Annu. Rev. Neurosci. 32, 249–266 (2009).

    Article  MATH  Google Scholar 

  2. Macdonald, D. D. Reflections on the history of electrochemical impedance spectroscopy. Electrochim. Acta 51, 1376–1388 (2006).

    Article  MATH  Google Scholar 

  3. Orazem, M. E. & Tribollet, B. A tutorial on electrochemical impedance spectroscopy. ChemTexts 6, 12 (2020).

    Article  MATH  Google Scholar 

  4. Macdonald, J. R. Impedance spectroscopy. Ann. Biomed. Eng. 20, 289–305 (1992).

    Article  MATH  Google Scholar 

  5. Kemp, N. T. A tutorial on electrochemical impedance spectroscopy and nanogap electrodes for biosensing applications. IEEE Sens. J. 21, 22232–22245 (2021).

    Article  Google Scholar 

  6. Gabrielli, C. Once upon a time there was EIS. Electrochim. Acta 331, 135324 (2020).

    Article  MATH  Google Scholar 

  7. Amini, M., Hisdal, J. & Kalvoy, H. Applications of bioimpedance measurement techniques in tissue engineering. J. Electr. Bioimpedance 9, 142–158 (2018).

    Article  MATH  Google Scholar 

  8. Macdonald, J. R. & Johnson, W. B. in Impedance Spectroscopy 1–20 (Wiley, 2018).

  9. Wang, S. et al. Electrochemical impedance spectroscopy. Nat. Rev. Methods Primers 1, 41 (2021). This review discusses the impedance spectroscopy experiment, providing a strong foundation for any application.

    Article  Google Scholar 

  10. Lazanas, A. C. & Prodromidis, M. I. Electrochemical impedance spectroscopy—a tutorial. ACS Meas. Sci. Au 3, 162–193 (2023).

    Article  Google Scholar 

  11. Boukamp, B. A. A linear Kronig–Kramers transform test for immittance data validation. J. Electrochem. Soc. 142, 1885 (1995).

    Article  MATH  Google Scholar 

  12. Orazem, M. E., Pébère, N. & Tribollet, B. Enhanced graphical representation of electrochemical impedance data. J. Electrochem. Soc. 153, B129 (2006).

    Article  MATH  Google Scholar 

  13. Magar, H. S., Hassan, R. Y. A. & Mulchandani, A. Electrochemical impedance spectroscopy (EIS): principles, construction, and biosensing applications. Sensors 21, 6578 (2021).

    Article  MATH  Google Scholar 

  14. Cogan, S. F. Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10, 275–309 (2008).

    Article  MATH  Google Scholar 

  15. Cogan, S. F., Troyk, P. R., Ehrlich, J., Gasbarro, C. M. & Plante, T. D. The influence of electrolyte composition on the in vitro charge-injection limits of activated iridium oxide (AIROF) stimulation electrodes. J. Neural Eng. 4, 79 (2007).

    Article  Google Scholar 

  16. Bobacka, J., Lewenstam, A. & Ivaska, A. Electrochemical impedance spectroscopy of oxidized poly(3,4-ethylenedioxythiophene) film electrodes in aqueous solutions. J. Electroanalytical Chem. 489, 17–27 (2000).

    Article  Google Scholar 

  17. Lempka, S. F., Miocinovic, S., Johnson, M. D., Vitek, J. L. & McIntyre, C. C. In vivo impedance spectroscopy of deep brain stimulation electrodes. J. Neural Eng. 6, 046001 (2009).

    Article  Google Scholar 

  18. Weiland, J. D. & Anderson, D. J. Chronic neural stimulation with thin-film, iridium oxide electrodes. IEEE Trans. Biomed. Eng. 47, 911–918 (2000).

    Article  Google Scholar 

  19. Mercanzini, A., Colin, P., Bensadoun, J. C., Bertsch, A. & Renaud, P. In vivo electrical impedance spectroscopy of tissue reaction to microelectrode arrays. IEEE Trans. Biomed. Eng. 56, 1909–1918 (2009).

    Article  Google Scholar 

  20. Shinwari, M. W. et al. Microfabricated reference electrodes and their biosensing applications. Sensors 10, 1679–1715 (2010).

    Article  MATH  Google Scholar 

  21. Krukiewicz, K. Electrochemical impedance spectroscopy as a versatile tool for the characterization of neural tissue: a mini review. Electrochem. Commun. 116, 106742 (2020).

    Article  MATH  Google Scholar 

  22. Williams, J. C., Hippensteel, J. A., Dilgen, J., Shain, W. & Kipke, D. R. Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants. J. Neural Eng. 4, 410 (2007). This study analyses full spectrum impedance recorded in vivo and provides evidence of tissue impedance represented by a semicircular arc at high frequencies.

    Article  Google Scholar 

  23. Otte, E., Vlachos, A. & Asplund, M. Engineering strategies towards overcoming bleeding and glial scar formation around neural probes. Cell Tissue Res. 387, 461–477 (2022). This review discusses different neural probes and the biological challenges of implantation and maintenance of the devices on chronic timescales.

    Article  Google Scholar 

  24. Joshi-Imre, A. et al. Chronic recording and electrochemical performance of amorphous silicon carbide-coated Utah electrode arrays implanted in rat motor cortex. J. Neural Eng. 16, 046006 (2019).

    Article  MATH  Google Scholar 

  25. Straka, M. M., Shafer, B., Vasudevan, S., Welle, C. & Rieth, L. Characterizing longitudinal changes in the impedance spectra of in-vivo peripheral nerve electrodes. Micromachines 9, 587 (2018).

    Article  Google Scholar 

  26. Cody, P. A., Eles, J. R., Lagenaur, C. F., Kozai, T. D. Y. & Cui, X. T. Unique electrophysiological and impedance signatures between encapsulation types: an analysis of biological Utah array failure and benefit of a biomimetic coating in a rat model. Biomaterials 161, 117–128 (2018). This manuscript evaluates full spectrum impedance measurements alongside histology, discussing the effect of different lead wire encapsulation types.

    Article  Google Scholar 

  27. Ward, M. P., Rajdev, P., Ellison, C. & Irazoqui, P. P. Toward a comparison of microelectrodes for acute and chronic recordings. Brain Res. 1282, 183–200 (2009).

    Article  Google Scholar 

  28. Malaga, K. A. et al. Data-driven model comparing the effects of glial scarring and interface interactions on chronic neural recordings in non-human primates. J. Neural Eng. 13, 016010 (2016).

    Article  MATH  Google Scholar 

  29. Barrese, J. C. et al. Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates. J. Neural Eng. 10, 066014 (2013).

    Article  MATH  Google Scholar 

  30. Ludwig, K. A., Uram, J. D., Yang, J., Martin, D. C. & Kipke, D. R. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film. J. Neural Eng. 3, 59–70 (2006).

    Article  Google Scholar 

  31. Vetter, R. J., Williams, J. C., Hetke, J. F., Nunamaker, E. A. & Kipke, D. R. Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex. IEEE Trans. Biomed. Eng. 51, 896–904 (2004).

    Article  Google Scholar 

  32. Bodart, C. et al. Electropolymerized poly(3,4-ethylenedioxythiophene) (PEDOT) coatings for implantable deep-brain-stimulating microelectrodes. ACS Appl. Mater. Interfaces 11, 17226–17233 (2019).

    Article  MATH  Google Scholar 

  33. Boehler, C. et al. Actively controlled release of dexamethasone from neural microelectrodes in a chronic in vivo study. Biomaterials 129, 176–187 (2017).

    Article  MATH  Google Scholar 

  34. Vomero, M. et al. On the longevity of flexible neural interfaces: establishing biostability of polyimide-based intracortical implants. Biomaterials 281, 121372 (2022).

    Article  Google Scholar 

  35. Hughes, C. L. et al. Neural stimulation and recording performance in human sensorimotor cortex over 1500 days. J. Neural Eng. 18, 045012 (2021).

    Article  MATH  Google Scholar 

  36. Wang, L. et al. Self-spreadable octopus-like electrode arrays for long-term neural recordings. Acta Phys. Sin. 36, 1909035 (2020).

    Google Scholar 

  37. Cassar, I. R. et al. Electrodeposited platinum–iridium coating improves in vivo recording performance of chronically implanted microelectrode arrays. Biomaterials 205, 120–132 (2019).

    Article  MATH  Google Scholar 

  38. Sankar, V. et al. Electrode impedance analysis of chronic tungsten microwire neural implants: understanding abiotic vs. biotic contributions. Front. Neuroeng. 7, 13 (2014).

    Article  MATH  Google Scholar 

  39. Prasad, A. et al. Abiotic–biotic characterization of Pt/Ir microelectrode arrays in chronic implants. Front. Neuroeng. 7, 2 (2014).

    Article  MATH  Google Scholar 

  40. Wang, C. et al. Characteristics of electrode impedance and stimulation efficacy of a chronic cortical implant using novel annulus electrodes in rat motor cortex. J. Neural Eng. 10, 046010 (2013).

    Article  Google Scholar 

  41. McConnell, G. C., Butera, R. J. & Bellamkonda, R. V. Bioimpedance modeling to monitor astrocytic response to chronically implanted electrodes. J. Neural Eng. 6, 055005 (2009).

    Article  Google Scholar 

  42. Prasad, A. & Sanchez, J. C. Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing. J. Neural Eng. 9, 026028 (2012).

    Article  Google Scholar 

  43. Torres-Martinez, N. et al. Reliability of parylene-based multi-electrode arrays chronically implanted in adult rat brains, and evidence of electrical stimulation on contact impedance. J. Neural Eng. 16, 066047 (2019).

    Article  Google Scholar 

  44. Purcell, E. K., Thompson, D. E., Ludwig, K. A. & Kipke, D. R. Flavopiridol reduces the impedance of neural prostheses in vivo without affecting recording quality. J. Neurosci. Methods 183, 149–157 (2009).

    Article  Google Scholar 

  45. Kane, S. R. et al. Electrical performance of penetrating microelectrodes chronically implanted in cat cortex. IEEE Trans. Biomed. Eng. 60, 2153–2160 (2013).

    Article  MATH  Google Scholar 

  46. Cvancara, P. et al. Stability of flexible thin-film metallization stimulation electrodes: analysis of explants after first-in-human study and improvement of in vivo performance. J. Neural Eng. 17, 046006 (2020).

    Article  MATH  Google Scholar 

  47. Seaton, B. T. & Heien, M. L. Biocompatible reference electrodes to enhance chronic electrochemical signal fidelity in vivo. Anal. Bioanal. Chem. 413, 6689–6701 (2021). This review highlights the challenges of chronic in vivo electrochemical experiments and provides options and perspectives on stable REs for improved signals.

    Article  MATH  Google Scholar 

  48. Moussy, F. & Harrison, D. J. Prevention of the rapid degradation of subcutaneously implanted Ag/AgCl reference electrodes using polymer coatings. Anal. Chem. 66, 674–679 (1994).

    Article  MATH  Google Scholar 

  49. Hashemi, P. et al. Chronically implanted, nafion-coated Ag/AgCl reference electrodes for neurochemical applications. ACS Chem. Neurosci. 2, 658–666 (2011).

    Article  Google Scholar 

  50. Jackson, W. F. & Duling, B. R. Toxic effects of silver–silver chloride electrodes on vascular smooth muscle. Circulation Res. 53, 105–108 (1983).

    Article  MATH  Google Scholar 

  51. Robbins, E. M., Castagnola, E. & Cui, X. T. Accurate and stable chronic in vivo voltammetry enabled by a replaceable subcutaneous reference electrode. iScience 25, 104845 (2022).

    Article  Google Scholar 

  52. Zhang, F. et al. Reference and counter electrode positions affect electrochemical characterization of bioanodes in different bioelectrochemical systems. Biotechnol. Bioeng. 111, 1931–1939 (2014).

    Article  MATH  Google Scholar 

  53. Yang, H. et al. An iridium oxide reference electrode for use in microfabricated biosensors and biochips. Lab Chip 4, 42–46 (2004).

    Article  MATH  Google Scholar 

  54. Fan, B. et al. Flexible, diamond-based microelectrodes fabricated using the diamond growth side for neural sensing. Microsyst. Nanoeng. 6, 42 (2020).

    Article  MATH  Google Scholar 

  55. Bard, A. J., Faulkner, L. R. & White, H. S. Electrochemical Methods: Fundamentals and Applications 3rd edn (Wiley, 2022).

  56. Orazem, M. E. & Tribollet, B. in Electrochemical Impedance Spectroscopy (eds Orazem, M. E. & Tribollet, B.) 165–189 (Wiley, 2017).

  57. Orazem, M. E. & Tribollet, B. in Electrochemical Impedance Spectroscopy (eds Orazem, M. E. & Tribollet, B.) 139–164 (Wiley, 2017).

  58. Mierzejewski, M., Steins, H., Kshirsagar, P. & Jones, P. D. The noise and impedance of microelectrodes. J. Neural Eng. 17, 052001 (2020).

    Article  MATH  Google Scholar 

  59. Boehler, C., Carli, S., Fadiga, L., Stieglitz, T. & Asplund, M. Tutorial: guidelines for standardized performance tests for electrodes intended for neural interfaces and bioelectronics. Nat. Protoc. 15, 3557–3578 (2020). This tutorial-style review provides guidelines for a range of standardized electrochemical tests, including EIS, for electrodes to be used at neural interfaces.

    Article  Google Scholar 

  60. Goh, J., Eluagu, C., Babauta, J. & Orazem, M. Comparison of approaches for assessing linearity of impedance measurements. J. Electrochem. Soc. 171, 036508 (2024).

    Article  Google Scholar 

  61. Liu, X. et al. Stable, long-term single-neuronal recording from the rat spinal cord with flexible carbon nanotube fiber electrodes. J. Neural Eng. 19, 056024 (2022).

    Article  Google Scholar 

  62. Jiang, J., Willett, F. R. & Taylor, D. M. Relationship between microelectrode array impedance and chronic recording quality of single units and local field potentials. In 36th Annual International Conf. IEEE Engineering in Medicine and Biology Society 3045–3048 (IEEE, 2014).

  63. Nolta, N. F., Christensen, M. B., Crane, P. D., Skousen, J. L. & Tresco, P. A. BBB leakage, astrogliosis, and tissue loss correlate with silicon microelectrode array recording performance. Biomaterials 53, 753–762 (2015).

    Article  Google Scholar 

  64. Wellman, S. M. et al. A materials roadmap to functional neural interface design. Adv. Funct. Mater. 28, 1701269 (2018).

    Article  MATH  Google Scholar 

  65. Jorfi, M., Skousen, J. L., Weder, C. & Capadona, J. R. Progress towards biocompatible intracortical microelectrodes for neural interfacing applications. J. Neural Eng. 12, 011001 (2015).

    Article  Google Scholar 

  66. Takmakov, P. et al. Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species. J. Neural Eng. 12, 026003 (2015).

    Article  MATH  Google Scholar 

  67. Lewis, C. M. et al. Recording quality is systematically related to electrode impedance. Adv. Healthc. Mat. 13, 2303401 (2024).

    Article  MATH  Google Scholar 

  68. Ulgut, B. Methods-employing multisine electrochemical impedance spectroscopy for batteries in galvanostatic mode. J. Electrochem. Soc. 169, 110510 (2022).

    Article  MATH  Google Scholar 

  69. Fortin, P., Gerhardt, M. R., Ulleberg, Ø., Zenith, F. & Holm, T. Multi-sine EIS for early detection of PEMFC failure modes. Front. Energy Res. 10, 855985 (2022).

    Article  Google Scholar 

  70. You, C., Zabara, M. A., Orazem, M. E. & Ulgut, B. Application of the Kramers–Kronig relations to multi-sine electrochemical impedance measurements. J. Electrochem. Soc. 167, 020515 (2020).

    Article  Google Scholar 

  71. Kozai, T. D., Vazquez, A. L., Weaver, C. L., Kim, S. G. & Cui, X. T. In vivo two-photon microscopy reveals immediate microglial reaction to implantation of microelectrode through extension of processes. J. Neural Eng. 9, 066001 (2012).

    Article  Google Scholar 

  72. Tresco, P. A. & Winslow, B. D. The challenge of integrating devices into the central nervous system. Crit. Rev. Biomed. Eng. 39, 29–44 (2011).

    Article  MATH  Google Scholar 

  73. Polikov, V. S., Tresco, P. A. & Reichert, W. M. Response of brain tissue to chronically implanted neural electrodes. J. Neurosci. Methods 148, 1–18 (2005).

    Article  MATH  Google Scholar 

  74. Carnicer-Lombarte, A., Chen, S.-T., Malliaras, G. G. & Barone, D. G. Foreign body reaction to implanted biomaterials and its impact in nerve neuroprosthetics. Front. Bioeng. Biotechnol. 9, 622524 (2021).

    Article  Google Scholar 

  75. Bixler, G. & Bhushan, B. Review article: Biofouling: lessons from nature. Philos. Trans. A Math. Phys. Eng. Sci. 370, 2381–2417 (2012).

    Google Scholar 

  76. Biran, R., Martin, D. C. & Tresco, P. A. Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Exp. Neurol. 195, 115–126 (2005).

    Article  Google Scholar 

  77. McConnell, G. C. et al. Implanted neural electrodes cause chronic, local inflammation that is correlated with local neurodegeneration. J. Neural Eng. 6, 056003 (2009).

    Article  Google Scholar 

  78. Usoro, J. O., Sturgill, B. S., Musselman, K. C., Capadona, J. R. & Pancrazio, J. J. Intracortical microelectrode array unit yield under chronic conditions: a comparative evaluation. Micromachines 12, 972 (2021).

    Article  Google Scholar 

  79. Meijs, S. et al. Influence of fibrous encapsulation on electro-chemical properties of TiN electrodes. Med. Eng. Phys. 38, 468–476 (2016).

    Article  MATH  Google Scholar 

  80. Woeppel, K. et al. Explant analysis of Utah electrode arrays implanted in human cortex for brain–computer interfaces. Fronti. Bioeng. Biotechnolol. 9, 759711 (2021).

    Article  MATH  Google Scholar 

  81. Evers, J. & Lowery, M. The active electrode in the living brain: the response of the brain parenchyma to chronically implanted deep brain stimulation electrodes. Operative Neurosurg. 20, 131–140 (2021).

    Article  MATH  Google Scholar 

  82. Kilias, A. et al. Intracortical probe arrays with silicon backbone and microelectrodes on thin polyimide wings enable long-term stable recordings in vivo. J. Neural Eng. 18, 066026 (2021).

    Article  Google Scholar 

  83. Steins, H. et al. A flexible protruding microelectrode array for neural interfacing in bioelectronic medicine. Microsyst. Nanoeng. 8, 131 (2022).

    Article  MATH  Google Scholar 

  84. Zhou, T. et al. Syringe-injectable mesh electronics integrate seamlessly with minimal chronic immune response in the brain. Proc. Natl Acad. Sci. USA 114, 5894–5899 (2017).

    Article  MATH  Google Scholar 

  85. Ferguson, M., Sharma, D., Ross, D. & Zhao, F. A critical review of microelectrode arrays and strategies for improving neural interfaces. Adv. Healthc. Mater. 8, e1900558 (2019).

    Article  MATH  Google Scholar 

  86. O’Sullivan, K. P., Orazem, M. E., Otto, K. J., Butson, C. R. & Baker, J. L. Electrical rejuvenation of chronically implanted macroelectrodes in nonhuman primates. J. Neural Eng. 21, 036056 (2024).

    Article  Google Scholar 

  87. Otto, K. J., Johnson, M. D. & Kipke, D. R. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes. IEEE Trans. Biomed. Eng. 53, 333–340 (2006).

    Article  Google Scholar 

  88. Johnson, M. D., Otto, K. J. & Kipke, D. R. Repeated voltage biasing improves unit recordings by reducing resistive tissue impedances. IEEE Trans. Neural Syst. Rehabil. Eng. 13, 160–165 (2005).

    Article  Google Scholar 

  89. Evers, J. et al. Stimulation-induced changes at the electrode–tissue interface and their influence on deep brain stimulation. J. Neural Eng. 19, 046004 (2022).

    Article  MATH  Google Scholar 

  90. Hemm, S. et al. Evolution of brain impedance in dystonic patients treated by GPi electrical stimulation. Neuromodulation 7, 67–75 (2004).

    Article  MATH  Google Scholar 

  91. Minteer, S. et al. New guidelines for presenting electrochemical data in all ACS journals. J. Org. Chem. 88, 4036–4037 (2023).

    Article  MATH  Google Scholar 

  92. Vomero, M. et al. Conformable polyimide-based μECoGs: bringing the electrodes closer to the signal source. Biomaterials 255, 120178 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the CatWalk Spinal Cord Injury Trust and the Health Research Council of New Zealand (project grant and HRC/Catwalk Partnership 19/895). This work was also supported by the Assistant Secretary of Defense for Health Affairs endorsed by the Department of Defense (US $534,258) through the Spinal Cord Injury Research Program (award HT9425-23-1-0492). Opinions, interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the Department of Defense. B. Hazelgrove was supported by a University of Auckland Doctoral Scholarship. B.R. was supported by the Neurological Foundation First Fellowship (1952 FF). M.A. and L.M were supported by the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation programme (grant agreement 101113487 ‘ProBER‘), the European Innovation Council H2020 programme (grant agreements 899287 ‘NeuraViper’ and 101099366 ‘BioFINE’), and the Chalmers Gender Initiative for Excellence (GENIE).

Author information

Authors and Affiliations

Authors

Contributions

B. Hazelgrove and L.M. researched data for the article. All authors substantially contributed to the discussion of the content, wrote the manuscript, and reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Brittany Hazelgrove, Maria Asplund or Darren Svirskis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Electrical Engineering thanks Alexandra Joshi-Imre, who co-reviewed with Yupeng Wu, Katarzyna Krukiewicz and Mark E. Orazem for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Blackrock Neurotech: https://blackrockneurotech.com/

Intan Technologies: https://intantech.com/

Metrohm: https://www.metrohm.com/en_au/products/electrochemistry.html

nanoZ Impedance Tester: https://plexon.com/products/nanoz-impedance-tester/

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazelgrove, B., Matter, L., Raos, B. et al. Electrochemical impedance spectroscopy in vivo for neurotechnology and bioelectronics. Nat Rev Electr Eng 2, 110–124 (2025). https://doi.org/10.1038/s44287-024-00126-6

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44287-024-00126-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing