Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Ultra-low-power cryogenic complementary metal oxide semiconductor technology

Abstract

Universal cryogenic computing, encompassing von Neumann, neuromorphic and quantum computing, paves the way for future big-data processing with high energy efficiency. Complementary metal oxide semiconductor (CMOS) technology operating at cryogenic temperatures with ultra-low power consumption is a key component of this advancement. However, classical CMOS technology, designed for room temperature applications, suffers from band-tail effects at cryogenic levels, leading to an increased subthreshold swing and decreased mobility values. In addition, threshold voltages are enlarged. Thus, classical CMOS technology fails to meet the low power requirements when cooled close to zero Kelvin. In this Perspective, we show that steep slope cryogenic devices can be realized by screening the band tails with the use of high-k dielectrics and wrap-gate architectures and/or reducing them through the optimization of the surfaces and interfaces within the transistors. Cryogenic device functionality also strongly benefits from appropriate source/drain engineering employing dopant segregation from silicides. Furthermore, the threshold voltage control can be realized with back-gating, work-function engineering and dipole formation. As a major implication, future research and development towards cryogenic CMOS technology requires a combination of these approaches to enable universal cryogenic computing at the necessary ultra-low power levels.

Key points

  • Computing technologies — including classical von Neumann, advanced quantum and neuromorphic computing — at cryogenic temperatures offer power-saving solutions for big-data centres and even new computing paradigms. A cryogenic complementary metal oxide semiconductor (cCMOS) with ultra-low power consumption is a key component for cryogenic computing.

  • Conventional CMOS technology designed for room temperature applications does not meet the ultra-low power requirements because of critical issues such as dopant freeze-out, band-tailing and Fermi-energy shifting at cryogenic temperatures.

  • Band-tailing is a major challenge for reducing power consumption because it increases the subthreshold swing and noise while decreasing the carrier mobility. Potential solutions to mitigate band-tailing include interface engineering, source/drain engineering and improved screening using high-k dielectrics and gate-all-around nanowire device architectures.

  • Power reduction is also limited by the increase in threshold voltages at cryogenic temperatures. New materials with small bandgaps, metals with appropriate work functions and dielectrics with dipoles are proposed to control the threshold voltage.

  • A net power reduction factor of 0.27 at 77 K and 0.22 at 4 K compared with room temperature is expected at the system level after improving the subthreshold swing and threshold voltage, making it suitable for quantum computing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: State-of-the-art and issues for cryogenic complementary metal oxide semiconductors.
Fig. 2: Perspectives for cryogenic complementary metal oxide semiconductors.
Fig. 3: Development outlook towards universal cryogenic computing.

Similar content being viewed by others

References

  1. Jones, N. How to stop data centres from gobbling up the world’s electricity. Nature 561, 163–166 (2018).

    Article  MATH  Google Scholar 

  2. Knoch, J. et al. Toward low‐power cryogenic metal‐oxide semiconductor field‐effect transistors. Phys. Status Solidi A 220, 2300069 (2023). This review discusses the band-tail effects and the reduction of band tails by improved screening.

    Article  Google Scholar 

  3. Moroz, V., Svizhenko, A., Choi, M., Asenov, P. & Lee, J. Exploring power savings of gate-all-around cryogenic technology. In Proc. 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) https://doi.org/10.23919/VLSITechnologyandCir57934.2023.10185420 (IEEE, 2023). This paper discusses the power saving of central processing units at cryogenic temperatures.

  4. Chiang, H. L. et al. Cold CMOS as a power-performance-reliability booster for advanced FinFETs. In Proc. 2020 IEEE Symposium on VLSI Technology https://doi.org/10.1109/VLSITechnology18217.2020.9265065 (IEEE, 2020). This paper reports the power saving for FinFETs down to 77K.

  5. Vandersypen, L. M. K. et al. Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent. Npj Quantum Inf. 3, 34 (2017). This paper discusses the scalability of device architectures for quantum computation with spin qubits, control signals and co-integrations of classical von Neumann circuits.

    Article  Google Scholar 

  6. Zwerver, A. M. J. et al. Qubits made by advanced semiconductor manufacturing. Nat. Electron. 5, 184–190 (2022).

    Article  Google Scholar 

  7. Burkard, G., Ladd, T. D., Pan, A., Nichol, J. M. & Petta, J. R. Semiconductor spin qubits. Rev. Mod. Phys. 95, 025003 (2023).

    Article  Google Scholar 

  8. Neyens, S. et al. Probing single electrons across 300-mm spin qubit wafers. Nature 629, 80–85 (2024).

    Article  Google Scholar 

  9. Philips, G. et al. Universal control of a six-qubit quantum processor in silicon. Nature 609, 919–924 (2022).

    Article  MATH  Google Scholar 

  10. Xue, X. et al. CMOS-based cryogenic control of silicon quantum circuits. Nature 593, 205–210 (2021).

    Article  MATH  Google Scholar 

  11. Pauka, S. J. et al. A cryogenic CMOS chip for generating control signals for multiple qubits. Nat. Electron. 4, 64–70 (2021).

    Article  Google Scholar 

  12. Moon, H. et al. Machine learning enables completely automatic tuning of a quantum device faster than human experts. Nat. Commun. 11, 4161 (2020).

    Article  MATH  Google Scholar 

  13. Struck, T. et al. Robust and fast post-processing of single-shot spin qubit detection events with a neural network. Sci. Rep. 11, 16203 (2021).

    Article  MATH  Google Scholar 

  14. Gebhart, V. et al. Learning quantum systems. Nat. Rev. Phys. 5, 141–156 (2023).

    MATH  Google Scholar 

  15. Battistel, F. et al. Real-time decoding for fault-tolerant quantum computing: progress, challenges and outlook. Nano Futur. 7, 032003 (2023).

    Article  MATH  Google Scholar 

  16. Hafez, I. M., Ghibaudo, G. & Balestra, F. Assessment of interface state density in silicon metal-oxide-semiconductor transistors at room, liquid-nitrogen, and liquid-helium temperatures. J. Appl. Phys. 67, 1950–1952 (1990).

    Article  Google Scholar 

  17. Gutierrez-D, E. A., Deen, M. J. & Claeys, C. L. Low Temperature Electronics: Physics, Devices, Circuits, and Applications (Elsevier, 2001).

  18. Balestra, F. & Ghibaudo, G. Physics and performance of nanoscale semiconductor devices at cryogenic temperatures. Semicond. Sci. Technol. 32, 023002 (2017).

    Article  MATH  Google Scholar 

  19. Ando, T., Fowler, A. B. & Stern, F. Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982).

    Article  MATH  Google Scholar 

  20. Beckers, A., Jazaeri, F. & Enz, C. Theoretical limit of low temperature subthreshold swing in field-effect transistors. IEEE Electron. Device Lett. 41, 276–279 (2020). This paper describes theoretically the saturation of the SS at cryogenic temperatures due to band-tailing.

    Article  MATH  Google Scholar 

  21. Beckers, A., Jazaeri, F. & Enz, C. Inflection phenomenon in cryogenic MOSFET behavior. IEEE Trans. Electron. Devices 67, 1357–1360 (2020). This paper identifies and explains the physics behind the inflection phenomenon.

    Article  MATH  Google Scholar 

  22. Parihar, S. S. et al. Cryogenic characterization and model extraction of 5nm technology node FinFETs. In Proc. 2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM) https://doi.org/10.1109/EDTM55494.2023.10102942 (IEEE, 2023).

  23. Taur, Y. & Ning, T. H. Fundamentals of Modern VLSI Devices (Cambridge Univ. Press, 1998).

  24. Han, H.-C., Zhao, Z., Lehmann, S., Charbon, E. & Enz, C. Analytical modeling of cryogenic subthreshold currents in 22-nm FDSOI technology. IEEE Electron. Device Lett. 45, 92–95 (2024). This paper covers the modelling of cryogenic subthreshold current in short channel devices caused by the hopping and SDT transports.

    Article  Google Scholar 

  25. Bohuslavskyi, H. et al. Cryogenic subthreshold swing saturation in FD-SOI MOSFETs described with band broadening. IEEE Electron. Device Lett. 40, 784–787 (2019).

    Article  MATH  Google Scholar 

  26. Beckers, A., Beckers, D., Jazaeri, F., Parvais, B. & Enz, C. Generalized Boltzmann relations in semiconductors including band tails. J. Appl. Phys. 129, 045701 (2021).

    Article  MATH  Google Scholar 

  27. Kang, M.-S. et al. Influence of substrate impurity concentration on sub-threshold swing of Si n-channel MOSFETs at cryogenic temperatures down to 4 K. Jpn. J. Appl. Phys. 62, SC1062 (2023).

    Article  Google Scholar 

  28. Han, H.-C., Chiang, H.-L., Radu, I. P. & Enz, C. Analytical modeling of source-to-drain tunneling current down to cryogenic temperatures. IEEE Electron. Device Lett. 44, 717–720 (2023).

    Article  Google Scholar 

  29. Jing W. & Lundstrom, M. Does source-to-drain tunneling limit the ultimate scaling of MOSFETs? In Proc. Digest. International Electron Devices Meeting 707–710 (IEEE, 2002).

  30. Kao, K.-H. et al. Subthreshold swing saturation of nanoscale MOSFETs due to source-to-drain tunneling at cryogenic temperatures. IEEE Electron. Device Lett. 41, 1296–1299 (2020).

    Article  MATH  Google Scholar 

  31. Jiao, T., Antunez, E. & Wong, H. Y. Study of cryogenic MOSFET sub-threshold swing using ab initio calculation. IEEE Electron. Device Lett. 44, 1604–1607 (2023).

    Article  Google Scholar 

  32. Yilmaz, K., Iniguez, B., Lime, F. & Kloes, A. Cryogenic temperature and doping analysis of source-to-drain tunneling current in ultrashort-channel nanosheet MOSFETs. IEEE Trans. Electron. Devices 69, 1588–1595 (2022).

    Article  Google Scholar 

  33. Hiblot, G., Rafhay, Q., Boeuf, F. & Ghibaudo, G. Analytical relationship between subthreshold swing of thermionic and tunnelling currents. Electron. Lett. 50, 1745–1747 (2014).

    Article  Google Scholar 

  34. Kamgar, A. Subthreshold behavior of silicon MOSFETs at 4.2 K. Solid-State Electron. 25, 537–539 (1982).

    Article  MATH  Google Scholar 

  35. Takagi, S., Toriumi, A., Iwase, M. & Tango, H. On the universality of inversion layer mobility in Si MOSFET’s: part I—effects of substrate impurity concentration. IEEE Trans. Electron. Devices 41, 2357–2362 (1994).

    Article  Google Scholar 

  36. Matsumoto, Y. & Uemura, Y. Scattering mechanism and low temperature mobility of MOS inversion layers. Jpn. J. Appl. Phys. 13, 367 (1974).

    MATH  Google Scholar 

  37. Melnikov, M. Y. et al. Ultra-high mobility two-dimensional electron gas in a SiGe/Si/SiGe quantum well. Appl. Phys. Lett. 106, 092102 (2015).

    Article  MATH  Google Scholar 

  38. Sumita, K., Kang, M.-S., Toprasertpong, K., Takenaka, M. & Takagi, S. Formulation of ground states for 2DEG at rough surfaces and application to nonlinear model of surface roughness scattering in nMOSFETs. IEEE J. Electron. Devices Soc. 11, 216–229 (2023).

    Article  Google Scholar 

  39. Abrahams, E., Kravchenko, S. V. & Sarachik, M. P. Metallic behavior and related phenomena in two dimensions. Rev. Mod. Phys. 73, 251–266 (2001).

    Article  MATH  Google Scholar 

  40. Mouis, M. et al. Source/drain induced defects in advanced MOSFETs: what device electrical characterization tells. Phys. Status Solidi C. 11, 138–145 (2014). This paper shows that neutral scattering can degrade the mobility for short channel devices at cryogenic temperatures.

    Article  MATH  Google Scholar 

  41. Habicht, S., Feste, S., Zhao, Q.-T., Buca, D. & Mantl, S. Electrical characterization of Ω-gated uniaxial tensile strained Si nanowire-array metal-oxide-semiconductor field effect transistors with <100>- and <110> channel orientations. Thin Solid. Films 520, 3332–3336 (2012).

    Article  Google Scholar 

  42. Cardoso Paz, B. et al. Integrated variability measurements of 28 nm FDSOI MOSFETs down to 4.2 K for cryogenic CMOS applications. In Proc. 2020 IEEE 33rd International Conference on Microelectronic Test Structures (ICMTS) https://doi.org/10.1109/ICMTS48187.2020.9107906 (IEEE, 2020).

  43. Cassé, M. et al. FDSOI for cryoCMOS electronics: device characterization towards compact model. In Proc. 2022 International Electron Devices Meeting (IEDM) 34.6.1–34.6.4 (IEEE, 2022).

  44. Hart, P. A. T., Babaie, M., Charbon, E., Vladimirescu, A. & Sebastiano, F. Characterization and modeling of mismatch in cryo-CMOS. IEEE J. Electron. Devices Soc. 8, 263–273 (2020).

    Article  Google Scholar 

  45. Han, H.-C. et al. Back-gate effects on DC performance and carrier transport in 22 nm FDSOI technology down to cryogenic temperatures. Solid-State Electron. 193, 108296 (2022).

    Article  MATH  Google Scholar 

  46. Han, Y. et al. Characterization of fully silicided source/drain SOI UTBB nMOSFETs at cryogenic temperatures. Solid-State Electron. 192, 108263 (2022).

    Article  MATH  Google Scholar 

  47. Han, H.-C. et al. Cryogenic characterization of 16 nm FinFET technology for quantum computing. In Proc. ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC) 71–74 (IEEE, 2021).

  48. Bonen, S. et al. Cryogenic characterization of 22 nm FDSOI CMOS technology for quantum computing ICs. IEEE Electron. Device Lett. 40, 127–130 (2019).

    MATH  Google Scholar 

  49. Ono, Y. et al. Conductance modulation by individual acceptors in Si nanoscale field-effect transistors. Appl. Phys. Lett. 90, 102106 (2007).

    Article  MATH  Google Scholar 

  50. Catapano, E., Cassé, M. & Ghibaudo, G. Cryogenic MOSFET subthreshold current: from resistive networks to percolation transport in 1-D systems. IEEE Trans. Electron. Devices 70, 4049–4054 (2023).

    Article  MATH  Google Scholar 

  51. Pierre, M. et al. Single-donor ionization energies in a nanoscale CMOS channel. Nat. Nanotechnol. 5, 133–137 (2009).

    Article  MATH  Google Scholar 

  52. Hart, P. A. T., Babaie, M., Charbon, E., Vladimirescu, A. & Sebastiano, F. Subthreshold mismatch in nanometer CMOS at cryogenic temperatures. IEEE J. Electron. Devices Soc. 8, 797–806 (2020).

    Article  Google Scholar 

  53. Paz, B. C. et al. Variability evaluation of 28nm FD-SOI technology at cryogenic temperatures down to 100mK for quantum computing. In Proc. 2020 IEEE Symposium on VLSI Technology https://doi.org/10.1109/VLSITechnology18217.2020.9265034 (IEEE, 2020).

  54. Grill, A. et al. Temperature dependent mismatch and variability in a Cryo-CMOS array with 30k transistors. In Proc. 2022 IEEE International Reliability Physics Symposium (IRPS) https://doi.org/10.1109/IRPS48227.2022.9764594 (IEEE, 2022).

  55. Ghibaudo, G., Casse, M., Serra di Santa Maria, F., Theodorou, C. & Balestra, F. Modeling of self-heating effect in FDSOI and bulk MOSFETs operated in deep cryogenic conditions. Solid. State Electron. 192, 108265 (2022).

    Article  Google Scholar 

  56. Asheghi, M., Kurabayashi, K., Kasnavi, R. & Goodson, K. E. Thermal conduction in doped single-crystal silicon films. J. Appl. Phys. 91, 5079–5088 (2002).

    Article  Google Scholar 

  57. Triantopoulos, K. et al. Self-heating effect in FDSOI transistors down to cryogenic operation at 4.2 K. IEEE Trans. Electron. Devices 66, 3498–3505 (2019).

    Article  MATH  Google Scholar 

  58. Scholten, A. J. et al. Experimental assessment of self-heating in SOI FinFETs. In Proc. 2009 IEEE International Electron Devices Meeting (IEDM) https://doi.org/10.1109/IEDM.2009.5424362 (IEEE, 2009).

  59. Tenbroek, B. M., Lee, M. S. L., Redman-White, W., Bunyan, J. T. & Uren, M. J. Self-heating effects in SOI MOSFETs and their measurement by small signal conductance techniques. IEEE Trans. Electron. Devices 43, 2240–2248 (1996).

    Article  Google Scholar 

  60. Nyssens, L. et al. Self-heating in FDSOI UTBB MOSFETs at cryogenic temperatures and its effect on analog figures of merit. IEEE J. Electron. Devices Soc. 8, 789–796 (2020).

    Article  Google Scholar 

  61. Han, H.-C. et al. Cryogenic RF characterization and simple modeling of a 22 nm FDSOI technology. In Proc. ESSDERC 2022 - IEEE 52nd European Solid-State Device Research Conference (ESSDERC) 269–272 (IEEE, 2022).

  62. Krantz, P. et al. A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6, 021318 (2019).

    Article  MATH  Google Scholar 

  63. Yoneda, J. et al. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%. Nat. Nanotechnol. 13, 102–106 (2018).

    Article  MATH  Google Scholar 

  64. Gong, J., Chen, Y., Sebastiano, F., Charbon, E. & Babaie, M. 19.3 A 200dB FoM 4-to-5GHz cryogenic oscillator with an automatic common-mode resonance calibration for quantum computing applications. In Proc. 2020 IEEE International Solid-State Circuits Conference (ISSCC) 308–310 (IEEE, 2020).

  65. Ghibaudo, G., Roux, O., Nguyen-Duc, C., Balestra, F. & Brini, J. Improved analysis of low frequency noise in field-effect MOS transistors. Phys. Status Solidi A 124, 571–581 (1991).

    Article  MATH  Google Scholar 

  66. Kiene, G., Sreenivasulu, A. G., Overwater, R. W. J., Babaie, M. & Sebastiano, F. Cryogenic comparator characterization and modeling for a Cryo-CMOS 7b 1-GSa/s SAR ADC. In Proc. ESSCIRC 2022 - IEEE 48th European Solid State Circuits Conference (ESSCIRC) 53–56 (IEEE, 2022).

  67. Kiene, G., İlik, S., Mastrodomenico, L., Babaie, M. & Sebastiano, F. Cryogenic characterization of low-frequency noise in 40-nm CMOS. IEEE J. Electron. Devices Soc. 12, 573–580 (2024).

    Article  Google Scholar 

  68. Inaba, T. et al. Determining the low-frequency noise source in cryogenic operation of short-channel bulk MOSFETs. In Proc. 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) https://doi.org/10.23919/VLSITechnologyandCir57934.2023.10185298 (IEEE, 2023).

  69. Michl, J. et al. Evidence of tunneling driven random telegraph noise in cryo-CMOS. In Proc. 2021 IEEE International Electron Devices Meeting (IEDM) 31.3.1–31.3.4 (IEEE, 2021).

  70. Asanovski, R. et al. Understanding the excess 1 / f noise in MOSFETs at cryogenic temperatures. IEEE Trans. Electron. Devices 70, 2135–2141 (2023).

    Article  MATH  Google Scholar 

  71. Cardoso Paz, B. et al. Performance and low-frequency noise of 22-nm FDSOI down to 4.2 K for cryogenic applications. IEEE Trans. Electron. Devices 67, 4563–4567 (2020).

    Article  MATH  Google Scholar 

  72. Chen, X., Elgabra, H., Chen, C.-H., Baugh, J. & Wei, L. Estimation of MOSFET channel noise and noise performance of CMOS LNAs at cryogenic temperatures. In Proc. 2021 IEEE International Symposium on Circuits and Systems (ISCAS) https://doi.org/10.1109/ISCAS51556.2021.9401136 (IEEE, 2021).

  73. Richstein, B. et al. Interface engineering for steep slope cryogenic MOSFETs. IEEE Electron. Device Lett. 43, 2149–2152 (2022). This paper shows the importance of interface engineering by using an ultra-thin SiN layer that improves the SS at 4 K.

    Article  MATH  Google Scholar 

  74. Han, Y. et al. Improved performance of FDSOI FETs at cryogenic temperatures by optimizing ion implantation into silicide. Solid-State Electron. 208, 108733 (2023). This paper demonstrates that the source/drain engineering using IIS can improve the cryogenic MOSFETs.

    Article  MATH  Google Scholar 

  75. Han, Y. et al. High performance 5 nm Si nanowire FETs with a record small SS = 2.3 mV/dec and high transconductance at 5.5 K enabled by dopant segregated silicide source/drain. In Proc. 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) https://doi.org/10.23919/VLSITechnologyandCir57934.2023.10185373 (IEEE, 2023). This paper illustrates that GAA silicon nanowire transistors fabricated with IIS technology can achieve a very steep SS of 2.3mVdec–1 at 5.5K.

  76. Han, Y. et al. Steep switching Si nanowire p-FETs with dopant segregated silicide source/drain at cryogenic temperature. IEEE Electron. Device Lett. 43, 1187–1190 (2022).

    Article  MATH  Google Scholar 

  77. Knoll, L. et al. Demonstration of improved transient response of inverters with steep slope strained Si NW TFETs by reduction of TAT with pulsed I-V and NW scaling. In Proc. 2013 IEEE International Electron Devices Meeting 4.4.1–4.4.4 (IEEE, 2013).

  78. Luong, G. V. et al. Complementary strained Si GAA nanowire TFET inverter with suppressed ambipolarity. IEEE Electron. Device Lett. 37, 950–953 (2016).

    Article  MATH  Google Scholar 

  79. Feste, S. F. et al. Formation of steep, low Schottky-barrier contacts by dopant segregation during nickel silicidation. J. Appl. Phys. 107, 044510 (2010).

    Article  Google Scholar 

  80. Knoll, L. et al. Ultrathin Ni silicides with low contact resistance on strained and unstrained silicon. IEEE Electron. Device Lett. 31, 350–352 (2010).

    Article  MATH  Google Scholar 

  81. Houssa, M. et al. Trap-assisted tunneling in high permittivity gate dielectric stacks. J. Appl. Phys. 87, 8615–8620 (2000).

    Article  MATH  Google Scholar 

  82. Fischetti, M. V., Neumayer, D. A. & Cartier, E. A. Effective electron mobility in Si inversion layers in metal-oxide-semiconductor systems with a high-k insulator: the role of remote phonon scattering. J. Appl. Phys. 90, 4587–4608 (2001).

    Article  MATH  Google Scholar 

  83. Galy, P. et al. Cryogenic temperature characterization of a 28-nm FD-SOI dedicated structure for advanced CMOS and quantum technologies co-integration. IEEE J. Electron. Devices Soc. 6, 594–600 (2018).

    Article  MATH  Google Scholar 

  84. Han, H.-C., Zhao, Z., Lehmann, S., Charbon, E. & Enz, C. Novel aproach to FDSOI threshold voltage model validated at cryogenic temperatures. IEEE Access. 11, 56951–56957 (2023).

    Article  Google Scholar 

  85. Mamun, F. A., Vasileska, D. & Sanchez Esqueda, I. Impact of back-gate biasing on the transport properties of 22 nm FD-SOI MOSFETs at cryogenic temperatures. IEEE Trans. Electron. Devices 69, 5417–5423 (2022).

    Article  MATH  Google Scholar 

  86. Gámiz, F. & Fischetti, M. V. Remote Coulomb scattering in metal-oxide-semiconductor field effect transistors: screening by electrons in the gate. Appl. Phys. Lett. 83, 4848–4850 (2003).

    Article  MATH  Google Scholar 

  87. Rudenko, T. et al. Experimental study of transconductance and mobility behaviors in ultra-thin SOI MOSFETs with standard and thin buried oxides. Solid State Electron. 54, 164–170 (2010).

    Article  MATH  Google Scholar 

  88. Overwater, R. W. J., Babaie, M. & Sebastiano, F. Cryogenic-aware forward body biasing in bulk CMOS. IEEE Electron. Device Lett. 45, 152–155 (2024).

    Article  MATH  Google Scholar 

  89. Bao, R. et al. High performance nanosheet technology optimized for 77 K. In Proc. 2023 International Electron Devices Meeting (IEDM) https://doi.org/10.1109/IEDM45741.2023.10413745 (IEEE, 2023).

  90. Liu, M. et al. Vertical GeSn nanowire MOSFETs for CMOS beyond silicon. Commun. Eng. 2, 7 (2023).

    Article  Google Scholar 

  91. Geng, P. et al. A novel theoretical model for the temperature dependence of band gap energy in semiconductors. J. Phys. Appl. Phys. 50, 40LT02 (2017).

    Article  MATH  Google Scholar 

  92. Oka, H. et al. Origin of low-frequency noise in Si n-MOSFET at cryogenic temperatures: the effect of interface quality. IEEE Access. 11, 121567–121573 (2023).

    Article  MATH  Google Scholar 

  93. Theodorou, C. G. et al. Impact of front-back gate coupling on low frequency noise in 28 nm FDSOI MOSFETs. In Proc. 2012 Proc. European Solid-State Device Research Conference (ESSDERC) 334–337 (IEEE, 2012).

  94. Das, K. & Lehmann, T. Effect of deep cryogenic temperature on silicon-on-insulator CMOS mismatch: a circuit designer’s perspective. Cryogenics 62, 84–93 (2014).

    Article  MATH  Google Scholar 

  95. Saligram, R. et al. Power performance analysis of digital standard cells for 28 nm bulk CMOS at cryogenic temperature using BSIM models. IEEE J. Explor. Solid-State Comput. Devices Circuits 7, 193–200 (2021).

    Article  MATH  Google Scholar 

  96. Saligram, R., Prasad, D., Pietromonaco, D., Raychowdhury, A. & Cline, B. A 64-bit arm CPU at cryogenic temperatures: design technology co-optimization for power and performance. In Proc. 2021 IEEE Custom Integrated Circuits Conference (CICC) https://doi.org/10.1109/CICC51472.2021.9431559 (IEEE, 2021).

  97. Chiang, H.-L. et al. Design technology co-optimization for cold CMOS benefits in advanced technologies. In Proc. 2021 IEEE International Electron Devices Meeting (IEDM) 13.2.1–13.2.4 (IEEE, 2021).

  98. Chakraborty, W., Ni, K., Smith, J., Raychowdhury, A. & Datta, S. An empirically validated virtual source fet model for deeply scaled cool CMOS. In Proc. 2019 IEEE International Electron Devices Meeting (IEDM) 39.4.1–39.4.4 (IEEE, 2019).

  99. Gaidhane, A. D. et al. Design exploration of 14 nm FinFET for energy-efficient cryogenic computing. IEEE J. Explor. Solid-State Comput. Devices Circuits 9, 108–115 (2023).

    Article  MATH  Google Scholar 

  100. Prasad, D. et al. Cryo-computing for infrastructure applications: a technology-to-microarchitecture co-optimization study. In Proc. 2022 International Electron Devices Meeting (IEDM) 23.5.1–23.5.4 (IEEE, 2022).

  101. Chiang, H. L. et al. Cold MRAM as a density booster for embedded NVM in advanced technology. In Proc. 2021 Symposium on VLSI Technology (IEEE, 2021).

  102. Hur, J. et al. Characterizing ferroelectric properties of Hf0.5Zr0.5O2 from deep-cryogenic temperature (4 K) to 400 K. IEEE J. Explor. Solid State Comput. Devices Circuits 7, 168–174 (2021).

    Article  MATH  Google Scholar 

  103. Wang, Z. et al. Cryogenic characterization of a ferroelectric field-effect-transistor. Appl. Phys. Lett. 116, 042902 (2020).

    Article  MATH  Google Scholar 

  104. Garzon, E., Greenblatt, Y., Harel, O., Lanuzza, M. & Teman, A. Gain-cell embedded DRAM under cryogenic operation—a first study. IEEE Trans. Very Large Scale Integr. VLSI Syst. 29, 1319–1324 (2021).

    Article  Google Scholar 

  105. Saligram, R., Datta, S. & Raychowdhury, A. CryoMem: a 4–300-K 1.3-GHz hybrid 2T-gain-cell-based eDRAM macro in 28-nm logic process for cryogenic applications. IEEE Solid State Circuits Lett. 4, 194–197 (2021).

    Article  Google Scholar 

  106. Sanuki, T. et al. Cryogenic operation of 3-D flash memory for storage performance improvement and bit cost scaling. IEEE J. Explor. Solid-State Comput. Devices Circuits 7, 159–167 (2021).

    Article  MATH  Google Scholar 

  107. Hao, Z. et al. Cryogenic HfOx-based resistive memory with a thermal enhancement capping layer. IEEE Electron. Device Lett. 42, 1276–1279 (2021).

    Article  MATH  Google Scholar 

  108. Icking, E. et al. Ultrasteep slope cryogenic FETs based on bilayer graphene. Nano Lett. https://doi.org/10.1021/acs.nanolett.4c02463 (2024).

    Article  MATH  Google Scholar 

  109. Alam, S., Hossain, M. S., Srinivasa, S. R. & Aziz, A. Cryogenic memory technologies. Nat. Electron. 6, 185–198 (2023).

    Article  Google Scholar 

  110. Hironaka, Y. et al. Demonstration of a single-flux-quantum microprocessor operating with Josephson–CMOS hybrid memory. IEEE Trans. Appl. Supercon. 30, 1301206 (2020).

    Article  MATH  Google Scholar 

  111. Suzuki, H., Inoue, A., Imamura, T. & Hasuo, S. A Josephson driver to interface Josephson junctions to semiconductor transistors. In Proc. Technical Digest., International Electron Devices Meeting (IEDM) 290–293 (IEEE, 1988).

  112. Boter, J. M. et al. Spiderweb array: a sparse spin-qubit array. Phys. Rev. Appl. 18, 024053 (2022).

    Article  Google Scholar 

  113. Li, R. et al. A crossbar network for silicon quantum dot qubits. Sci. Adv. 4, eaar3960 (2018).

    Article  Google Scholar 

  114. Borsoi, F. et al. Shared control of a 16 semiconductor quantum dot crossbar array. Nat. Nanotechnol. 19, 21–27 (2024).

    Article  MATH  Google Scholar 

  115. Künne, M. et al. The SpinBus architecture for scaling spin qubits with electron shuttling. Nat. Commun. 15, 4977 (2024).

    Article  MATH  Google Scholar 

  116. Zwerver, A. M. J. et al. Shuttling an electron spin through a silicon quantum dot array. PRX Quantum 4, 030303 (2023).

    Article  Google Scholar 

  117. Langrock, V. et al. Blueprint of a scalable spin qubit shuttle device for coherent mid-range qubit transfer in disordered Si/SiGe/SiO2. PRX Quantum 4, 020305 (2023).

    Article  MATH  Google Scholar 

  118. Noiri, A. et al. A shuttling-based two-qubit logic gate for linking distant silicon quantum processors. Nat. Commun. 13, 5740 (2022).

    Article  MATH  Google Scholar 

  119. Xue, R. et al. Si/SiGe QuBus for single electron information-processing devices with memory and micron-scale connectivity function. Nat. Commun. 15, 2296 (2024).

    Article  MATH  Google Scholar 

  120. Liu, Y. et al. Cryogenic characteristics of multinanoscales field-effect transistors. IEEE Trans. Electron. Devices 68, 456–463 (2021).

    Article  MATH  Google Scholar 

  121. Serra di Santa Maria, F. et al. Lambert-W function-based parameter extraction for FDSOI MOSFETs down to deep cryogenic temperatures. Solid-State Electron. 186, 108175 (2021).

    Article  MATH  Google Scholar 

  122. Han, Y. et al. Cryogenic characteristics of UTBB SOI Schottky-barrier MOSFETs. Solid State Electron. 194, 108351 (2022).

    Article  MATH  Google Scholar 

  123. Artanov, A. A. et al. Self-heating effect in a 65 nm MOSFET at cryogenic temperatures. IEEE Trans. Electron. Devices 69, 900–904 (2022).

    Article  MATH  Google Scholar 

  124. Hart, P. A. T., Babaie, M., Vladimirescu, A. & Sebastiano, F. Characterization and modeling of self-heating in nanometer bulk-CMOS at cryogenic temperatures. IEEE J. Electron. Devices Soc. 9, 891–901 (2021).

    Article  Google Scholar 

  125. Duan, G. X. et al. Effects of negative-bias-temperature-instability on low-frequency noise in SiGe pMOSFETs. IEEE Trans. Device Mater. Reliab. 16, 541–548 (2016).

    Article  MATH  Google Scholar 

  126. Zhao, Q.-T. et al. High storage and energy efficient memory for cryogenic computing. Preprint at https://doi.org/10.21203/rs.3.rs-3300928/v1 (2023).

  127. Van Dijk, J. P. G. et al. Impact of classical control electronics on qubit fidelity. Phys. Rev. Appl. 12, 044054 (2019).

    Article  MATH  Google Scholar 

  128. Hornibrook, J. M. et al. Cryogenic control architecture for large-scale quantum computing. Phys. Rev. Appl. 3, 024010 (2015).

    Article  Google Scholar 

  129. Geck, L., Kruth, A., Bluhm, H., Waasen, S. V. & Heinen, S. Control electronics for semiconductor spin qubits. Quantum Sci. Technol. 5, 015004 (2020).

    Article  Google Scholar 

  130. Schreckenberg, L. et al. SiGe qubit biasing with a cryogenic CMOS DAC at mK temperature. In Proc. ESSCIRC 2023- IEEE 49th European Solid State Circuits Conference (ESSCIRC) 161–164 (IEEE, 2023).

  131. Hollmann, A. et al. 30 GHz-voltage controlled oscillator operating at 4 K. Rev. Sci. Instrum. 89, 114701 (2018).

    Article  MATH  Google Scholar 

  132. Curry, M. J. et al. Single-shot readout performance of two heterojunction-bipolar-transistor amplification circuits at millikelvin temperatures. Sci. Rep. 9, 16976 (2019).

    Article  Google Scholar 

  133. Björk, M. T., Schmid, H., Knoch, J., Riel, H. & Riess, W. Donor deactivation in silicon nanostructures. Nat. Nanotechnol. 4, 103–107 (2009).

    Article  Google Scholar 

  134. Smit, G. D. J., Rogge, S., Caro, J. & Klapwijk, T. M. Gate-induced ionization of single dopant atoms. Phys. Rev. B 68, 193302 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Q.-T.Z., Y.H., H.-C.H., L.R.S., T.-E.L., H.-L.C., C.S., S.T. and J.K. researched data for the article. Q.-T.Z., Y.H., H.-C.H., L.R.S., T.-E.L., H.-L.C., S.T. and J.K. contributed to the discussions of the content and the writing of the manuscript. All authors reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Qing-Tai Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Electrical Engineering thanks Fabio Sebastiano and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Automatic placement and routing

The process of physically implementing a gate-level netlist by placing standard cells and auto-routing them based on inferred connections.

Hyperfine contact interaction

The interaction between the magnetic moments of the electron and the nucleus due to the electron’s non-zero probability density at the position of the nucleus.

Silicidation

A process in complementary metal oxide semiconductor technology to form metal silicide at the source/drain by solid-state reaction of a metal layer with silicon at high temperature.

Static timing analysis

A method for validating a design’s timing performance by analysing all possible paths for timing violations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, QT., Han, Y., Han, HC. et al. Ultra-low-power cryogenic complementary metal oxide semiconductor technology. Nat Rev Electr Eng 2, 277–290 (2025). https://doi.org/10.1038/s44287-025-00157-7

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44287-025-00157-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing