Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Microdisplay technologies in augmented reality and virtual reality headsets

Abstract

Augmented reality (AR) and virtual reality (VR) technologies enable interactive and immersive user experiences through head-worn devices that contain microdisplays. These microdisplays must have superior pixel density, brightness, contrast and response times, owing to the proximity of the AR glasses or VR headset to the eyes. Advanced microdisplay technologies in light engines such as liquid crystal on silicon (LCoS), organic light-emitting diodes on silicon (OLEDoS) and light-emitting diodes on silicon (LEDoS) have emerged to meet the demands of AR and VR, and are typically integrated with optical components such as free-space, freeform or waveguide combiners. In this Perspective, we explore the key requirements for AR and VR microdisplays, consider the advantages of each light-engine technology and discuss how their performance can be accurately characterized. We also examine how LCoS, OLEDoS and LEDoS technologies are integrated with complementary metal–oxide–semiconductor (CMOS) backplanes, and paired with optical combiners in AR displays, to merge virtual images with real-world scenes.

Key points

  • Head-mounted displays and near-eye displays for virtual reality (VR) and augmented reality (AR) applications require high pixel density and brightness, as well as an appropriate balance of field of view, eyebox, angular resolution and contrast ratio, all with a lightweight form factor.

  • Three leading light-engine technologies for AR and VR microdisplays, each on a silicon–CMOS (complementary metal–oxide–semiconductor) backplane, have emerged: liquid crystal on silicon (LCoS), organic light-emitting diodes on silicon (OLEDoS) and light-emitting diodes on silicon (LEDoS).

  • LCoS is a reflective display, using external high-power illumination sources without colour filters, and can achieve high pixel density and brightness, but suffers optical losses through polarization and reflection processes.

  • OLEDoS is a self-emissive display that combines high contrast ratios and wide colour gamut with ease of manufacture, but has limited brightness for AR displays.

  • LEDoS is another self-emissive display with high brightness and contrast ratio, and can have a long lifespan, but immature fabrication methods lead to high manufacturing costs.

  • New techniques have been developed to characterize the performance of these microdisplays, and a new kind of optical combiner — the waveguide combiner — has emerged for use with microdisplays for AR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Microdisplays for augmented and virtual reality.
Fig. 2: Parameters of microdisplays for augmented reality and virtual reality.
Fig. 3: Liquid crystal on silicon.
Fig. 4: Organic LEDs on silicon.
Fig. 5: LEDs on silicon.
Fig. 6: Characterization methods for microdisplay pixels and display panels.
Fig. 7: Microdisplays with combiners.
Fig. 8: Comparison of microdisplays for augmented and virtual reality applications.

Similar content being viewed by others

References

  1. Bhowmik, A. K. Virtual and augmented reality: human sensory-perceptual requirements and trends for immersive spatial computing experiences. J. Soc. Inf. Disp. 32, 605–646 (2024).

    Article  Google Scholar 

  2. Joo, W. J. & Brongersma, M. L. Creating the ultimate virtual reality display. Science 377, 1377–1378 (2022).

    Article  Google Scholar 

  3. Lee, B., Yoo, C., Jeong, J., Lee, B. & Bang, K. Key issues and technologies for AR/VR head-mounted displays. In Proc. Advances in Display Technologies X https://doi.org/10.1117/12.2551400 (SPIE, 2020).

  4. Machala, S., Chamier-Gliszczynski, N. & Królikowski, T. Application of AR/VR technology in industry 4.0. Proc. Comp. Sci. 207, 2990–2998 (2022).

    Article  Google Scholar 

  5. Renu, N. Applications of AR and VR technologies in healthcare marketing. J. Mark. Manag. 9, 35–39 (2021).

    Google Scholar 

  6. Wu, M. C., Hsu, Z. L. & Wu, C. Y. High-pixel-density 960 × 540 flip-chip AlGaInP red MicroLED display. IEEE Trans. Electron. Devices 69, 6206–6211 (2022).

    Article  Google Scholar 

  7. Yu, B., Li, Y., Li, J., Ding, X. & Li, Z. Challenges of high-yield manufacture in micro-light-emitting diodes displays: chip fabrication, mass transfer, and detection. J. Phys. D 57, 463001 (2024).

    Article  Google Scholar 

  8. Huang, Y., Hsiang, E.-L., Deng, M.-Y. & Wu, S.-T. Mini-LED, micro-LED and OLED displays: present status and future perspectives. Light Sci. Appl. 9, 105 (2020).

    Article  Google Scholar 

  9. Wheelwright, B. et al. Field of view: not just a number. In Proc. Digital Optics for Immersive Displays https://doi.org/10.1117/12.2307303 (SPIE, 2018).

  10. Xiong, J., Hsiang, E. L., He, Z., Zhan, T. & Wu, S. T. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light Sci. Appl. 10, 216 (2021).

    Article  Google Scholar 

  11. Chae, M., Bang, K., Yoo, D. & Jeong, Y. Étendue expansion in holographic near eye displays through sparse eye-box generation using lens array eyepiece. ACM Trans. Graph. 42, 1–13 (2023).

    Article  Google Scholar 

  12. Chang, C., Bang, K., Wetzstein, G., Lee, B. & Gao, L. Toward the next-generation VR/AR optics: a review of holographic near-eye displays from a human-centric perspective. Optica 7, 1563 (2020).

    Article  Google Scholar 

  13. Eisenberg, E. & Jensen, J. Measuring and qualifying optical performance of AR/VR/MR device displays and addressing the unique visual requirements of transparent AR/MR displays. In Proc. Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (eds Kress, B. C. & Peroz, C.) https://doi.org/10.1117/12.2546613 (SPIE, 2020).

  14. Ding, Y. et al. Waveguide-based augmented reality displays: perspectives and challenges. eLight 3, 24 (2023).

    Article  Google Scholar 

  15. Nguyen, J., Smith, C., Magoz, Z. & Sears, J. Screen door effect reduction using mechanical shifting for virtual reality displays. In Proc. Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (eds Kress, B. C. & Peroz, C.) https://doi.org/10.1117/12.2544479 (SPIE, 2020).

  16. Zhan, T., Yin, K., Xiong, J., He, Z. & Wu, S.-T. Augmented reality and virtual reality displays: perspectives and challenges. iScience 23, 101397 (2020).

    Article  Google Scholar 

  17. Hsiang, E.-L. et al. AR/VR light engines: perspectives and challenges. Adv. Opt. Photonics 14, 783 (2022).

    Article  Google Scholar 

  18. Pivnenko, M., Li, K. & Chu, D. Sub-millisecond switching of multi-level liquid crystal on silicon spatial light modulators for increased information bandwidth. Opt. Express 29, 24614 (2021).

    Article  Google Scholar 

  19. Chen, Y., Peng, F., Wu, S., Mo, L. & An, Z. 65.1: A vertically‐aligned LCOS with submillisecond response time. SID Symp. Dig. Tech. Pap. 44, 898–901 (2013).

    Article  Google Scholar 

  20. Jo, J. et al. 25‐1: Invited Paper. OLED microdisplays for AR/VR applications: technical approaches toward realization of over 10,000 nits full‐color panels. SID Symp. Dig. Tech. Pap. 53, 287–290 (2022).

    Article  Google Scholar 

  21. Kang mo, C. & Lee, H. Recent progress of organic light-emitting diode microdisplays for augmented reality/virtual reality applications. J. Inf. Disp. 23, 19–32 (2022).

    Article  Google Scholar 

  22. Long, M. et al. Enabling high-throughput, low-cost manufacturing of OLED display and lighting panels. MRS Proc. 1212, 1212-S06-06-C07-06 (2009).

    Article  Google Scholar 

  23. Wu, Y.-H. et al. Breaking the limits of virtual reality display resolution: the advancements of a 2117-pixels per inch 4K virtual reality liquid crystal display. J. Opt. Microsyst. 3, 041208 (2023).

    Article  Google Scholar 

  24. Hatchett, J. et al. Displaying detail in bright environments: a 10,000 nit display and its evaluation. Signal Process. Image Commun. 76, 125–134 (2019).

    Article  Google Scholar 

  25. Ho, C. H., Panagopoulos, G. & Roy, K. A physical model for grain-boundary-induced threshold voltage variation in polysilicon thin-film transistors. IEEE Trans. Electron. Devices 59, 2396–2402 (2012).

    Article  Google Scholar 

  26. Chan, V. W. C., Chan, P. C. H. & Yin, C. The effects of grain boundaries in the electrical characteristics of large grain polycrystalline thin-film transistors. IEEE Trans. Electron. Devices 49, 1384–1391 (2002).

    Article  Google Scholar 

  27. Shin, W. S. et al. A driving method of pixel circuit using a-IGZO TFT for suppression of threshold voltage shift in AMLED displays. IEEE Electron. Device Lett. 38, 760–762 (2017).

    Article  Google Scholar 

  28. Lin, C. L. et al. Compensation pixel circuit to improve image quality for mobile AMOLED displays. IEEE J. Solid-State Circuits 54, 489–500 (2019).

    Article  Google Scholar 

  29. Ahn, H. A., Hong, S. K. & Kwon, O. K. An active matrix micro-pixelated LED display driver for high luminance uniformity using resistance mismatch compensation method. IEEE Trans. Circuits Syst. II Express Briefs 65, 724–728 (2018).

    Google Scholar 

  30. Lee, H. C. et al. A high voltage driving chiplet in standard 0.18-μm CMOS for micro-pixelated LED displays integrated with LTPS TFTs. IEEE Trans. Circuits Syst. Video Technol. 32, 7204–7211 (2022).

    Article  Google Scholar 

  31. Yang, Z. et al. Advances and challenges in microdisplays and imaging optics for virtual reality and mixed reality. Device 2, 100398 (2024).

    Article  Google Scholar 

  32. Kaçar, R. et al. OLED-on-silicon (OLEDoS) microdisplays: technology challenges, design considerations, and adaptation in eXtended reality (XR) ecosystem — review. Next Nanotechnol. 7, 100132 (2025).

    Article  Google Scholar 

  33. Canals, J. et al. High-speed 512 × 512 18 μm-pitch array CMOS backplane for GaN-based microdisplay. In 37th Conf. Design of Circuits and Integrated Circuits https://doi.org/10.1109/DCIS55711.2022.9970075 (IEEE, 2022).

  34. Canals, J. et al. 11-2: A 9 kfps 1411 PPI GaN-based µLED display CMOS backplane. SID Symp. Dig. Tech. Pap. 54, 125–128 (2023).

    Article  Google Scholar 

  35. Shin, H.-J., Kim, Y.-D. & Choi, B.-D. 4670‐PPI OLEDoS pixel circuit design for wide data voltage range in a 5 V 0.13 μm CMOS process. J. Soc. Inf. Disp. 32, 165–173 (2024).

    Article  Google Scholar 

  36. Lee, H. C., Im, H., Jeon, J.-H., Moon, K. C. & Kim, Y.-S. New pixel circuit based on silicon backplane for micro-organic light-emitting diode employing hybrid program method. J. Electr. Eng. Technol. 20, 2529–2536 (2025).

    Article  Google Scholar 

  37. Cheng, S.-S. & Chao, P. C.-P. An ultra-high 6318-PPI pixel circuit for micro-OLED displays with Vth compensated up to 10-bit gray levels. IEEE J. Solid-State Circuits 59, 2236–2247 (2024).

    Article  Google Scholar 

  38. Chang, J.-H. R., Vijaya Kumar, B. V. K. & Sankaranarayanan, A. C. 216 shades of gray: high bit-depth projection using light intensity control. Opt. Express 24, 27937 (2016).

    Article  Google Scholar 

  39. Wu, S.-T. & Wu, C.-S. Mixed-mode twisted nematic liquid crystal cells for reflective displays. Appl. Phys. Lett. 68, 1455–1457 (1996).

    Article  Google Scholar 

  40. Chen, H.-W., Lee, J.-H., Lin, B.-Y., Chen, S. & Wu, S.-T. Liquid crystal display and organic light-emitting diode display: present status and future perspectives. Light Sci. Appl. 7, 17168–17168 (2017).

    Article  Google Scholar 

  41. Guo, Q., Yan, K., Chigrinov, V., Zhao, H. & Tribelsky, M. Ferroelectric liquid crystals: physics and applications. Crystals 9, 470 (2019).

    Article  Google Scholar 

  42. Peng, F., Gou, F., Chen, H., Huang, Y. & Wu, S.-T. A submillisecond-response liquid crystal for color sequential projection displays: submillisecond-response liquid crystal. J. Soc. Info. Display 24, 241–245 (2016).

    Article  Google Scholar 

  43. Yin, K. et al. Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications. Light. Sci. Appl. 11, 161 (2022).

    Article  Google Scholar 

  44. Young, E. et al. Segmented red, green, and blue light sources for energy efficient LCoS AR displays. In Proc. Light-Emitting Devices, Materials, and Applications XXVIII 118–124 (SPIE, 2024).

  45. Li, Y.-W. et al. Front-lit LCOS for AR displays. J. Opt. Microsyst. 3, 041205 (2023).

    Article  Google Scholar 

  46. Zhang, Q., Zachmann, I., Ji, L. & Mao, C. Novel frame buffer pixel circuits and silicon backplane development for polarization-independent LCOS. IEEE Photonics J. 16, 1–9 (2024).

    Google Scholar 

  47. Ewing, T. et al. Liquid crystal on silicon (LCOS) devices and their application to scene projection. In Proc. Technologies for Synthetic Environments: Hardware-in-the-Loop XVII (eds Buford, J. A. et al.) https://doi.org/10.1117/12.923085 (SPIE, 2012).

  48. Jeong, M. et al. 0.37-inch UHD, 11,800 PPI liquid crystal on silicon micro-display with embedded 4x up-scaler using micro-mirror space-interpolation pixel circuit for metaverse augmented reality glasses. In Advances in Display Technologies XIII (eds Lee, J.-H. et al.) https://doi.org/10.1117/12.2645045 (SPIE, 2023).

  49. Huang, S. et al. Advances in full-color microdisplays based on microLED for AR and VR applications. IEEE Open J. Immersive Disp. 1, 127–134 (2024).

    Google Scholar 

  50. Murat, H. et al. Two LCOS full color projector with efficient LED illumination engine. Displays 30, 155–163 (2009).

    Article  Google Scholar 

  51. Kurtz, A. F. et al. An LCOS-based digital-cinema projector. J. Soc. Inf. Disp. 14, 311–323 (2006).

    Article  Google Scholar 

  52. Curtis, K. R. Unveiling magic leap 2’s advanced AR platform and revolutionary optics. In Proc. SPIE AR, VR, MR Industry Talks 2022 https://doi.org/10.1117/12.2632495 (SPIE, 2022).

  53. Kang, J., Baek, G. W., Lee, J. Y., Kwak, J. & Park, J.-H. Advances in display technology: augmented reality, virtual reality, quantum dot-based light-emitting diodes, and organic light-emitting diodes. J. Inf. Disp. 25, 219–234 (2024).

    Article  Google Scholar 

  54. Hillebrandt, S. et al. High‐density integration of ultrabright OLEDs on a miniaturized needle‐shaped CMOS backplane. Adv. Mater. 36, 2300578 (2024).

    Article  Google Scholar 

  55. Tan, G. et al. Analysis and optimization on the angular color shift of RGB OLED displays. Opt. Express 25, 33629 (2017).

    Article  Google Scholar 

  56. Yang, L. et al. Tricolor microcavity OLEDs based on P-nc-Si:H films as the complex anodes. J. Semicond. 30, 063005 (2009).

    Article  Google Scholar 

  57. Dong, S.-C., Deng, S., Yang, J., Jiang, Y. & Tang, C. W. 34.4: 3‐inch, 3000‐ppi silicon nitride masks for direct patterning of OLED microdisplays. SID Symp. Dig. Tech. Pap. 53, 367–368 (2022).

    Article  Google Scholar 

  58. Jiang, Y., Tam, B. S. T., Dong, S. & Tang, C. W. 61‐2: 2‐inch, 2,000‐ppi silicon nitride mask for patterning ultra‐high‐resolution OLED displays. SID Symp. Dig. Tech. Pap. 51, 909–912 (2020).

    Article  Google Scholar 

  59. Giebink, N. C., D’Andrade, B. W., Weaver, M. S., Brown, J. J. & Forrest, S. R. Direct evidence for degradation of polaron excited states in organic light emitting diodes. J. Appl. Phys. 105, 124514 (2009).

    Article  Google Scholar 

  60. Giebink, N. C. et al. Intrinsic luminance loss in phosphorescent small-molecule organic light emitting devices due to bimolecular annihilation reactions. J. Appl. Phys. 103, 044509 (2008).

    Article  Google Scholar 

  61. Lee, J. et al. Hot excited state management for long-lived blue phosphorescent organic light-emitting diodes. Nat. Commun. 8, 15566 (2017).

    Article  Google Scholar 

  62. Cho, H. et al. White organic light-emitting diode (OLED) microdisplay with a tandem structure. J. Inf. Disp. 20, 249–255 (2019).

    Article  Google Scholar 

  63. Hamer, J. et al. 12‐2: High‐performance OLED microdisplays made with multi‐stack OLED formulations. SID Symp. Dig. Tech. Pap. 51, 149–152 (2020).

    Article  Google Scholar 

  64. Pengcheng, J. et al. P‐127: Improving the driving voltage stability of tandem red OLED. SID Symp. Dig. Tech. Pap. 54, 1323–1325 (2023).

    Article  Google Scholar 

  65. Bower, C. A., Menard, E., Bonafede, S., Hamer, J. W. & Cok, R. S. Transfer-printed microscale integrated circuits for high performance display backplanes. IEEE Trans. Compon. Packag. Manufact. Technol. 1, 1916–1922 (2011).

    Article  Google Scholar 

  66. Kim, Y.-H. et al. 3.5-inch QCIF AMOLED panels with ultra-low-temperature polycrystalline silicon thin film transistor on plastic substrate. ETRI J. 30, 308–314 (2008).

    Article  Google Scholar 

  67. Kang, H. et al. Investigating the electrical crosstalk effect between pixels in high-resolution organic light-emitting diode microdisplays. Sci. Rep. 13, 14070 (2023).

    Article  Google Scholar 

  68. Sun, Y. & Forrest, S. R. Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids. Nat. Photon 2, 483–487 (2008).

    Article  Google Scholar 

  69. Möller, S. & Forrest, S. R. Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays. J. Appl. Phys. 91, 3324–3327 (2002).

    Article  Google Scholar 

  70. Alnasser, K., Hassan, S., Kamau, S., Zhang, H. & Lin, Y. Enhanced light extraction from organic light-emitting diodes by reducing plasmonic loss through graded photonic super-crystals. J. Opt. Soc. Am. B 37, 1283 (2020).

    Article  Google Scholar 

  71. Koo, W. H. et al. Light extraction of organic light emitting diodes by defective hexagonal‐close‐packed array. Adv. Funct. Mater. 22, 3454–3459 (2012).

    Article  Google Scholar 

  72. Kim, J. et al. Systematic control of the orientation of organic phosphorescent Pt complexes in thin films for increased optical outcoupling. Adv. Mater. 31, 1900921 (2019).

    Article  Google Scholar 

  73. Kim, J., Qu, Y., Coburn, C. & Forrest, S. R. Efficient outcoupling of organic light-emitting devices using a light-scattering dielectric layer. ACS Photonics 5, 3315–3321 (2018).

    Article  Google Scholar 

  74. Salehi, A., Fu, X., Shin, D. & So, F. Recent advances in OLED optical design. Adv. Funct. Mater. 29, 1808803 (2019).

    Article  Google Scholar 

  75. Furno, M., Meerheim, R., Hofmann, S., Lüssem, B. & Leo, K. Efficiency and rate of spontaneous emission in organic electroluminescent devices. Phys. Rev. B 85, 115205 (2012).

    Article  Google Scholar 

  76. Qu, Y., Kim, J., Coburn, C. & Forrest, S. R. Efficient, nonintrusive outcoupling in organic light emitting devices using embedded microlens arrays. ACS Photonics 5, 2453–2458 (2018).

    Article  Google Scholar 

  77. Sun, Y. & Forrest, S. R. Organic light emitting devices with enhanced outcoupling via microlenses fabricated by imprint lithography. J. Appl. Phys. 100, 073106 (2006).

    Article  Google Scholar 

  78. Wu, M.-H. & Whitesides, G. M. Fabrication of two-dimensional arrays of microlenses and their applications in photolithography. J. Micromech. Microeng. 12, 747–758 (2002).

    Article  Google Scholar 

  79. Shin, S.-R. et al. Improving light extraction of flexible OLEDs using a mechanically robust Ag mesh/ITO composite electrode and microlens array. J. Mater. Chem. C 6, 5444–5452 (2018).

    Article  Google Scholar 

  80. Motoyama, Y. et al. High‐efficiency OLED microdisplay with microlens array. J. Soc. Info Disp. 27, 354–360 (2019).

    Article  Google Scholar 

  81. Jo, J. et al. High‐luminance, large‐size 4 K OLED microdisplays for VR/MR applications. J. Soc. Info Disp. 32, 371–378 (2024).

    Article  Google Scholar 

  82. Vogel, U. et al. 77‐1: Invited Paper. Ultra‐low power OLED microdisplay for extended battery life in NTE displays. SID Symp. Dig. Tech. Pap. 48, 1125–1128 (2017).

    Article  Google Scholar 

  83. Zhang, Y., Lee, J. & Forrest, S. R. Tenfold increase in the lifetime of blue phosphorescent organic light-emitting diodes. Nat. Commun. 5, 5008 (2014).

    Article  Google Scholar 

  84. Hatakeyama, T. et al. Ultrapure blue thermally activated delayed fluorescence molecules: efficient HOMO–LUMO separation by the multiple resonance effect. Adv. Mater. 28, 2777–2781 (2016).

    Article  Google Scholar 

  85. Zhao, H. et al. Control of host-matrix morphology enables efficient deep-blue organic light-emitting devices. Adv. Mater. 35, 2210794 (2023).

    Article  Google Scholar 

  86. Zhao, H., Arneson, C. E., Fan, D. & Forrest, S. R. Stable blue phosphorescent organic LEDs that use polariton-enhanced Purcell effects. Nature 626, 300–305 (2024).

    Article  Google Scholar 

  87. Chiang, Y.-C. et al. Retinal resolution display technology brings impact to VR industry. In ACM SIGGRAPH 2018 Posters https://doi.org/10.1145/3230744.3230781 (ACM, 2018).

  88. Vogel, U. et al. OLED-on-silicon microdisplays: technology, devices, applications. In 48th European Solid-State Device Research Conference https://doi.org/10.1109/ESSDERC.2018.8486920 (IEEE, 2018).

  89. Wartenberg, P. et al. 40‐5: Invited Paper. High frame‐rate 1″ WUXGA OLED microdisplay and advanced free‐form optics for ultra‐compact VR headsets. SID Symp. Dig. Tech. Pap. 49, 514–517 (2018).

    Article  Google Scholar 

  90. Geng, M. et al. Viewing optics for immersive near-eye displays: pupil swim/size and weight/stray light. In Proc. Digital Optics for Immersive Displays (eds Osten, W. et al.) https://doi.org/10.1117/12.2307671 (SPIE, 2018).

  91. Khan, S. A. et al. Optical system for head-mounted display. US patent 20210132349A1 (2021).

  92. Ji, Y., Ran, F., Xu, H., Shen, W. & Zhang, J. Improved performance and low cost OLED microdisplay with titanium nitride anode. Org. Electron. 15, 3137–3143 (2014).

    Article  Google Scholar 

  93. Xue, Q. & Xie, G. Easily reproducible top-emitting organic light-emitting devices for microdisplays adapted to aluminum contact from the standard CMOS processes. J. Inf. Disp. 21, 131–137 (2020).

    Article  Google Scholar 

  94. Kneissl, M. et al. Characterization of AlGaInN diode lasers with mirrors from chemically assisted ion beam etching. Appl. Phys. Lett. 72, 1539–1541 (1998).

    Article  Google Scholar 

  95. Khan, M. A., Skogman, R. A., Hove, J. M. V., Krishnankutty, S. & Kolbas, R. M. Photoluminescence characteristics of AlGaN–GaN–AlGaN quantum wells. Appl. Phys. Lett. 56, 1257–1259 (1990).

    Article  Google Scholar 

  96. Tran, C. A., Osinski, A., Karlicek, R. F. & Berishev, I. Growth of InGaN/GaN multiple-quantum-well blue light-emitting diodes on silicon by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 75, 1494–1496 (1999).

    Article  Google Scholar 

  97. Krames, M. R. et al. Status and future of high-power light-emitting diodes for solid-state lighting. IEEE/OSA J. Disp. Technol. 3, 160–175 (2007).

    Article  Google Scholar 

  98. Behrman, K. & Kymissis, I. Micro light-emitting diodes. Nat. Electron. 5, 564–573 (2022).

    Article  Google Scholar 

  99. Chen, Z., Yan, S. & Danesh, C. MicroLED technologies and applications: characteristics, fabrication, progress, and challenges. J. Phys. D 54, 123001 (2021).

    Article  Google Scholar 

  100. Miao, W. C. et al. Microdisplays: mini-LED, micro-OLED, and micro-LED. Adv. Opt. Mater. 12, 2300112 (2024).

    Article  Google Scholar 

  101. Murawski, C., Leo, K. & Gather, M. C. Efficiency roll-off in organic light-emitting diodes. Adv. Mater. 25, 6801–6827 (2013).

    Article  Google Scholar 

  102. Kim, C. et al. 61‐1: FMM pixel patterning for various OLED displays. SID Symp. Dig. Tech. Pap. 51, 905–908 (2020).

    Article  Google Scholar 

  103. Cho, H., Kim, D., Lee, S., Yoo, C. & Sim, Y. Efficiency enhancement of submicron‐size light‐emitting diodes by triple dielectric layers. J. Soc. Info Disp. 31, 289–297 (2023).

    Article  Google Scholar 

  104. Sheen, M. et al. Highly efficient blue InGaN nanoscale light-emitting diodes. Nature 608, 56–61 (2022).

    Article  Google Scholar 

  105. Steudel, S., Vertommen, J., Buscemi, G., Janssens, T. & Bach, L. Integration challenges for MicroLED on CMOS for AR. SID Symp. Dig. Tech. Pap. 55, 497–500 (2024).

    Article  Google Scholar 

  106. Chong, W. C. et al. 31.3: Low optical crosstalk micro-LED micro-display with semi-sphere micro-lens for light collimation. SID Symp. Dig. Tech. Pap. 49, 339–342 (2018).

    Article  Google Scholar 

  107. Steudel, S. et al. 4.3: MircoLED display on 300 mm CMOS platform — crosstalk and optical outcoupling. SID Symp. Dig. Tech. Pap. 54, 25–28 (2023).

    Article  Google Scholar 

  108. Kumar, V. & Kymissis, I. MicroLED/LED electro-optical integration techniques for non-display applications. Appl. Phys. Rev. 10, 021306 (2023).

    Article  Google Scholar 

  109. Choi, H. W. et al. GaN micro-light-emitting diode arrays with monolithically integrated sapphire microlenses. Appl. Phys. Lett. 84, 2253–2255 (2004).

    Article  Google Scholar 

  110. Hwangbo, S., Hu, L., Hoang, A. T., Choi, J. Y. & Ahn, J. H. Wafer-scale monolithic integration of full-colour micro-LED display using MoS2 transistor. Nat. Nanotechnol. 17, 500–506 (2022).

    Article  Google Scholar 

  111. Wiemer, M., Balram, N., Martin, P. S. & Lee, G. High-performance QDs enable microLED disruption of displays. Inf. Disp. 40, 26–31 (2024).

    Google Scholar 

  112. Zhang, L., Ou, F., Chong, W. C., Chen, Y. & Li, Q. Wafer-scale monolithic hybrid integration of Si-based IC and III–V epi-layers — a mass manufacturable approach for active matrix micro-LED micro-displays. J. Soc. Inf. Disp. 26, 137–145 (2018).

    Article  Google Scholar 

  113. Wang, C.-J. et al. InGaN resonant-cavity light-emitting diodes with porous and dielectric reflectors. Appl. Sci. 11, 8 (2020).

    Article  Google Scholar 

  114. Chen, J., Zhao, Q., Yu, B. & Lemmer, U. A review on quantum dot-based color conversion layers for mini/micro-LED displays: packaging, light management, and pixelation. Adv. Opt. Mater. 12, 2300873 (2024).

    Article  Google Scholar 

  115. Moon, H., Lee, C., Lee, W., Kim, J. & Chae, H. Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications. Adv. Mater. 31, e1804294 (2019).

    Article  Google Scholar 

  116. Akkerman, Q. A., Rainò, G., Kovalenko, M. V. & Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018).

    Article  Google Scholar 

  117. Sui, Y. & Zorman, C. A. Review — inkjet printing of metal structures for electrochemical sensor applications. J. Electrochem. Soc. 167, 037571 (2020).

    Article  Google Scholar 

  118. Yang, P., Zhang, L., Kang, D. J., Strahl, R. & Kraus, T. High-resolution inkjet printing of quantum dot light-emitting microdiode arrays. Adv. Opt. Mater. 8, 1901429 (2020).

    Article  Google Scholar 

  119. Hu, Z. et al. Inkjet printed uniform quantum dots as color conversion layers for full-color OLED displays. Nanoscale 12, 2103–2110 (2020).

    Article  Google Scholar 

  120. Lee, T. Y. et al. InGaN blue resonant cavity micro-LED with RGY quantum dot layer for broad gamut, efficient displays. Discov. Nano 19, 75 (2024).

    Article  Google Scholar 

  121. Bae, J. et al. Quantum dot-integrated GaN light-emitting diodes with resolution beyond the retinal limit. Nat. Commun. 13, 1862 (2022).

    Article  Google Scholar 

  122. Bao, S. et al. A review of silicon-based wafer bonding processes, an approach to realize the monolithic integration of Si-CMOS and III–V-on-Si wafers. J. Semicond. 42, 023106 (2021).

    Article  Google Scholar 

  123. Templier, F. & Bernard, J. A new approach for fabricating high-performance microLED displays. SID Symp. Dig. Tech. Pap. 50, 240–243 (2019).

    Article  Google Scholar 

  124. Templier, F. & Dubarry, C. Challenges and solutions for the fabrication of CMOS-driven microLED displays. In Proc. International Display Workshops 29, 871–874 (IDW, 2022).

  125. Chen, P. & Li, Q. Monolithic microLED display for AR applications. SID Symp. Dig. Tech. Pap. 54, 1874–1877 (2023).

    Article  Google Scholar 

  126. Tan, W. S. & Li, Q. Industrializing microLED microdisplays for AR applications. SID Symp. Dig. Tech. Pap. 54, 21–24 (2023).

    Article  Google Scholar 

  127. Chen, F. et al. Mass transfer techniques for large-scale and high-density microLED arrays. Int. J. Extreme Manuf. 4, 042005 (2022).

    Article  Google Scholar 

  128. Lee, D. et al. Fluidic self-assembly for microLED displays by controlled viscosity. Nature 619, 755–760  (2023).

    Article  Google Scholar 

  129. Gong, Z. Layer-scale and chip-scale transfer techniques for functional devices and systems: a review. Nanomaterials 11, 842 (2021).

    Article  Google Scholar 

  130. Virey, E. H. & Baron, N. Status and prospects of microLED displays. SID Symp. Dig. Tech. Pap. 49, 593–596 (2018).

    Article  Google Scholar 

  131. Chen, D., Chen, Y.-C., Zeng, G., Zhang, D. W. & Lu, H.-L. Integration technology of micro-LED for next-generation display. Research 6, 0047 (2023).

    Article  Google Scholar 

  132. Jourdon, J. et al. Evaluation of hybrid bonding interface quality by contact resistivity measurement. IEEE Trans. Electron. Devices 66, 2699–2703 (2019).

    Article  Google Scholar 

  133. Dubarry, C. et al. 3D interconnection using copper direct hybrid bonding for GaN on silicon wafer. In IEEE International 3D System Integration Conferenc https://doi.org/10.1109/3DIC52383.2021.9687599 (IEEE, 2021).

  134. Steudel, S. et al. MircoLED display integration on 300 mm advanced CMOS platform. SID Symp. Dig. Tech. Pap. 53, 748–751 (2022).

    Article  Google Scholar 

  135. Geum, D. M. et al. Strategy toward the fabrication of ultrahigh-resolution micro-LED displays by bonding-interface-engineered vertical stacking and surface passivation. Nanoscale 11, 23139–23148 (2019).

    Article  Google Scholar 

  136. Shin, J. et al. Vertical full-colour micro-LEDs via 2D materials-based layer transfer. Nature 614, 81–87 (2023).

    Article  Google Scholar 

  137. Snyder, E. J., Chideme, J. & Craig, G. S. W. Fluidic self-assembly of semiconductor devices: a promising new method of mass-producing flexible circuitry. Jpn. J. Appl. Phys. 41, 4366 (2002).

    Article  Google Scholar 

  138. Hwang, J. et al. Wafer-scale alignment and integration of micro-light-emitting diodes using engineered van der Waals forces. Nat. Electron. 6, 216–224 (2023).

    Article  Google Scholar 

  139. Yeh, H. J. J. & Smith, J. S. Fluidic self-assembly for the integration of GaAs light-emitting diodes on Si substrates. IEEE Photonics Technology Letters 6, (1994).

  140. Chang, W. et al. Concurrent self-assembly of RGB microLEDs for next-generation displays. Nature 617, 287–291 (2023).

    Article  Google Scholar 

  141. Wang, S., Zhao, F., Zhu, X. & Ruan, Y. Research on the measurement of micro display luminance. In International Conference of Optical Imaging and Measurement 286–289 (IEEE, 2021).

  142. Beamonte, J. I. Stability of the spherical aberration up to the fifth order in cemented doublets. J. Opt. A 2, 161–168 (2000).

    Article  Google Scholar 

  143. Ilinsky, R. Gradient-index meniscus lens free of spherical aberration. J. Opt. A 2, 449–451 (2000).

    Article  Google Scholar 

  144. Zou, P.-A. et al. A new analog PWM pixel circuit with metal oxide TFTs for micro-LED displays. IEEE Trans. Electron. Devices 69, 4306–4311 (2022).

    Article  Google Scholar 

  145. Han, J.-H., Wang, Y. & Wheelwright, B. 19‐4: Invited Paper. Digital driving on silicon microdisplay for XR. SID Symp. Dig. Tech. Pap. 55, 231–235 (2024).

    Article  Google Scholar 

  146. Pedeville, G. R., Rouse, J. H. & Kreysar, D. F. 71‐1: Fractional pixel method for improved pixel‐level measurement and correction (Demura) of high‐resolution displays. SID Symp. Dig. Tech. Pap. 51, 1056–1059 (2020).

    Article  Google Scholar 

  147. Pedeville, G. R. & Rouse, J. H. Methods and systems for measuring electronic visual displays using fractional pixels. US Patent 10,971,044 B2 (2019).

  148. Cho, J., Kim, Y., Jung, S. H., Shin, H. & Kim, T. 78‐4: Screen door effect mitigation and its quantitative evaluation in VR display. SID Symp. Dig. Tech. Pap. 48, 1154–1156 (2017).

    Article  Google Scholar 

  149. Kelley, E. F. Proposed diffuse ambient contrast measurement methods for flat panel displays. NIST Interagency/Internal Report (NISTIR) 6738 (2001).

  150. Boynton, P. A. & Libert, J. Meeting the Metrology Needs of the Microdisplay Industry (NIST, 2000).

  151. Díaz-Barrancas, F., Rodríguez, R. G., Bayer, F. S., Aizenman, A. & Gegenfurtner, K. R. High-fidelity color characterization in virtual reality across head mounted displays, game engines, and materials. Opt. Express 32, 22388 (2024).

    Article  Google Scholar 

  152. Moreau, O., Curt, J.-N. & Leroux, T. R. Contrast and colorimetry measurements versus viewing angle for microdisplays. In Proc. Digital Cinema and Microdisplays (ed. Chinnock, C. B.) https://doi.org/10.1117/12.411767 (SPIE, 2000).

  153. Chen, W., Ji, Y., Zhang, K., Mu, T. & Ran, F. Dynamic false contour evaluation method based on just noticeable distortion model for microdisplays. Displays 71, 102130 (2022).

    Article  Google Scholar 

  154. Ak, A., Pastor, A. & Le Callet, P. From just noticeable differences to image quality. In Proc. 2nd Workshop on Quality of Experience in Visual Multimedia Applications https://doi.org/10.1145/3552469.3555712 (ACM, 2022).

  155. Virey, E. H. & Bouhamri, Z. 59‐1: Invited Paper. From lab to fab: challenges and requirements for high‐volume microLED manufacturing equipment. SID Symp. Dig. Tech. Pap. 52, 826–829 (2021).

    Article  Google Scholar 

  156. Tsai, P.-S., Wu, T.-F., Chen, J.-Y. & Tsai, C.-L. Development of automated optical inspection and classification systems. Sens. Mater. 34, 3895 (2022).

    Google Scholar 

  157. Jeong, E.-Y. et al. A more reliable defect detection and performance improvement method for panel inspection based on artificial intelligence. J. Inf. Disp. 22, 127–136 (2021).

    Article  Google Scholar 

  158. Go, G.-M., Bu, S.-J. & Cho, S.-B. A deep learning-based surface dDefect inspection system for smartphone glass. In Intelligent Data Engineering and Automated Learning (eds Yin, H. et al.) 375–385 (Springer, 2019).

  159. Ding, Y. et al. Breaking the optical efficiency limit of virtual reality with a nonreciprocal polarization rotator. Opto-Electron. Adv. 7, 230178–230178 (2024).

    Article  Google Scholar 

  160. Zou, J. et al. Doubling the optical efficiency of VR systems with a directional backlight and a diffractive deflection film. Opt. Express 29, 20673 (2021).

    Article  Google Scholar 

  161. Luo, Z., Ding, Y., Rao, Y. & Wu, S. High‐efficiency folded optics for near‐eye displays. J. Soc. Info Disp. 31, 336–343 (2023).

    Article  Google Scholar 

  162. Usukura, N., Minoura, K. & Maruyama, R. Novel pancake‐based HMD optics to improve light efficiency. J. Soc. Info Disp. 31, 344–354 (2023).

    Article  Google Scholar 

  163. Zhang, Y. & Fang, F. Development of planar diffractive waveguides in optical see-through head-mounted displays. Precis. Eng. 60, 482–496 (2019).

    Article  Google Scholar 

  164. Kress, B. C. Optical Architectures for Augmented-, Virtual-, and Mixed-Reality Headsets (SPIE, 2020).

  165. Zhang, G. et al. The present and future of mixed reality in China. Commun. ACM 64, 64–69 (2021).

    Article  Google Scholar 

  166. Rolland, J. P. & Goodsell, J. Waveguide-based augmented reality displays: a highlight. Light Sci. Appl. 13, 22 (2024).

    Article  Google Scholar 

  167. Chen, S.-L., Fu, L.-W., Huang, J.-W., Shih, K.-T. & Chen, H. H. Geometric lightguide for near-eye light field displays. Appl. Opt. 63, 1457–1470 (2024).

    Article  Google Scholar 

  168. Li, Y., Cheng, D., Huang, Y., Hou, Q. & Wang, Y. Design and fabrication of a compact coaxial catadioptric augmented reality near-eye display enabled by genetic algorithm. Opt. Lasers Eng. 176, 108112 (2024).

    Article  Google Scholar 

  169. Wu, J.-Y. & Kim, J. Prescription AR: a fully-customized prescription-embedded augmented reality display. Opt. Express 28, 6225–6241 (2020).

    Article  Google Scholar 

  170. Ding, Y. et al. Breaking the in-coupling efficiency limit in waveguide-based AR displays with polarization volume gratings. Light Sci. Appl. 13, 185 (2024).

    Article  Google Scholar 

  171. Yeom, J., Jeong, J., Hong, J. & Choi, K. Analysis on image quality of a holographic lens with a non-converging signal wave for compact near-eye displays. Opt. Express 30, 36632 (2022).

    Article  Google Scholar 

  172. Cheng, D. et al. Design and manufacture AR head-mounted displays: a review and outlook. Light Adv. Manuf. 2, 24 (2021).

    Google Scholar 

  173. Quesnel, E. et al. Dimensioning a full color LED microdisplay for augmented reality headset in a very bright environment. J. Soc. Info Disp. 29, 3–16 (2021).

    Article  Google Scholar 

  174. Ni, D. et al. Uniformity improvement of two-dimensional surface relief grating waveguide display using particle swarm optimization. Opt. Express 30, 24523–24543 (2022).

    Article  Google Scholar 

  175. Chen, Q. et al. Hybrid meta-optics enabled compact augmented reality display with computational image reinforcement. ACS Photonics 11, 3794–3803 (2024).

    Article  Google Scholar 

  176. Weng, Y. et al. High-efficiency and compact two-dimensional exit pupil expansion design for diffractive waveguide based on polarization volume grating. Opt. Express 31, 6601–6614 (2023).

    Article  Google Scholar 

  177. Gu, Y. et al. Holographic waveguide display with large field of view and high light efficiency based on polarized volume holographic grating. IEEE Photonics J. 14, 1–7 (2021).

    Google Scholar 

  178. Chen, E. et al. Collimated LED array with mushroom-cap encapsulation for near-eye display projection engine. IEEE J. Sel. Top. Quantum Electron. 30, 1–10 (2024).

    Google Scholar 

  179. Cheng, D., Wang, Y., Hua, H. & Talha, M. M. Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism. Appl. Opt. 48, 2655–2668 (2009).

    Article  Google Scholar 

  180. Shen, Z. et al. Holographic recording performance of acrylate-based photopolymer under different preparation conditions for waveguide display. Polymers 13, 936 (2021).

    Article  Google Scholar 

  181. Tang, E. Spotlight display technology: world’s first adaptive LED illumination LCoS architecture. In Proc. SPIE AR, VR, MR Invited Talks 2024 https://doi.org/10.1117/12.3024888 (SPIE, 2024).

  182. Peng, F. et al. 19-1: Invited Paper. Zonal illuminated non-emissive displays for AR glass. SID Symp. Dig. Tech. Pap. 55, 220–222 (2024).

    Article  Google Scholar 

  183. Luo, Z. et al. Compact and high-efficiency liquid-crystal-on-silicon for augmented reality displays. Photonics 11, 669 (2024).

    Article  Google Scholar 

  184. Luo, Z. et al. Ultracompact and high-efficiency liquid-crystal-on-silicon light engines for augmented reality glasses. Opto-Electron. Adv. 7, 240039–240039 (2024).

    Article  Google Scholar 

  185. Peng, F. et al. Analytical equation for the motion picture response time of display devices. J. Appl. Phys. 121, 023108 (2017).

    Article  Google Scholar 

  186. Siriwardhana, Y., Porambage, P., Liyanage, M. & Ylianttila, M. A survey on mobile augmented reality with 5G mobile edge computing: architectures, applications, and technical aspects. IEEE Commun. Surv. Tutor. 23, 1160–1192 (2021).

    Article  Google Scholar 

  187. Wang, J. et al. Effect of frame rate on user experience, performance, and simulator sickness in virtual reality. IEEE Trans. Visual. Comput. Graph. 29, 2478–2488 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Samsung Display Co. (grant AWD-006596; K.L., I.S., Y.B.), the Air Force Office of Scientific Research Young Investigator Program (YIP) (FA9550-23-1-0159; K.L, I.S.), Industrial Strategic Technology Development Program (2410005219, Platform technology for enhanced OLED materials and device industry high-performance backplane and high-efficiency; J.K., K.C.) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea), Institute of Information Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (RS-2024-00337012, Development of Multifocal XR Visualization Technology for Improved Accommodation-Vergence Conflict; J.Y.), Global Learning & Academic Research Institution for Master’s PhD students, Postdocs (LAMP) Program of the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (RS-2024-00442483; J.K., K.C.), and the NRF grant, funded by the Korean government (MSIT) (RS-2024-00357783; D.H.P.).

Author information

Authors and Affiliations

Authors

Contributions

I.S., K.C., Y.B., J.H.C., J.J., J.Y., B.K., Y.C. and H.L. researched data for this Perspective and wrote the draft article. I.S., Y.B., D.H.P., J.K. and K.L. reviewed and edited the article before submission.

Corresponding authors

Correspondence to Dong Hyuk Park, Jongchan Kim or Kyusang Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Electrical Engineering thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sim, I., Choi, K., Baek, Y. et al. Microdisplay technologies in augmented reality and virtual reality headsets. Nat Rev Electr Eng 2, 634–650 (2025). https://doi.org/10.1038/s44287-025-00199-x

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44287-025-00199-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing