Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mutual promotion of triboelectric nanogenerators and field-effect transistors towards the IoT

Abstract

The real-world deployment of the Internet of Things (IoT) infrastructures faces high energy demands. To tackle this demand, triboelectric nanogenerators and field-effect transistors (FETs) led to the emergence of tribotronic transistors that enable active mechanosensation by converting mechanical stimuli into tribo-potential, and droplet electricity generators (DEGs) that enhance the efficiency of raindrop energy harvesting through the bulk effect of FET-inspired architectures. In this Review, we explore the working mechanisms and design principles of tribotronic transistors and DEGs, highlighting the key scientific and technical challenges that must be overcome for their seamless integration into global IoT networks. We highlight the development of advanced devices for IoT data collection, memory and processing, and ambient energy harvesting in near-perpetual IoT networks, facilitating advancements in IoT applications including tactile sensors, artificial synapses, energy harvesters and self-powered sensors. Finally, we discuss key areas requiring further study, including understanding fundamental mechanisms, optimizing system design and addressing practical challenges in the application of tribotronic transistors and DEGs for large-scale IoT networks and self-powered sensors.

Key points

  • The fundamentals of tribotronic transistors are discussed from the perspective of the working mechanism, materials selection and architecture design.

  • Typical tribotronic transistor-based Internet of Things (IoT) applications, such as tactile sensors, memory and artificial synapses, are presented.

  • The advancements in droplet electricity generators (DEGs) are summarized, enhancing the understanding of their theoretical modelling and design strategies.

  • Ambient energy harvesters and self-powered sensors, developed based on DEGs, are highlighted for near-perpetual IoT networks.

  • Perspectives on key challenges for further development of techniques, arising from mutual promotion of triboelectric nanogenerators and field-effect transistors, to meet the needs of IoT development are presented.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mutual promotion of triboelectric nanogenerators and field-effect transistors towards development of the Internet of Things.
Fig. 2: Fundamentals of tribotronic transistors.
Fig. 3: Representation of typical tribotronic transistor-based Internet of Things devices.
Fig. 4: Fundamentals of droplet energy generators.
Fig. 5: Typical Internet of Things devices based on the droplet energy generator.

Similar content being viewed by others

References

  1. Luo, B. et al. Magnetoelectric microelectromechanical and nanoelectromechanical systems for the IoT. Nat. Rev. Electr. Eng. 1, 317–334 (2024).

    Article  Google Scholar 

  2. Portilla, L. et al. Wirelessly powered large-area electronics for the Internet of Things. Nat. Electron. 6, 10–17 (2022).

    Google Scholar 

  3. Greengard, S. The Internet of Things (MIT Press, 2015).

  4. Xing, L. Reliability in Internet of Things: current status and future perspectives. IEEE Internet Things J. 7, 6704–6721 (2020).

    Article  Google Scholar 

  5. Palmer, L. How small but smart cities are changing the way data and decisions are influencing urban life. Nat. Cities 2, 107–109 (2025).

    Article  Google Scholar 

  6. Heng, W. et al. A smart mask for exhaled breath condensate harvesting and analysis. Science 385, 954–961 (2024).

    Article  Google Scholar 

  7. Rejeb, A. et al. The Internet of Things (IoT) in healthcare: taking stock and moving forward. Internet Things 22, 100721 (2023).

    Article  Google Scholar 

  8. Libanori, A., Chen, G., Zhao, X., Zhou, Y. & Chen, J. Smart textiles for personalized healthcare. Nat. Electron. 5, 142–156 (2022).

    Article  Google Scholar 

  9. Li, X. et al. Stimulation of ambient energy generated electric field on crop plant growth. Nat. Food 3, 133–142 (2022).

    Article  Google Scholar 

  10. Friha, O., Ferrag, M. A., Shu, L., Maglaras, L. & Wang, X. Internet of Things for the future of smart agriculture: a comprehensive survey of emerging technologies. IEEE/CAA J. Autom. Sin. 8, 718–752 (2021).

    Article  Google Scholar 

  11. Choi, H. W. et al. Smart textile lighting/display system with multifunctional fibre devices for large scale smart home and IoT applications. Nat. Commun. 13, 814 (2022).

    Article  Google Scholar 

  12. Mocrii, D., Chen, Y. & Musilek, P. IoT-based smart homes: a review of system architecture, software, communications, privacy and security. Internet Things 1–2, 81–98 (2018).

    Article  Google Scholar 

  13. Alaa, M., Zaidan, A. A., Zaidan, B. B., Talal, M. & Kiah, M. L. M. A review of smart home applications based on Internet of Things. J. Netw. Comput. Appl. 97, 48–65 (2017).

    Article  Google Scholar 

  14. Vailshery, L. S. Number of Internet of Things (IoT) connections worldwide from 2022 to 2023, with forecasts from 2024 to 2033. Statista https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/ (2024).

  15. Cheng, T. H., Shao, J. J. & Wang, Z. L. Triboelectric nanogenerators. Nat. Rev. Methods Primer 3, 38 (2023). This work provides a comprehensive overview of TENGs, from the perspective of the fundamental working mechanism, device design and their applications.

    Article  Google Scholar 

  16. Hasan, M. A. M., Zhu, W., Bowen, C. R., Wang, Z. L. & Yang, Y. Triboelectric nanogenerators for wind energy harvesting. Nat. Rev. Electr. Eng. 1, 453–465 (2024).

    Article  Google Scholar 

  17. Shi, Q., Sun, Z., Zhang, Z. & Lee, C. Triboelectric nanogenerators and hybridized systems for enabling next-generation IoT applications. Research 2021, 6849171 (2021).

    Article  Google Scholar 

  18. Rodrigues, C. et al. Emerging triboelectric nanogenerators for ocean wave energy harvesting: state of the art and future perspectives. Energy Environ. Sci. 13, 2657–2683 (2020).

    Article  Google Scholar 

  19. Wang, Y. et al. A rolling-mode triboelectric nanogenerator with multi-tunnel grating electrodes and opposite-charge-enhancement for wave energy harvesting. Nat. Commun. 15, 6834 (2024).

    Article  Google Scholar 

  20. Gao, Y. et al. Spontaneously established reverse electric field to enhance the performance of triboelectric nanogenerators via improving Coulombic efficiency. Nat. Commun. 15, 4167 (2024).

    Article  Google Scholar 

  21. Geng, D. et al. Thin-film transistors for large-area electronics. Nat. Electron. 6, 963–972 (2023).

    Article  Google Scholar 

  22. Li, Q. et al. High-performance ferroelectric field-effect transistors with ultra-thin indium tin oxide channels for flexible and transparent electronics. Nat. Commun. 15, 2686 (2024).

    Article  Google Scholar 

  23. Khan, A. I., Keshavarzi, A. & Datta, S. The future of ferroelectric field-effect transistor technology. Nat. Electron. 3, 588–597 (2020).

    Article  Google Scholar 

  24. Cao, W. et al. The future transistors. Nature 620, 501–515 (2023).

    Article  Google Scholar 

  25. Zhang, C., Tang, W., Zhang, L., Han, C. & Wang, Z. L. Contact electrification field-effect transistor. ACS Nano 8, 8702–8709 (2014). This article develops the first tribotronic transistor, which is fundamental for future research.

    Article  Google Scholar 

  26. Zhong, D. et al. High-speed and large-scale intrinsically stretchable integrated circuits. Nature 627, 313–320 (2024).

    Article  Google Scholar 

  27. Liu, K., Ouyang, B., Guo, X., Guo, Y. & Liu, Y. Advances in flexible organic field-effect transistors and their applications for flexible electronics. NPJ Flex. Electron. 6, 1 (2022).

    Article  Google Scholar 

  28. Huang, X. et al. 2D MoS2-based reconfigurable analog hardware. Nat. Commun. 16, 101 (2025).

    Article  Google Scholar 

  29. Ning, H. et al. An index-free sparse neural network using two-dimensional semiconductor ferroelectric field-effect transistors. Nat. Electron. 8, 222–234 (2025).

    Article  Google Scholar 

  30. Lee, G. et al. Artificial neuron and synapse devices based on 2D materials. Small 17, 2100640 (2021).

    Article  Google Scholar 

  31. Tang, W., Sun, Q. & Wang, Z. L. Self-powered sensing in wearable electronics — a paradigm shift technology. Chem. Rev. 123, 12105–12134 (2023).

    Article  Google Scholar 

  32. Wang, J. et al. Field effect transistor‐based tactile sensors: from sensor configurations to advanced applications. InfoMat 5, 12376 (2023).

    Article  Google Scholar 

  33. Zhang, C. et al. Tribotronics: an emerging field by coupling triboelectricity and semiconductors. Int. J. Extreme Manuf. 5, 042002 (2023).

    Article  Google Scholar 

  34. Liu, Y. et al. Recent progress in tactile sensors and their applications in intelligent systems. Sci. Bull. 65, 70–88 (2020).

    Article  Google Scholar 

  35. Pyo, S., Lee, J., Bae, K., Sim, S. & Kim, J. Recent progress in flexible tactile sensors for human‐interactive systems: from sensors to advanced applications. Adv. Mater. 33, 2005902 (2021).

    Article  Google Scholar 

  36. Noor, A. et al. Recent advances in triboelectric tactile sensors for robot hand. Mater. Today Phys. 46, 101496 (2024).

    Article  Google Scholar 

  37. Xie, X. et al. Neuromorphic computing-assisted triboelectric capacitive-coupled tactile sensor array for wireless mixed reality interaction. ACS Nano 18, 17041–17052 (2024).

    Article  Google Scholar 

  38. Lei, H. et al. Intelligent tribotronic transistors toward tactile near-sensor computing. Adv. Funct. Mater. 35, 2401913 (2025).

    Article  Google Scholar 

  39. Ding, G., Han, S.-T., Roy, V. A. L., Kuo, C.-C. & Zhou, Y. Triboelectric nanogenerator for neuromorphic electronics. Energy Rev. 2, 100014 (2023).

    Article  Google Scholar 

  40. Zhu, J., Zhang, T., Yang, Y. & Huang, R. A comprehensive review on emerging artificial neuromorphic devices. Appl. Phys. Rev. 7, 011312 (2020).

    Article  Google Scholar 

  41. Xu, W. et al. A droplet-based electricity generator with high instantaneous power density. Nature 578, 392–396 (2020). This article proposes the DEG, the first transistor-like TENG, which is fundamental for future research.

    Article  Google Scholar 

  42. Meng, J. et al. A new single‐electrode generator for water droplet energy harvesting with a 3 mA current output. Adv. Energy Mater. 14, 2303298 (2023).

    Article  Google Scholar 

  43. Gong, S., Li, K., Sun, J., Chen, J. & Guo, H. Interfacial droplet-based triboelectric nanogenerator with optimized architecture for highly efficient vibrational energy conversion. Joule 9, 101763 (2025).

    Article  Google Scholar 

  44. Zheng, H. et al. Remote‐controlled droplet chains‐based electricity generators. Adv. Energy Mater. 13, 2203825 (2023).

    Article  Google Scholar 

  45. Wang, C. et al. High‐entropy ceramics enhanced droplet electricity generator for energy harvesting and bacterial detection. Adv. Mater. 36, 2400505 (2024).

    Article  Google Scholar 

  46. Yang, L. et al. An electrode‐grounded droplet‐based electricity generator (EG‐DEG) for liquid motion monitoring. Adv. Funct. Mater. 33, 2302147 (2023).

    Article  Google Scholar 

  47. Zhang, N. et al. A droplet‐based electricity generator with ultrahigh instantaneous output and short charging time. Droplet 1, 56–64 (2022). This article establishes a circuit model of a DEG based on the link between the hydrodynamic and electrical systems.

    Article  Google Scholar 

  48. Li, L. et al. Sparking potential over 1200 V by a falling water droplet. Sci. Adv. 9, 2993 (2023).

    Article  Google Scholar 

  49. Yan, X. et al. Bubble energy generator. Sci. Adv. 8, 7698 (2022).

    Article  Google Scholar 

  50. Li, S. et al. Transistor-like triboiontronics with record-high charge density for self-powered sensors and neurologic analogs. Device 2, 100332 (2024).

    Article  Google Scholar 

  51. Liu, D. et al. Standardized measurement of dielectric materials’ intrinsic triboelectric charge density through the suppression of air breakdown. Nat. Commun. 13, 6019 (2022).

    Article  Google Scholar 

  52. Zhao, Z. et al. Selection rules of triboelectric materials for direct-current triboelectric nanogenerator. Nat. Commun. 12, 4686 (2021).

    Article  Google Scholar 

  53. Zou, H. et al. Quantifying the triboelectric series. Nat. Commun. 10, 1427 (2019).

    Article  Google Scholar 

  54. Huo, Z., Yu, J., Li, Y., Wang, Z. L. & Sun, Q. 2D tribotronic transistors. J. Phys. Energy 5, 012002 (2023).

    Article  Google Scholar 

  55. Li, Y. et al. Visualization and standardized quantification of surface charge density for triboelectric materials. Nat. Commun. 15, 6004 (2024).

    Article  Google Scholar 

  56. Kanungo, S., Ahmad, G., Sahatiya, P., Mukhopadhyay, A. & Chattopadhyay, S. 2D materials-based nanoscale tunneling field effect transistors: current developments and future prospects. NPJ 2D Mater. Appl. 6, 83 (2022).

    Article  Google Scholar 

  57. Wang, C. et al. An advanced strategy to enhance TENG output: reducing triboelectric charge decay. Adv. Mater. 35, 2209895 (2023).

    Article  Google Scholar 

  58. Wang, Z. L. Triboelectric nanogenerator (TENG)—sparking an energy and sensor revolution. Adv. Energy Mater. 10, 2000137 (2020).

    Article  Google Scholar 

  59. Kim, H., Oh, S., Choo, H., Kang, D.-H. & Park, J.-H. Tactile neuromorphic system: convergence of triboelectric polymer sensor and ferroelectric polymer synapse. ACS Nano 17, 17332–17341 (2023).

    Article  Google Scholar 

  60. Wei, Y. et al. Triboelectric potential powered high-performance organic transistor array. ACS Nano 16, 19199–19209 (2022).

    Article  Google Scholar 

  61. Zhang, C., Zhang, L. M., Tang, W., Han, C. B. & Wang, Z. L. Tribotronic logic circuits and basic operations. Adv. Mater. 27, 3533–3540 (2015).

    Article  Google Scholar 

  62. Zhao, J. et al. Intrinsically stretchable and self-healable tribotronic transistor for bioinspired e-skin. Mater. Today Phys. 28, 100877 (2022).

    Article  Google Scholar 

  63. Pang, Y. et al. Flexible transparent tribotronic transistor for active modulation of conventional electronics. Nano Energy 31, 533–540 (2017).

    Article  Google Scholar 

  64. Jiang, T. et al. Theoretical study of sliding‐electrification‐gated tribotronic transistors and logic device. Adv. Electron. Mater. 4, 1700337 (2018).

    Article  Google Scholar 

  65. Wang, Y. et al. Tribotronic vertical field-effect transistor based on van der Waals heterostructures. Adv. Funct. Mater. 34, 2313210 (2024).

    Article  Google Scholar 

  66. Gao, G. et al. Tunable tribotronic dual‐gate logic devices based on 2D MoS2 and black phosphorus. Adv. Mater. 30, e1705088 (2018).

    Article  Google Scholar 

  67. Chen, L., Wen, C., Zhang, S. L., Wang, Z. L. & Zhang, Z. B. Artificial tactile peripheral nervous system supported by self-powered transducers. Nano Energy 82, 105680 (2021).

    Article  Google Scholar 

  68. Xue, F. et al. MoS2 tribotronic transistor for smart tactile switch. Adv. Funct. Mater. 26, 2104–2109 (2016).

    Article  Google Scholar 

  69. Wang, X. et al. Stretchable vertical organic transistors and their applications in neurologically systems. Nano Energy 90, 106497 (2021).

    Article  Google Scholar 

  70. Ren, C. et al. Electret mechano-sensor array integrated with tribopotential-modulated thin film transistors for precise spatiotemporal pressure perception. Nano Energy 132, 110351 (2024).

    Article  Google Scholar 

  71. Tan, F. et al. Triboelectric potential tuned dual-gate IGZO transistor for versatile sensory device. Nano Energy 90, 106617 (2021).

    Article  Google Scholar 

  72. Wu, J. M., Lin, Y. H. & Yang, B. Z. Force-pad made from contact-electrification poly(ethylene oxide)/InSb field-effect transistor. Nano Energy 22, 468–474 (2016).

    Article  Google Scholar 

  73. Zeng, J. et al. A flexible tribotronic artificial synapse with bioinspired neurosensory behavior. Nano-Micro Lett. 15, 18 (2023).

    Article  Google Scholar 

  74. Zhao, J. et al. Intrinsically stretchable organic-tribotronic-transistor for tactile sensing. Research 2020, 1398903 (2020).

    Article  Google Scholar 

  75. Zhao, J. et al. Flexible organic tribotronic transistor for pressure and magnetic sensing. ACS Nano 11, 11566–11573 (2017).

    Article  Google Scholar 

  76. Li, J. et al. Flexible organic tribotronic transistor memory for a visible and wearable touch monitoring system. Adv. Mater. 28, 106–110 (2016).

    Article  Google Scholar 

  77. Lee, Y. R., Trung, T. Q., Hwang, B. U. & Lee, N.-E. A flexible artificial intrinsic–synaptic tactile sensory organ. Nat. Commun. 11, 2753 (2020).

    Article  Google Scholar 

  78. Zhang, H. et al. Ion gel capacitively coupled tribotronic gating for multiparameter distance sensing. ACS Nano 14, 3461–3468 (2020).

    Article  Google Scholar 

  79. Khan, U., Kim, T., Ryu, H., Seung, W. & Kim, S. Graphene tribotronics for electronic skin and touch screen applications. Adv. Mater. 29, 1603544 (2017).

    Article  Google Scholar 

  80. Yang, X. et al. Mechanoplastic tribotronic floating-gate neuromorphic transistor. Adv. Funct. Mater. 30, 2002506 (2020).

    Article  Google Scholar 

  81. Jia, M. et al. Multibit tribotronic nonvolatile memory based on van der Waals heterostructures. Nano Energy 83, 105785 (2021).

    Article  Google Scholar 

  82. Liu, Y. et al. Self-powered high-sensitivity all-in-one vertical tribo-transistor device for multi-sensing-memory-computing. Nat. Commun. 13, 7917 (2022).

    Article  Google Scholar 

  83. Chen, S. et al. Artificial organic afferent nerves enable closed-loop tactile feedback for intelligent robot. Nat. Commun. 15, 7056 (2024).

    Article  Google Scholar 

  84. Gao, G. et al. Triboiontronic transistor of MoS2. Adv. Mater. 31, 1806905 (2019).

    Article  Google Scholar 

  85. Cao, Y. et al. High‐resolution monolithic integrated tribotronic InGaZnO thin‐film transistor array for tactile detection. Adv. Funct. Mater. 30, 2002613 (2020).

    Article  Google Scholar 

  86. Quinn, J. T. E., Zhu, J., Li, X., Wang, J. & Li, Y. Recent progress in the development of n-type organic semiconductors for organic field effect transistors. J. Mater. Chem. C. 5, 8654–8681 (2017).

    Article  Google Scholar 

  87. Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).

    Article  Google Scholar 

  88. Li, M. et al. Low‐voltage operational, low‐power consuming, and high sensitive tactile switch based on 2D layered InSe tribotronics. Adv. Funct. Mater. 29, 1809119 (2019).

    Article  Google Scholar 

  89. Huang, X. et al. A high-sensitivity flexible piezoelectric tactile sensor utilizing an innovative rigid-in-soft structure. Nano Energy 129, 110019 (2024).

    Article  Google Scholar 

  90. Xi, F. et al. Tribotronic bipolar junction transistor for mechanical frequency monitoring and use as touch switch. Microsyst. Nanoeng. 4, 25 (2018).

    Article  Google Scholar 

  91. Won, D. et al. Transparent electronics for wearable electronics application. Chem. Rev. 123, 9982–10078 (2023).

    Article  Google Scholar 

  92. Kang, J., Tok, J. B.-H. & Bao, Z. Self-healing soft electronics. Nat. Electron. 2, 144–150 (2019).

    Article  Google Scholar 

  93. Dai, Y., Hu, H., Wang, M., Xu, J. & Wang, S. Stretchable transistors and functional circuits for human-integrated electronics. Nat. Electron. 4, 17–29 (2021).

    Article  Google Scholar 

  94. Yang, Z. W. et al. Tribotronic transistor array as an active tactile sensing system. ACS Nano 10, 10912–10920 (2016).

    Article  Google Scholar 

  95. Van De Burgt, Y., Melianas, A., Keene, S. T., Malliaras, G. & Salleo, A. Organic electronics for neuromorphic computing. Nat. Electron. 1, 386–397 (2018).

    Article  Google Scholar 

  96. Dai, S. et al. Recent advances in transistor‐based artificial synapses. Adv. Funct. Mater. 29, 1903700 (2019).

    Article  Google Scholar 

  97. Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nat. Nanotechnol. 15, 529–544 (2020).

    Article  Google Scholar 

  98. Mutlu, O., Ghose, S., Gómez-Luna, J. & Ausavarungnirun, R. Processing data where it makes sense: enabling in-memory computation. Microprocess. Microsyst. 67, 28–41 (2019).

    Article  Google Scholar 

  99. Zhao, J., Wei, Z., Yang, X., Zhang, G. & Wang, Z. Mechanoplastic tribotronic two-dimensional multibit nonvolatile optoelectronic memory. Nano Energy 82, 105692 (2021).

    Article  Google Scholar 

  100. Khan, U. et al. Zero-writing-power tribotronic MoS2 touch memory. Nano Energy 75, 104936 (2020).

    Article  Google Scholar 

  101. Gong, J. et al. An n-type organic synaptic transistor with dopant-sensitive plasticity enables sensory-adaptive robotics. Nano Energy 123, 109424 (2024).

    Article  Google Scholar 

  102. Abbott, L. F. & Regehr, W. G. Synaptic computation. Nature 431, 796–803 (2004).

    Article  Google Scholar 

  103. Jia, M. et al. Tactile tribotronic reconfigurable p–n junctions for artificial synapses. Sci. Bull. 67, 803–812 (2022).

    Article  Google Scholar 

  104. Gao, C. et al. Touch-modulated van der Waals heterostructure with self-writing power switch for synaptic simulation. Nano Energy 91, 106659 (2022).

    Article  Google Scholar 

  105. Serio, M. A., Carollo, F. G. & Ferro, V. Raindrop size distribution and terminal velocity for rainfall erosivity studies. A review. J. Hydrol. 576, 210–228 (2019).

    Article  Google Scholar 

  106. Xu, W. & Wang, Z. Fusion of slippery interfaces and transistor-inspired architecture for water kinetic energy harvesting. Joule 4, 2527–2531 (2020).

    Article  Google Scholar 

  107. Ma, W. et al. Liquid–solid triboelectric nanogenerator‐based DNA barcode detection biosensor for species identification. Adv. Sci. 12, 2408718 (2024).

    Article  Google Scholar 

  108. Cai, C. et al. Advanced triboelectric materials for liquid energy harvesting and emerging application. Mater. Today 52, 299–326 (2022).

    Article  Google Scholar 

  109. Lin, S., Chen, X. & Wang, Z. L. Contact electrification at the liquid–solid interface. Chem. Rev. 122, 5209–5232 (2022).

    Article  Google Scholar 

  110. Riaud, A., Wang, C., Zhou, J., Xu, W. & Wang, Z. Hydrodynamic constraints on the energy efficiency of droplet electricity generators. Microsyst. Nanoeng. 7, 49 (2021).

    Article  Google Scholar 

  111. Wang, X. et al. Dynamics for droplet-based electricity generators. Nano Energy 80, 105558 (2021).

    Article  Google Scholar 

  112. Li, X. et al. Spontaneous charging affects the motion of sliding drops. Nat. Phys. 18, 713–719 (2022). This work investigates the effect of tribo-charges on the hydrophobic layer on the sliding behaviour of droplets.

    Article  Google Scholar 

  113. Min, G. et al. Optimizing droplet‐based electricity generator via a low sticky hydrophobic droplet‐impacted surface. Small 20, 2402765 (2024).

    Article  Google Scholar 

  114. Yoo, D. et al. Lotus leaf-inspired droplet-based electricity generator with low-adhesive superhydrophobicity for a wide operational droplet volume range and boosted electricity output. Nano Energy 99, 107361 (2022).

    Article  Google Scholar 

  115. Wang, L. et al. Harvesting energy from high‐frequency impinging water droplets by a droplet‐based electricity generator. EcoMat 3, 12116 (2021).

    Article  Google Scholar 

  116. Zhang, B. et al. Nature-inspired interfacial engineering for energy harvesting. Nat. Rev. Electr. Eng. 1, 218–233 (2024).

    Article  Google Scholar 

  117. Li, Y. et al. A constant-current generator via water droplets driving Schottky diodes without a rectifying circuit. Energy Environ. Sci. 16, 4620–4629 (2023). This work modifies the DEG by material selection, achieving successful conversion of droplet energy into direct current.

    Article  Google Scholar 

  118. Kuang, H. et al. Generating direct current electricity from ionic droplets by using ferroelectric material. ACS Energy Lett. 8, 3832–3838 (2023).

    Article  Google Scholar 

  119. Zhang, N. et al. Performance transition in droplet-based electricity generator with optimized top electrode arrangements. Nano Energy 106, 108111 (2023).

    Article  Google Scholar 

  120. Jang, S. et al. Beyond metallic electrode: spontaneous formation of fluidic electrodes from operational liquid in highly functional droplet-based electricity generator. Adv. Mater. 36, 2403090 (2024). This work develops a fluidic electrode instead of a metallic electrode to make the DEG suitable for different industrial applications.

    Article  Google Scholar 

  121. Wang, L. et al. Monolithic integrated flexible yet robust droplet‐based electricity generator. Adv. Funct. Mater. 32, 2206705 (2022).

    Article  Google Scholar 

  122. Wang, K. et al. Enhancing water droplet-based electricity generator by harnessing multiple-dielectric layers structure. Nano Energy 111, 108388 (2023).

    Article  Google Scholar 

  123. Xu, X. et al. Droplet energy harvesting panel. Energy Environ. Sci. 15, 2916–2926 (2022).

    Article  Google Scholar 

  124. Li, Z. et al. A droplet-based electricity generator for large-scale raindrop energy harvesting. Nano Energy 100, 107443 (2022).

    Article  Google Scholar 

  125. Kam, D. et al. Advancing energy harvesting efficiency from a single droplet: a mechanically guided 4D printed elastic hybrid droplet‐based electricity generator. Adv. Mater. 35, 2303681 (2023). This work, to our knowledge, is the first to combine a DEG with a contact-separation TENG to efficiently harvest raindrop energy.

    Article  Google Scholar 

  126. Zhang, Y. et al. A flexible hybrid generator for efficient dual energy conversion from raindrops to electricity. Adv. Sci. 11, 2404310 (2024).

    Article  Google Scholar 

  127. Xie, L. et al. Interface engineering for efficient raindrop solar cell. ACS Nano 16, 5292–5302 (2022).

    Article  Google Scholar 

  128. Ye, C. et al. An integrated solar panel with a triboelectric nanogenerator array for synergistic harvesting of raindrop and solar energy. Adv. Mater. 35, 2209713 (2023).

    Article  Google Scholar 

  129. Bao, C. et al. Photovoltaic–triboelectric hybridized nanogenerator for simultaneously scavenging light and liquid-droplet energies. Nano Energy 106, 108063 (2023).

    Article  Google Scholar 

  130. Zheng, L. et al. A hybridized power panel to simultaneously generate electricity from sunlight, raindrops, and wind around the clock. Adv. Energy Mater. 5, 1501152 (2015).

    Article  Google Scholar 

  131. Liao, M. et al. An integrated electricity generator harnessing water and solar energy featuring common-electrode configuration. Nano Energy 116, 108831 (2023).

    Article  Google Scholar 

  132. Helseth, L. E. A water droplet-powered sensor based on charge transfer to a flow-through front surface electrode. Nano Energy 73, 104809 (2020).

    Article  Google Scholar 

  133. Xu, W., Li, X., Brugger, J. & Liu, X. Study of the enhanced electricity output of a sliding droplet-based triboelectric nanogenerator for droplet sensor design. Nano Energy 98, 107166 (2022).

    Article  Google Scholar 

  134. Yun, G. et al. Droplet-based triboelectric devices using liquid dielectrics for self-powered sensing applications. Chem. Eng. J. 497, 155659 (2024).

    Article  Google Scholar 

  135. Lin, G. et al. A self-powered droplet sensor based on a triboelectric nanogenerator toward the concentration of green tea polyphenols. Nanoscale 16, 14784–14792 (2024).

    Article  Google Scholar 

  136. Liu, H. et al. Real-time acid rain sensor based on a triboelectric nanogenerator made of a PTFE–PDMS composite film. ACS Appl. Electron. Mater. 3, 4162–4171 (2021).

    Article  Google Scholar 

  137. Wang, C. et al. Utilizing parasitic capacitance of single‐droplet electricity generator for specific bacterial detection. Adv. Funct. Mater. 33, 2302524 (2023).

    Article  Google Scholar 

  138. Pebdeni, A. B., Roshani, A., Mirsadoughi, E., Behzadifar, S. & Hosseini, M. Recent advances in optical biosensors for specific detection of E. coli bacteria in food and water. Food Control. 135, 108822 (2022).

    Article  Google Scholar 

  139. Liu, L., Ma, W., Wang, X. & Li, S. Recent progress of surface-enhanced Raman spectroscopy for bacteria detection. Biosensors 13, 350 (2023).

    Article  Google Scholar 

  140. Sirringhaus, H., Bird, M. & Zhao, N. Charge transport physics of conjugated polymer field‐effect transistors. Adv. Mater. 22, 3893–3898 (2010).

    Article  Google Scholar 

  141. Liu, Y. et al. Triboelectric tactile sensor for pressure and temperature sensing in high-temperature applications. Nat. Commun. 16, 383 (2025).

    Article  Google Scholar 

  142. Luo, X. et al. A flexible multifunctional triboelectric nanogenerator based on MXene/PVA hydrogel. Adv. Funct. Mater. 31, 2104928 (2021).

    Article  Google Scholar 

  143. Zhang, B. et al. Self-powered recycling of spent lithium iron phosphate batteries via triboelectric nanogenerator. Energy Environ. Sci. 16, 3873–3884 (2023).

    Article  Google Scholar 

  144. Wei, Y. et al. Mechano-driven logic-in-memory with neuromorphic triboelectric charge-trapping transistor. Nano Energy 126, 109622 (2024).

    Article  Google Scholar 

  145. Meng, Y. et al. Mechanosensation-active matrix based on direct-contact tribotronic planar graphene transistor array. ACS Nano 12, 9381–9389 (2018).

    Article  Google Scholar 

  146. Shan, L. et al. Bioinspired kinesthetic system for human–machine interaction. Nano Energy 88, 106283 (2021).

    Article  Google Scholar 

  147. Li, Y. et al. Ambipolar tribotronic transistor of MoTe2. Nano Res. 16, 11907–11913 (2023).

    Article  Google Scholar 

  148. Zhao, L. et al. The novel transistor and photodetector of monolayer MoS2 based on surface-ionic-gate modulation powered by a triboelectric nanogenerator. Nano Energy 62, 38–45 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB1210301), National Natural Science Foundation of China (No. 42276216 and U22A20112) and Shandong Postdoctoral Science Foundation (SDCX-ZG-202400209).

Author information

Authors and Affiliations

Authors

Contributions

W.M., Y.S. and C.W. surveyed the literature, and collected and researched data for the article. All authors contributed substantially to discussion of the content. W.M. and Y.S. wrote the article. W.M., Y.S. and P.W. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Peng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Electrical Engineering thanks Guobiao Hu, Sumanta K. Karan, Parisa Fakhry and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, W., Sun, Y., Wang, C. et al. Mutual promotion of triboelectric nanogenerators and field-effect transistors towards the IoT. Nat Rev Electr Eng 2, 541–554 (2025). https://doi.org/10.1038/s44287-025-00193-3

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44287-025-00193-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing