Abstract
Augmented reality (AR) and virtual reality (VR) technologies enable interactive and immersive user experiences through head-worn devices that contain microdisplays. These microdisplays must have superior pixel density, brightness, contrast and response times, owing to the proximity of the AR glasses or VR headset to the eyes. Advanced microdisplay technologies in light engines such as liquid crystal on silicon (LCoS), organic light-emitting diodes on silicon (OLEDoS) and light-emitting diodes on silicon (LEDoS) have emerged to meet the demands of AR and VR, and are typically integrated with optical components such as free-space, freeform or waveguide combiners. In this Perspective, we explore the key requirements for AR and VR microdisplays, consider the advantages of each light-engine technology and discuss how their performance can be accurately characterized. We also examine how LCoS, OLEDoS and LEDoS technologies are integrated with complementary metal–oxide–semiconductor (CMOS) backplanes, and paired with optical combiners in AR displays, to merge virtual images with real-world scenes.
Key points
-
Head-mounted displays and near-eye displays for virtual reality (VR) and augmented reality (AR) applications require high pixel density and brightness, as well as an appropriate balance of field of view, eyebox, angular resolution and contrast ratio, all with a lightweight form factor.
-
Three leading light-engine technologies for AR and VR microdisplays, each on a silicon–CMOS (complementary metal–oxide–semiconductor) backplane, have emerged: liquid crystal on silicon (LCoS), organic light-emitting diodes on silicon (OLEDoS) and light-emitting diodes on silicon (LEDoS).
-
LCoS is a reflective display, using external high-power illumination sources without colour filters, and can achieve high pixel density and brightness, but suffers optical losses through polarization and reflection processes.
-
OLEDoS is a self-emissive display that combines high contrast ratios and wide colour gamut with ease of manufacture, but has limited brightness for AR displays.
-
LEDoS is another self-emissive display with high brightness and contrast ratio, and can have a long lifespan, but immature fabrication methods lead to high manufacturing costs.
-
New techniques have been developed to characterize the performance of these microdisplays, and a new kind of optical combiner — the waveguide combiner — has emerged for use with microdisplays for AR.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout








Similar content being viewed by others

References
Bhowmik, A. K. Virtual and augmented reality: human sensory-perceptual requirements and trends for immersive spatial computing experiences. J. Soc. Inf. Disp. 32, 605–646 (2024).
Joo, W. J. & Brongersma, M. L. Creating the ultimate virtual reality display. Science 377, 1377–1378 (2022).
Lee, B., Yoo, C., Jeong, J., Lee, B. & Bang, K. Key issues and technologies for AR/VR head-mounted displays. In Proc. Advances in Display Technologies X https://doi.org/10.1117/12.2551400 (SPIE, 2020).
Machala, S., Chamier-Gliszczynski, N. & Królikowski, T. Application of AR/VR technology in industry 4.0. Proc. Comp. Sci. 207, 2990–2998 (2022).
Renu, N. Applications of AR and VR technologies in healthcare marketing. J. Mark. Manag. 9, 35–39 (2021).
Wu, M. C., Hsu, Z. L. & Wu, C. Y. High-pixel-density 960 × 540 flip-chip AlGaInP red MicroLED display. IEEE Trans. Electron. Devices 69, 6206–6211 (2022).
Yu, B., Li, Y., Li, J., Ding, X. & Li, Z. Challenges of high-yield manufacture in micro-light-emitting diodes displays: chip fabrication, mass transfer, and detection. J. Phys. D 57, 463001 (2024).
Huang, Y., Hsiang, E.-L., Deng, M.-Y. & Wu, S.-T. Mini-LED, micro-LED and OLED displays: present status and future perspectives. Light Sci. Appl. 9, 105 (2020).
Wheelwright, B. et al. Field of view: not just a number. In Proc. Digital Optics for Immersive Displays https://doi.org/10.1117/12.2307303 (SPIE, 2018).
Xiong, J., Hsiang, E. L., He, Z., Zhan, T. & Wu, S. T. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light Sci. Appl. 10, 216 (2021).
Chae, M., Bang, K., Yoo, D. & Jeong, Y. Étendue expansion in holographic near eye displays through sparse eye-box generation using lens array eyepiece. ACM Trans. Graph. 42, 1–13 (2023).
Chang, C., Bang, K., Wetzstein, G., Lee, B. & Gao, L. Toward the next-generation VR/AR optics: a review of holographic near-eye displays from a human-centric perspective. Optica 7, 1563 (2020).
Eisenberg, E. & Jensen, J. Measuring and qualifying optical performance of AR/VR/MR device displays and addressing the unique visual requirements of transparent AR/MR displays. In Proc. Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (eds Kress, B. C. & Peroz, C.) https://doi.org/10.1117/12.2546613 (SPIE, 2020).
Ding, Y. et al. Waveguide-based augmented reality displays: perspectives and challenges. eLight 3, 24 (2023).
Nguyen, J., Smith, C., Magoz, Z. & Sears, J. Screen door effect reduction using mechanical shifting for virtual reality displays. In Proc. Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (eds Kress, B. C. & Peroz, C.) https://doi.org/10.1117/12.2544479 (SPIE, 2020).
Zhan, T., Yin, K., Xiong, J., He, Z. & Wu, S.-T. Augmented reality and virtual reality displays: perspectives and challenges. iScience 23, 101397 (2020).
Hsiang, E.-L. et al. AR/VR light engines: perspectives and challenges. Adv. Opt. Photonics 14, 783 (2022).
Pivnenko, M., Li, K. & Chu, D. Sub-millisecond switching of multi-level liquid crystal on silicon spatial light modulators for increased information bandwidth. Opt. Express 29, 24614 (2021).
Chen, Y., Peng, F., Wu, S., Mo, L. & An, Z. 65.1: A vertically‐aligned LCOS with submillisecond response time. SID Symp. Dig. Tech. Pap. 44, 898–901 (2013).
Jo, J. et al. 25‐1: Invited Paper. OLED microdisplays for AR/VR applications: technical approaches toward realization of over 10,000 nits full‐color panels. SID Symp. Dig. Tech. Pap. 53, 287–290 (2022).
Kang mo, C. & Lee, H. Recent progress of organic light-emitting diode microdisplays for augmented reality/virtual reality applications. J. Inf. Disp. 23, 19–32 (2022).
Long, M. et al. Enabling high-throughput, low-cost manufacturing of OLED display and lighting panels. MRS Proc. 1212, 1212-S06-06-C07-06 (2009).
Wu, Y.-H. et al. Breaking the limits of virtual reality display resolution: the advancements of a 2117-pixels per inch 4K virtual reality liquid crystal display. J. Opt. Microsyst. 3, 041208 (2023).
Hatchett, J. et al. Displaying detail in bright environments: a 10,000 nit display and its evaluation. Signal Process. Image Commun. 76, 125–134 (2019).
Ho, C. H., Panagopoulos, G. & Roy, K. A physical model for grain-boundary-induced threshold voltage variation in polysilicon thin-film transistors. IEEE Trans. Electron. Devices 59, 2396–2402 (2012).
Chan, V. W. C., Chan, P. C. H. & Yin, C. The effects of grain boundaries in the electrical characteristics of large grain polycrystalline thin-film transistors. IEEE Trans. Electron. Devices 49, 1384–1391 (2002).
Shin, W. S. et al. A driving method of pixel circuit using a-IGZO TFT for suppression of threshold voltage shift in AMLED displays. IEEE Electron. Device Lett. 38, 760–762 (2017).
Lin, C. L. et al. Compensation pixel circuit to improve image quality for mobile AMOLED displays. IEEE J. Solid-State Circuits 54, 489–500 (2019).
Ahn, H. A., Hong, S. K. & Kwon, O. K. An active matrix micro-pixelated LED display driver for high luminance uniformity using resistance mismatch compensation method. IEEE Trans. Circuits Syst. II Express Briefs 65, 724–728 (2018).
Lee, H. C. et al. A high voltage driving chiplet in standard 0.18-μm CMOS for micro-pixelated LED displays integrated with LTPS TFTs. IEEE Trans. Circuits Syst. Video Technol. 32, 7204–7211 (2022).
Yang, Z. et al. Advances and challenges in microdisplays and imaging optics for virtual reality and mixed reality. Device 2, 100398 (2024).
Kaçar, R. et al. OLED-on-silicon (OLEDoS) microdisplays: technology challenges, design considerations, and adaptation in eXtended reality (XR) ecosystem — review. Next Nanotechnol. 7, 100132 (2025).
Canals, J. et al. High-speed 512 × 512 18 μm-pitch array CMOS backplane for GaN-based microdisplay. In 37th Conf. Design of Circuits and Integrated Circuits https://doi.org/10.1109/DCIS55711.2022.9970075 (IEEE, 2022).
Canals, J. et al. 11-2: A 9 kfps 1411 PPI GaN-based µLED display CMOS backplane. SID Symp. Dig. Tech. Pap. 54, 125–128 (2023).
Shin, H.-J., Kim, Y.-D. & Choi, B.-D. 4670‐PPI OLEDoS pixel circuit design for wide data voltage range in a 5 V 0.13 μm CMOS process. J. Soc. Inf. Disp. 32, 165–173 (2024).
Lee, H. C., Im, H., Jeon, J.-H., Moon, K. C. & Kim, Y.-S. New pixel circuit based on silicon backplane for micro-organic light-emitting diode employing hybrid program method. J. Electr. Eng. Technol. 20, 2529–2536 (2025).
Cheng, S.-S. & Chao, P. C.-P. An ultra-high 6318-PPI pixel circuit for micro-OLED displays with Vth compensated up to 10-bit gray levels. IEEE J. Solid-State Circuits 59, 2236–2247 (2024).
Chang, J.-H. R., Vijaya Kumar, B. V. K. & Sankaranarayanan, A. C. 216 shades of gray: high bit-depth projection using light intensity control. Opt. Express 24, 27937 (2016).
Wu, S.-T. & Wu, C.-S. Mixed-mode twisted nematic liquid crystal cells for reflective displays. Appl. Phys. Lett. 68, 1455–1457 (1996).
Chen, H.-W., Lee, J.-H., Lin, B.-Y., Chen, S. & Wu, S.-T. Liquid crystal display and organic light-emitting diode display: present status and future perspectives. Light Sci. Appl. 7, 17168–17168 (2017).
Guo, Q., Yan, K., Chigrinov, V., Zhao, H. & Tribelsky, M. Ferroelectric liquid crystals: physics and applications. Crystals 9, 470 (2019).
Peng, F., Gou, F., Chen, H., Huang, Y. & Wu, S.-T. A submillisecond-response liquid crystal for color sequential projection displays: submillisecond-response liquid crystal. J. Soc. Info. Display 24, 241–245 (2016).
Yin, K. et al. Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications. Light. Sci. Appl. 11, 161 (2022).
Young, E. et al. Segmented red, green, and blue light sources for energy efficient LCoS AR displays. In Proc. Light-Emitting Devices, Materials, and Applications XXVIII 118–124 (SPIE, 2024).
Li, Y.-W. et al. Front-lit LCOS for AR displays. J. Opt. Microsyst. 3, 041205 (2023).
Zhang, Q., Zachmann, I., Ji, L. & Mao, C. Novel frame buffer pixel circuits and silicon backplane development for polarization-independent LCOS. IEEE Photonics J. 16, 1–9 (2024).
Ewing, T. et al. Liquid crystal on silicon (LCOS) devices and their application to scene projection. In Proc. Technologies for Synthetic Environments: Hardware-in-the-Loop XVII (eds Buford, J. A. et al.) https://doi.org/10.1117/12.923085 (SPIE, 2012).
Jeong, M. et al. 0.37-inch UHD, 11,800 PPI liquid crystal on silicon micro-display with embedded 4x up-scaler using micro-mirror space-interpolation pixel circuit for metaverse augmented reality glasses. In Advances in Display Technologies XIII (eds Lee, J.-H. et al.) https://doi.org/10.1117/12.2645045 (SPIE, 2023).
Huang, S. et al. Advances in full-color microdisplays based on microLED for AR and VR applications. IEEE Open J. Immersive Disp. 1, 127–134 (2024).
Murat, H. et al. Two LCOS full color projector with efficient LED illumination engine. Displays 30, 155–163 (2009).
Kurtz, A. F. et al. An LCOS-based digital-cinema projector. J. Soc. Inf. Disp. 14, 311–323 (2006).
Curtis, K. R. Unveiling magic leap 2’s advanced AR platform and revolutionary optics. In Proc. SPIE AR, VR, MR Industry Talks 2022 https://doi.org/10.1117/12.2632495 (SPIE, 2022).
Kang, J., Baek, G. W., Lee, J. Y., Kwak, J. & Park, J.-H. Advances in display technology: augmented reality, virtual reality, quantum dot-based light-emitting diodes, and organic light-emitting diodes. J. Inf. Disp. 25, 219–234 (2024).
Hillebrandt, S. et al. High‐density integration of ultrabright OLEDs on a miniaturized needle‐shaped CMOS backplane. Adv. Mater. 36, 2300578 (2024).
Tan, G. et al. Analysis and optimization on the angular color shift of RGB OLED displays. Opt. Express 25, 33629 (2017).
Yang, L. et al. Tricolor microcavity OLEDs based on P-nc-Si:H films as the complex anodes. J. Semicond. 30, 063005 (2009).
Dong, S.-C., Deng, S., Yang, J., Jiang, Y. & Tang, C. W. 34.4: 3‐inch, 3000‐ppi silicon nitride masks for direct patterning of OLED microdisplays. SID Symp. Dig. Tech. Pap. 53, 367–368 (2022).
Jiang, Y., Tam, B. S. T., Dong, S. & Tang, C. W. 61‐2: 2‐inch, 2,000‐ppi silicon nitride mask for patterning ultra‐high‐resolution OLED displays. SID Symp. Dig. Tech. Pap. 51, 909–912 (2020).
Giebink, N. C., D’Andrade, B. W., Weaver, M. S., Brown, J. J. & Forrest, S. R. Direct evidence for degradation of polaron excited states in organic light emitting diodes. J. Appl. Phys. 105, 124514 (2009).
Giebink, N. C. et al. Intrinsic luminance loss in phosphorescent small-molecule organic light emitting devices due to bimolecular annihilation reactions. J. Appl. Phys. 103, 044509 (2008).
Lee, J. et al. Hot excited state management for long-lived blue phosphorescent organic light-emitting diodes. Nat. Commun. 8, 15566 (2017).
Cho, H. et al. White organic light-emitting diode (OLED) microdisplay with a tandem structure. J. Inf. Disp. 20, 249–255 (2019).
Hamer, J. et al. 12‐2: High‐performance OLED microdisplays made with multi‐stack OLED formulations. SID Symp. Dig. Tech. Pap. 51, 149–152 (2020).
Pengcheng, J. et al. P‐127: Improving the driving voltage stability of tandem red OLED. SID Symp. Dig. Tech. Pap. 54, 1323–1325 (2023).
Bower, C. A., Menard, E., Bonafede, S., Hamer, J. W. & Cok, R. S. Transfer-printed microscale integrated circuits for high performance display backplanes. IEEE Trans. Compon. Packag. Manufact. Technol. 1, 1916–1922 (2011).
Kim, Y.-H. et al. 3.5-inch QCIF AMOLED panels with ultra-low-temperature polycrystalline silicon thin film transistor on plastic substrate. ETRI J. 30, 308–314 (2008).
Kang, H. et al. Investigating the electrical crosstalk effect between pixels in high-resolution organic light-emitting diode microdisplays. Sci. Rep. 13, 14070 (2023).
Sun, Y. & Forrest, S. R. Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids. Nat. Photon 2, 483–487 (2008).
Möller, S. & Forrest, S. R. Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays. J. Appl. Phys. 91, 3324–3327 (2002).
Alnasser, K., Hassan, S., Kamau, S., Zhang, H. & Lin, Y. Enhanced light extraction from organic light-emitting diodes by reducing plasmonic loss through graded photonic super-crystals. J. Opt. Soc. Am. B 37, 1283 (2020).
Koo, W. H. et al. Light extraction of organic light emitting diodes by defective hexagonal‐close‐packed array. Adv. Funct. Mater. 22, 3454–3459 (2012).
Kim, J. et al. Systematic control of the orientation of organic phosphorescent Pt complexes in thin films for increased optical outcoupling. Adv. Mater. 31, 1900921 (2019).
Kim, J., Qu, Y., Coburn, C. & Forrest, S. R. Efficient outcoupling of organic light-emitting devices using a light-scattering dielectric layer. ACS Photonics 5, 3315–3321 (2018).
Salehi, A., Fu, X., Shin, D. & So, F. Recent advances in OLED optical design. Adv. Funct. Mater. 29, 1808803 (2019).
Furno, M., Meerheim, R., Hofmann, S., Lüssem, B. & Leo, K. Efficiency and rate of spontaneous emission in organic electroluminescent devices. Phys. Rev. B 85, 115205 (2012).
Qu, Y., Kim, J., Coburn, C. & Forrest, S. R. Efficient, nonintrusive outcoupling in organic light emitting devices using embedded microlens arrays. ACS Photonics 5, 2453–2458 (2018).
Sun, Y. & Forrest, S. R. Organic light emitting devices with enhanced outcoupling via microlenses fabricated by imprint lithography. J. Appl. Phys. 100, 073106 (2006).
Wu, M.-H. & Whitesides, G. M. Fabrication of two-dimensional arrays of microlenses and their applications in photolithography. J. Micromech. Microeng. 12, 747–758 (2002).
Shin, S.-R. et al. Improving light extraction of flexible OLEDs using a mechanically robust Ag mesh/ITO composite electrode and microlens array. J. Mater. Chem. C 6, 5444–5452 (2018).
Motoyama, Y. et al. High‐efficiency OLED microdisplay with microlens array. J. Soc. Info Disp. 27, 354–360 (2019).
Jo, J. et al. High‐luminance, large‐size 4 K OLED microdisplays for VR/MR applications. J. Soc. Info Disp. 32, 371–378 (2024).
Vogel, U. et al. 77‐1: Invited Paper. Ultra‐low power OLED microdisplay for extended battery life in NTE displays. SID Symp. Dig. Tech. Pap. 48, 1125–1128 (2017).
Zhang, Y., Lee, J. & Forrest, S. R. Tenfold increase in the lifetime of blue phosphorescent organic light-emitting diodes. Nat. Commun. 5, 5008 (2014).
Hatakeyama, T. et al. Ultrapure blue thermally activated delayed fluorescence molecules: efficient HOMO–LUMO separation by the multiple resonance effect. Adv. Mater. 28, 2777–2781 (2016).
Zhao, H. et al. Control of host-matrix morphology enables efficient deep-blue organic light-emitting devices. Adv. Mater. 35, 2210794 (2023).
Zhao, H., Arneson, C. E., Fan, D. & Forrest, S. R. Stable blue phosphorescent organic LEDs that use polariton-enhanced Purcell effects. Nature 626, 300–305 (2024).
Chiang, Y.-C. et al. Retinal resolution display technology brings impact to VR industry. In ACM SIGGRAPH 2018 Posters https://doi.org/10.1145/3230744.3230781 (ACM, 2018).
Vogel, U. et al. OLED-on-silicon microdisplays: technology, devices, applications. In 48th European Solid-State Device Research Conference https://doi.org/10.1109/ESSDERC.2018.8486920 (IEEE, 2018).
Wartenberg, P. et al. 40‐5: Invited Paper. High frame‐rate 1″ WUXGA OLED microdisplay and advanced free‐form optics for ultra‐compact VR headsets. SID Symp. Dig. Tech. Pap. 49, 514–517 (2018).
Geng, M. et al. Viewing optics for immersive near-eye displays: pupil swim/size and weight/stray light. In Proc. Digital Optics for Immersive Displays (eds Osten, W. et al.) https://doi.org/10.1117/12.2307671 (SPIE, 2018).
Khan, S. A. et al. Optical system for head-mounted display. US patent 20210132349A1 (2021).
Ji, Y., Ran, F., Xu, H., Shen, W. & Zhang, J. Improved performance and low cost OLED microdisplay with titanium nitride anode. Org. Electron. 15, 3137–3143 (2014).
Xue, Q. & Xie, G. Easily reproducible top-emitting organic light-emitting devices for microdisplays adapted to aluminum contact from the standard CMOS processes. J. Inf. Disp. 21, 131–137 (2020).
Kneissl, M. et al. Characterization of AlGaInN diode lasers with mirrors from chemically assisted ion beam etching. Appl. Phys. Lett. 72, 1539–1541 (1998).
Khan, M. A., Skogman, R. A., Hove, J. M. V., Krishnankutty, S. & Kolbas, R. M. Photoluminescence characteristics of AlGaN–GaN–AlGaN quantum wells. Appl. Phys. Lett. 56, 1257–1259 (1990).
Tran, C. A., Osinski, A., Karlicek, R. F. & Berishev, I. Growth of InGaN/GaN multiple-quantum-well blue light-emitting diodes on silicon by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 75, 1494–1496 (1999).
Krames, M. R. et al. Status and future of high-power light-emitting diodes for solid-state lighting. IEEE/OSA J. Disp. Technol. 3, 160–175 (2007).
Behrman, K. & Kymissis, I. Micro light-emitting diodes. Nat. Electron. 5, 564–573 (2022).
Chen, Z., Yan, S. & Danesh, C. MicroLED technologies and applications: characteristics, fabrication, progress, and challenges. J. Phys. D 54, 123001 (2021).
Miao, W. C. et al. Microdisplays: mini-LED, micro-OLED, and micro-LED. Adv. Opt. Mater. 12, 2300112 (2024).
Murawski, C., Leo, K. & Gather, M. C. Efficiency roll-off in organic light-emitting diodes. Adv. Mater. 25, 6801–6827 (2013).
Kim, C. et al. 61‐1: FMM pixel patterning for various OLED displays. SID Symp. Dig. Tech. Pap. 51, 905–908 (2020).
Cho, H., Kim, D., Lee, S., Yoo, C. & Sim, Y. Efficiency enhancement of submicron‐size light‐emitting diodes by triple dielectric layers. J. Soc. Info Disp. 31, 289–297 (2023).
Sheen, M. et al. Highly efficient blue InGaN nanoscale light-emitting diodes. Nature 608, 56–61 (2022).
Steudel, S., Vertommen, J., Buscemi, G., Janssens, T. & Bach, L. Integration challenges for MicroLED on CMOS for AR. SID Symp. Dig. Tech. Pap. 55, 497–500 (2024).
Chong, W. C. et al. 31.3: Low optical crosstalk micro-LED micro-display with semi-sphere micro-lens for light collimation. SID Symp. Dig. Tech. Pap. 49, 339–342 (2018).
Steudel, S. et al. 4.3: MircoLED display on 300 mm CMOS platform — crosstalk and optical outcoupling. SID Symp. Dig. Tech. Pap. 54, 25–28 (2023).
Kumar, V. & Kymissis, I. MicroLED/LED electro-optical integration techniques for non-display applications. Appl. Phys. Rev. 10, 021306 (2023).
Choi, H. W. et al. GaN micro-light-emitting diode arrays with monolithically integrated sapphire microlenses. Appl. Phys. Lett. 84, 2253–2255 (2004).
Hwangbo, S., Hu, L., Hoang, A. T., Choi, J. Y. & Ahn, J. H. Wafer-scale monolithic integration of full-colour micro-LED display using MoS2 transistor. Nat. Nanotechnol. 17, 500–506 (2022).
Wiemer, M., Balram, N., Martin, P. S. & Lee, G. High-performance QDs enable microLED disruption of displays. Inf. Disp. 40, 26–31 (2024).
Zhang, L., Ou, F., Chong, W. C., Chen, Y. & Li, Q. Wafer-scale monolithic hybrid integration of Si-based IC and III–V epi-layers — a mass manufacturable approach for active matrix micro-LED micro-displays. J. Soc. Inf. Disp. 26, 137–145 (2018).
Wang, C.-J. et al. InGaN resonant-cavity light-emitting diodes with porous and dielectric reflectors. Appl. Sci. 11, 8 (2020).
Chen, J., Zhao, Q., Yu, B. & Lemmer, U. A review on quantum dot-based color conversion layers for mini/micro-LED displays: packaging, light management, and pixelation. Adv. Opt. Mater. 12, 2300873 (2024).
Moon, H., Lee, C., Lee, W., Kim, J. & Chae, H. Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications. Adv. Mater. 31, e1804294 (2019).
Akkerman, Q. A., Rainò, G., Kovalenko, M. V. & Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018).
Sui, Y. & Zorman, C. A. Review — inkjet printing of metal structures for electrochemical sensor applications. J. Electrochem. Soc. 167, 037571 (2020).
Yang, P., Zhang, L., Kang, D. J., Strahl, R. & Kraus, T. High-resolution inkjet printing of quantum dot light-emitting microdiode arrays. Adv. Opt. Mater. 8, 1901429 (2020).
Hu, Z. et al. Inkjet printed uniform quantum dots as color conversion layers for full-color OLED displays. Nanoscale 12, 2103–2110 (2020).
Lee, T. Y. et al. InGaN blue resonant cavity micro-LED with RGY quantum dot layer for broad gamut, efficient displays. Discov. Nano 19, 75 (2024).
Bae, J. et al. Quantum dot-integrated GaN light-emitting diodes with resolution beyond the retinal limit. Nat. Commun. 13, 1862 (2022).
Bao, S. et al. A review of silicon-based wafer bonding processes, an approach to realize the monolithic integration of Si-CMOS and III–V-on-Si wafers. J. Semicond. 42, 023106 (2021).
Templier, F. & Bernard, J. A new approach for fabricating high-performance microLED displays. SID Symp. Dig. Tech. Pap. 50, 240–243 (2019).
Templier, F. & Dubarry, C. Challenges and solutions for the fabrication of CMOS-driven microLED displays. In Proc. International Display Workshops 29, 871–874 (IDW, 2022).
Chen, P. & Li, Q. Monolithic microLED display for AR applications. SID Symp. Dig. Tech. Pap. 54, 1874–1877 (2023).
Tan, W. S. & Li, Q. Industrializing microLED microdisplays for AR applications. SID Symp. Dig. Tech. Pap. 54, 21–24 (2023).
Chen, F. et al. Mass transfer techniques for large-scale and high-density microLED arrays. Int. J. Extreme Manuf. 4, 042005 (2022).
Lee, D. et al. Fluidic self-assembly for microLED displays by controlled viscosity. Nature 619, 755–760 (2023).
Gong, Z. Layer-scale and chip-scale transfer techniques for functional devices and systems: a review. Nanomaterials 11, 842 (2021).
Virey, E. H. & Baron, N. Status and prospects of microLED displays. SID Symp. Dig. Tech. Pap. 49, 593–596 (2018).
Chen, D., Chen, Y.-C., Zeng, G., Zhang, D. W. & Lu, H.-L. Integration technology of micro-LED for next-generation display. Research 6, 0047 (2023).
Jourdon, J. et al. Evaluation of hybrid bonding interface quality by contact resistivity measurement. IEEE Trans. Electron. Devices 66, 2699–2703 (2019).
Dubarry, C. et al. 3D interconnection using copper direct hybrid bonding for GaN on silicon wafer. In IEEE International 3D System Integration Conferenc https://doi.org/10.1109/3DIC52383.2021.9687599 (IEEE, 2021).
Steudel, S. et al. MircoLED display integration on 300 mm advanced CMOS platform. SID Symp. Dig. Tech. Pap. 53, 748–751 (2022).
Geum, D. M. et al. Strategy toward the fabrication of ultrahigh-resolution micro-LED displays by bonding-interface-engineered vertical stacking and surface passivation. Nanoscale 11, 23139–23148 (2019).
Shin, J. et al. Vertical full-colour micro-LEDs via 2D materials-based layer transfer. Nature 614, 81–87 (2023).
Snyder, E. J., Chideme, J. & Craig, G. S. W. Fluidic self-assembly of semiconductor devices: a promising new method of mass-producing flexible circuitry. Jpn. J. Appl. Phys. 41, 4366 (2002).
Hwang, J. et al. Wafer-scale alignment and integration of micro-light-emitting diodes using engineered van der Waals forces. Nat. Electron. 6, 216–224 (2023).
Yeh, H. J. J. & Smith, J. S. Fluidic self-assembly for the integration of GaAs light-emitting diodes on Si substrates. IEEE Photonics Technology Letters 6, (1994).
Chang, W. et al. Concurrent self-assembly of RGB microLEDs for next-generation displays. Nature 617, 287–291 (2023).
Wang, S., Zhao, F., Zhu, X. & Ruan, Y. Research on the measurement of micro display luminance. In International Conference of Optical Imaging and Measurement 286–289 (IEEE, 2021).
Beamonte, J. I. Stability of the spherical aberration up to the fifth order in cemented doublets. J. Opt. A 2, 161–168 (2000).
Ilinsky, R. Gradient-index meniscus lens free of spherical aberration. J. Opt. A 2, 449–451 (2000).
Zou, P.-A. et al. A new analog PWM pixel circuit with metal oxide TFTs for micro-LED displays. IEEE Trans. Electron. Devices 69, 4306–4311 (2022).
Han, J.-H., Wang, Y. & Wheelwright, B. 19‐4: Invited Paper. Digital driving on silicon microdisplay for XR. SID Symp. Dig. Tech. Pap. 55, 231–235 (2024).
Pedeville, G. R., Rouse, J. H. & Kreysar, D. F. 71‐1: Fractional pixel method for improved pixel‐level measurement and correction (Demura) of high‐resolution displays. SID Symp. Dig. Tech. Pap. 51, 1056–1059 (2020).
Pedeville, G. R. & Rouse, J. H. Methods and systems for measuring electronic visual displays using fractional pixels. US Patent 10,971,044 B2 (2019).
Cho, J., Kim, Y., Jung, S. H., Shin, H. & Kim, T. 78‐4: Screen door effect mitigation and its quantitative evaluation in VR display. SID Symp. Dig. Tech. Pap. 48, 1154–1156 (2017).
Kelley, E. F. Proposed diffuse ambient contrast measurement methods for flat panel displays. NIST Interagency/Internal Report (NISTIR) 6738 (2001).
Boynton, P. A. & Libert, J. Meeting the Metrology Needs of the Microdisplay Industry (NIST, 2000).
Díaz-Barrancas, F., Rodríguez, R. G., Bayer, F. S., Aizenman, A. & Gegenfurtner, K. R. High-fidelity color characterization in virtual reality across head mounted displays, game engines, and materials. Opt. Express 32, 22388 (2024).
Moreau, O., Curt, J.-N. & Leroux, T. R. Contrast and colorimetry measurements versus viewing angle for microdisplays. In Proc. Digital Cinema and Microdisplays (ed. Chinnock, C. B.) https://doi.org/10.1117/12.411767 (SPIE, 2000).
Chen, W., Ji, Y., Zhang, K., Mu, T. & Ran, F. Dynamic false contour evaluation method based on just noticeable distortion model for microdisplays. Displays 71, 102130 (2022).
Ak, A., Pastor, A. & Le Callet, P. From just noticeable differences to image quality. In Proc. 2nd Workshop on Quality of Experience in Visual Multimedia Applications https://doi.org/10.1145/3552469.3555712 (ACM, 2022).
Virey, E. H. & Bouhamri, Z. 59‐1: Invited Paper. From lab to fab: challenges and requirements for high‐volume microLED manufacturing equipment. SID Symp. Dig. Tech. Pap. 52, 826–829 (2021).
Tsai, P.-S., Wu, T.-F., Chen, J.-Y. & Tsai, C.-L. Development of automated optical inspection and classification systems. Sens. Mater. 34, 3895 (2022).
Jeong, E.-Y. et al. A more reliable defect detection and performance improvement method for panel inspection based on artificial intelligence. J. Inf. Disp. 22, 127–136 (2021).
Go, G.-M., Bu, S.-J. & Cho, S.-B. A deep learning-based surface dDefect inspection system for smartphone glass. In Intelligent Data Engineering and Automated Learning (eds Yin, H. et al.) 375–385 (Springer, 2019).
Ding, Y. et al. Breaking the optical efficiency limit of virtual reality with a nonreciprocal polarization rotator. Opto-Electron. Adv. 7, 230178–230178 (2024).
Zou, J. et al. Doubling the optical efficiency of VR systems with a directional backlight and a diffractive deflection film. Opt. Express 29, 20673 (2021).
Luo, Z., Ding, Y., Rao, Y. & Wu, S. High‐efficiency folded optics for near‐eye displays. J. Soc. Info Disp. 31, 336–343 (2023).
Usukura, N., Minoura, K. & Maruyama, R. Novel pancake‐based HMD optics to improve light efficiency. J. Soc. Info Disp. 31, 344–354 (2023).
Zhang, Y. & Fang, F. Development of planar diffractive waveguides in optical see-through head-mounted displays. Precis. Eng. 60, 482–496 (2019).
Kress, B. C. Optical Architectures for Augmented-, Virtual-, and Mixed-Reality Headsets (SPIE, 2020).
Zhang, G. et al. The present and future of mixed reality in China. Commun. ACM 64, 64–69 (2021).
Rolland, J. P. & Goodsell, J. Waveguide-based augmented reality displays: a highlight. Light Sci. Appl. 13, 22 (2024).
Chen, S.-L., Fu, L.-W., Huang, J.-W., Shih, K.-T. & Chen, H. H. Geometric lightguide for near-eye light field displays. Appl. Opt. 63, 1457–1470 (2024).
Li, Y., Cheng, D., Huang, Y., Hou, Q. & Wang, Y. Design and fabrication of a compact coaxial catadioptric augmented reality near-eye display enabled by genetic algorithm. Opt. Lasers Eng. 176, 108112 (2024).
Wu, J.-Y. & Kim, J. Prescription AR: a fully-customized prescription-embedded augmented reality display. Opt. Express 28, 6225–6241 (2020).
Ding, Y. et al. Breaking the in-coupling efficiency limit in waveguide-based AR displays with polarization volume gratings. Light Sci. Appl. 13, 185 (2024).
Yeom, J., Jeong, J., Hong, J. & Choi, K. Analysis on image quality of a holographic lens with a non-converging signal wave for compact near-eye displays. Opt. Express 30, 36632 (2022).
Cheng, D. et al. Design and manufacture AR head-mounted displays: a review and outlook. Light Adv. Manuf. 2, 24 (2021).
Quesnel, E. et al. Dimensioning a full color LED microdisplay for augmented reality headset in a very bright environment. J. Soc. Info Disp. 29, 3–16 (2021).
Ni, D. et al. Uniformity improvement of two-dimensional surface relief grating waveguide display using particle swarm optimization. Opt. Express 30, 24523–24543 (2022).
Chen, Q. et al. Hybrid meta-optics enabled compact augmented reality display with computational image reinforcement. ACS Photonics 11, 3794–3803 (2024).
Weng, Y. et al. High-efficiency and compact two-dimensional exit pupil expansion design for diffractive waveguide based on polarization volume grating. Opt. Express 31, 6601–6614 (2023).
Gu, Y. et al. Holographic waveguide display with large field of view and high light efficiency based on polarized volume holographic grating. IEEE Photonics J. 14, 1–7 (2021).
Chen, E. et al. Collimated LED array with mushroom-cap encapsulation for near-eye display projection engine. IEEE J. Sel. Top. Quantum Electron. 30, 1–10 (2024).
Cheng, D., Wang, Y., Hua, H. & Talha, M. M. Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism. Appl. Opt. 48, 2655–2668 (2009).
Shen, Z. et al. Holographic recording performance of acrylate-based photopolymer under different preparation conditions for waveguide display. Polymers 13, 936 (2021).
Tang, E. Spotlight display technology: world’s first adaptive LED illumination LCoS architecture. In Proc. SPIE AR, VR, MR Invited Talks 2024 https://doi.org/10.1117/12.3024888 (SPIE, 2024).
Peng, F. et al. 19-1: Invited Paper. Zonal illuminated non-emissive displays for AR glass. SID Symp. Dig. Tech. Pap. 55, 220–222 (2024).
Luo, Z. et al. Compact and high-efficiency liquid-crystal-on-silicon for augmented reality displays. Photonics 11, 669 (2024).
Luo, Z. et al. Ultracompact and high-efficiency liquid-crystal-on-silicon light engines for augmented reality glasses. Opto-Electron. Adv. 7, 240039–240039 (2024).
Peng, F. et al. Analytical equation for the motion picture response time of display devices. J. Appl. Phys. 121, 023108 (2017).
Siriwardhana, Y., Porambage, P., Liyanage, M. & Ylianttila, M. A survey on mobile augmented reality with 5G mobile edge computing: architectures, applications, and technical aspects. IEEE Commun. Surv. Tutor. 23, 1160–1192 (2021).
Wang, J. et al. Effect of frame rate on user experience, performance, and simulator sickness in virtual reality. IEEE Trans. Visual. Comput. Graph. 29, 2478–2488 (2023).
Acknowledgements
This work was supported by Samsung Display Co. (grant AWD-006596; K.L., I.S., Y.B.), the Air Force Office of Scientific Research Young Investigator Program (YIP) (FA9550-23-1-0159; K.L, I.S.), Industrial Strategic Technology Development Program (2410005219, Platform technology for enhanced OLED materials and device industry high-performance backplane and high-efficiency; J.K., K.C.) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea), Institute of Information Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (RS-2024-00337012, Development of Multifocal XR Visualization Technology for Improved Accommodation-Vergence Conflict; J.Y.), Global Learning & Academic Research Institution for Master’s PhD students, Postdocs (LAMP) Program of the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (RS-2024-00442483; J.K., K.C.), and the NRF grant, funded by the Korean government (MSIT) (RS-2024-00357783; D.H.P.).
Author information
Authors and Affiliations
Contributions
I.S., K.C., Y.B., J.H.C., J.J., J.Y., B.K., Y.C. and H.L. researched data for this Perspective and wrote the draft article. I.S., Y.B., D.H.P., J.K. and K.L. reviewed and edited the article before submission.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Electrical Engineering thanks the anonymous reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sim, I., Choi, K., Baek, Y. et al. Microdisplay technologies in augmented reality and virtual reality headsets. Nat Rev Electr Eng 2, 634–650 (2025). https://doi.org/10.1038/s44287-025-00199-x
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s44287-025-00199-x