Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A statistical-field approach to electron transport in semiconductor nanodevices

Abstract

In nanoscale semiconductor devices, not only do electron–electron interactions require proper treatment but heat transport must also be integrated coherently. In this Perspective, we propose a paradigm shift: to treat electron transport using a three-part phase diagram that includes diffusive, ballistic and viscous electron-fluid regimes and to adopt a statistical-field approach to extend the tools for analysis, including the drift–diffusion model. The statistical-field approach posits that semiconductor devices — as open quantum systems characterized by fluctuating energy and particle numbers — can achieve local equilibrium through frequent microscopic collisions of electrons. The corresponding statistical fields emerge — specifically, spatial and temporal variations in temperature and chemical potential, which dictate the flows of energy and particles. The quantum nature of these statistical fields enables a seamless integration of quantum complexities, and the approach naturally incorporates heat dissipation in a self-consistent theoretical framework (although the proper modelling of boundary conditions requires further attention). We highlight the critical need to identify the transport regime in which short-channel nanodevices operate, to be able to build accurate simulators that will drive device design and optimization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Quantum transport regimes in electron devices, and corrections arising from interacting quantum particles.
Fig. 2: Boundaries and whirlpools.

Similar content being viewed by others

References

  1. Mistry, K. et al. A 2.0 V, 0.35 μm partially depleted SOI-CMOS technology. In IEEE International Electron Devices Meeting 583–586 (IEEE, 1997).

  2. Tenbroek, B. et al. Self-heating effects in SOI MOSFETs and their measurement by small signal conductance techniques. IEEE Trans. Electron Devices 43, 2240–2248 (1996).

    Article  Google Scholar 

  3. Ghani, T. et al. A 90 nm high volume manufacturing logic technology featuring novel 45 nm gate length strained silicon CMOS transistors. In IEEE International Electron Devices Meeting 978–980 (IEEE, 2003).

  4. Mistry, K. et al. A 45 nm logic technology with high-k + metal gate transistors, strained silicon, 9 Cu interconnect layers, 193 nm dry patterning, and 100% Pb-free packaging. In IEEE International Electron Devices Meeting 247–250 (IEEE, 2007).

  5. Auth, C. et al. A 22 nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors. In IEEE VLSI Technology Symposium 131–132 (IEEE, 2012).

  6. Bohr, M., Chau, R., Ghani, T. & Mistry, K. The high-k solution. IEEE Spectr. 44, 29–35 (2007).

    Article  Google Scholar 

  7. Kuhn, K. J. Considerations for ultimate CMOS scaling. IEEE Trans. Electron Devices 59, 1813–1828 (2012).

    Article  Google Scholar 

  8. Cao, W. et al. The future transistors. Nature 620, 501 (2023).

    Article  Google Scholar 

  9. Koba, S. et al. Channel length scaling limits of III–V channel MOSFETs governed by source–drain direct tunneling. Jpn. J. Appl. Phys. 53, 04EC10 (2014).

    Article  Google Scholar 

  10. Jin, D., Kim, D., Kim, T. & del Alamo, J. A. Quantum capacitance in scaled down III–V FETs. In IEEE International Electron Devices Meeting 495–498 (IEEE, 2009).

  11. Skotnicki, T. & Boeuf, F. How can high mobility channel materials boost or degrade performance in advanced CMOS. In IEEE VLSI Technology Symposium 153–154 (IEEE, 2010).

  12. Rasouli, S., Dadgour, H., Endo, K., Koike, H. & Banerjee, K. Design optimization of FinFET domino logic considering the width quantization property. IEEE Trans. Electron Devices 57, 2934–2943 (2010).

    Article  Google Scholar 

  13. Mizutani, T. et al. Threshold voltage and current variability of extremely narrow silicon nanowire MOSFETs with width down to 2 nm. In Silicon Nanoelectronics Workshop (IEEE, 2015).

  14. Yu, B., Wann, C., Nowak, E. D., Noda, K. & Hu, C. Short-channel effect improved by lateral channel-engineering in deep-submicronmeter MOSFETs. IEEE Trans. Electron Devices 44, 627–634 (1997).

    Article  Google Scholar 

  15. Liao, S. et al. Complementary field-effect transistor (CFET) demonstration at 48 nm gate pitch for future logic technology scaling. In 2023 International Electron Devices Meeting (IEDM) 1–4 (2023).

  16. Taur, Y. & Ning, T. H. Fundamentals of Modern VLSI Devices (Cambridge Univ. Press, 2022).

  17. SentaurusTM Device User Guide, Version K-2015.06, Synopsys, Inc. (2015).

  18. Varnavides, G., Yacoby, A., Felser, C. & Narang, P. Charge transport and hydrodynamics in materials. Nat. Rev. Mater. 8, 726–741 (2023).

    Article  Google Scholar 

  19. Sulpizio, J. A. et al. Visualizing Poiseuille flow of hydrodynamic electrons. Nature 576, 75–79 (2019).

    Article  Google Scholar 

  20. Kittel, C. & Kroemer, H. Thermal Physics (W. H. Freeman and Company, 1980).

  21. Pathria, R. K. & Beale, P. D. Statistical Mechanics (Elsevier Ltd, 2011).

  22. Peliti, L. Statistical Mechanics in a Nutshell (Princeton Univ. Press, 2011).

  23. Sabbah, A. J. & Riffe, D. M. Femtosecond pump–probe reflectivity study of silicon carrier dynamics. Phys. Rev. B 66, 165217 (2002).

    Article  Google Scholar 

  24. Martin Wörle, M., Holleitner, A. W., Reinhard Kienberger, R. & Iglev, H. Ultrafast hot-carrier relaxation in silicon monitored by phase-resolved transient absorption spectroscopy. Phys. Rev. B 104, L041201 (2021).

    Article  Google Scholar 

  25. Keser, A. C. et al. Geometric control of universal hydrodynamic flow in a two-dimensional electron fluid. Phys. Rev. X 11, 031030 (2021).

    Google Scholar 

  26. Krebs, Z. J. et al. Imaging the breaking of electrostatic dams in graphene for ballistic and viscous fluids. Science 379, 671–676 (2023).

    Article  Google Scholar 

  27. Bandurin, D. A. et al. Negative local resistance caused by viscous electron backflow in graphene. Science 351, 1055–1058 (2016).

    Article  Google Scholar 

  28. Krishna Kumar, R. et al. Superballistic flow of viscous electron fluid through graphene constrictions. Nat. Phys. 13, 1182–1185 (2017).

    Article  Google Scholar 

  29. Polini, M. & Geim, A. K. Viscous electron fluids. Phys. Today 6, 28–34 (2020).

    Article  Google Scholar 

  30. Estrada-Álvarez, J., Domínguez-Adame, F. & Díaz, E. Alternative routes to electron hydrodynamics. Commun. Phys. 7, 138 (2024).

    Article  Google Scholar 

  31. Pusep, Y. A. et al. Diffusion of photoexcited holes in a viscous electron fluid. Phys. Rev. Lett. 128, 136801 (2022).

    Article  Google Scholar 

  32. Lee, T. D. & Yang, C. N. Many-body problem in quantum mechanics and quantum statistical mechanics. Phys. Rev. 105, 1119 (1957).

    Article  Google Scholar 

  33. Lee, T. D. & Yang, C. N. Many-body problem in quantum statistical mechanics. II. Virial expansion hard-sphere gas. Phys. Rev. 116, 25 (1959).

    Article  MathSciNet  Google Scholar 

  34. Weng et al. Quasiadiabatic electron transport in room temperature nanoelectronic devices induced by hot-phonon bottleneck. Nat. Commun. 12, 4752 (2021).

    Article  Google Scholar 

  35. Xue, H. et al. Direct observation of hot-electron-enhanced thermoelectric effects in silicon nanodevices. Nat. Commun. 14, 3731 (2023).

    Article  Google Scholar 

  36. Huang, Z. et al. Local ionic and electron heating in single-molecule junctions. Nat. Nanotechnol. 2, 698–703 (2007).

    Article  Google Scholar 

  37. Yang, L., Qian, R. J., An, Z. H., Komiyama, S. & Lu, W. Simulation of temperature profile for the electron and the lattice systems in laterally structured layered conductors. epl 128, 17001 (2019).

    Article  Google Scholar 

  38. Onsager, L. Reciprocal relations in irreversible processes. I. Phys. Rev. 37, 405 (1931).

    Article  Google Scholar 

  39. Hankiewicz, E. M. et al. Charge Hall effect driven by spin-dependent chemical potential gradients and onsager relations in mesoscopic systems. Phys. Rev. B 72, 155305 (2005).

    Article  Google Scholar 

  40. Gorini, C., Raimondi, R. & Schwab, P. Onsager relations in a two-dimensional electron gas with spin–orbit coupling. Phys. Rev. Lett. 109, 246604 (2012).

    Article  Google Scholar 

  41. Luo, R., Benenti, G., Casati, G. & Wang, J. Onsager reciprocal relations with broken time-reversal symmetry. Phys. Rev. Res. 2, 022009(R) (2020).

    Article  Google Scholar 

  42. Kiselev, E. I. & Schmalian, J. Boundary conditions of viscous electron flow. Phys. Rev. B 99, 035430 (2019).

    Article  Google Scholar 

  43. Di Ventra, M. Electrical Transport in Nanoscale Systems (Cambridge Univ. Press, 2008).

  44. Stern, A. et al. How electron hydrodynamics can eliminate the Landauer–Sharvin resistance. Phys. Rev. Lett. 129, 157701 (2022).

    Article  Google Scholar 

  45. Li, S., Levchenko, A. & Andreev, A. V. Hydrodynamic thermoelectric transport in Corbino geometry. Phys. Rev. B 105, 125302 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge fruitful discussions with I.F. Hu, W.-Y. Woon, L. Yang and W.-X. You. H.-H.L. acknowledges supports from National Science and Technology Council (Taiwan) through grant NSTC-113-2112-M-007-017 and from Taiwan Semiconductor Manufacturing Company through University Joint Development Project TUP-20231011-3510.

Author information

Authors and Affiliations

Authors

Contributions

H.-H.L. and S.S.L. proposed and supervised the project. Y.-C.Y. and H.-H.L. performed the theoretical calculations. All authors contributed to discussions and the writing of the manuscript.

Corresponding authors

Correspondence to Hsiu-Hau Lin or Szuya Sandy Liao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Peer review

Peer review information

Nature Reviews Electrical Engineering thanks Zhenghua An and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YC., Lin, HH. & Liao, S.S. A statistical-field approach to electron transport in semiconductor nanodevices. Nat Rev Electr Eng 2, 614–620 (2025). https://doi.org/10.1038/s44287-025-00192-4

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44287-025-00192-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing