Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Skin-conformal electronics for intelligent gesture recognition

Abstract

Skin-conformal electronics that naturally adhere to the body are transforming human–machine interfaces (HMIs) by enabling intuitive, real-time gesture recognition with broad potential in immersive applications such as virtual reality, advanced robotics and remote health care. These devices bridge human intentions and machine responses but still require integrated platforms that collect advances in sensing elements, adaptive signal processing and intelligent decision-making algorithms. In this Review, we identify the component innovations and system-level strategies to define a roadmap for skin-conformal gesture recognition as a core element of next-generation HMIs. Advances in conformal device architectures are overcoming the mechanical and signal stability limitations of conventional wearables, enabling reliable operation during continuous use. Integration of sensing and processing enables adaptive, real-time interpretation of gestures aligned with user intent, while emerging computational approaches deliver efficient, low-latency performance inspired by biological learning. Collectively, these developments are shaping design principles for natural, precise and responsive HMIs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of developments in gesture recognition electronics.
Fig. 2: Overview of gesture recognition processes.
Fig. 3: Skin-conformal gesture sensor units with distinct sensing modalities.
Fig. 4: Neuromorphic insights on gesture recognition units.
Fig. 5: Summary and outlook of skin-conformal electronics for intelligent gesture recognition.

Similar content being viewed by others

References

  1. Lee, B. G. & Lee, S. M. Smart wearable hand device for sign language interpretation system with sensors fusion. IEEE Sens. J. 18, 1224–1232 (2018).

    Article  Google Scholar 

  2. Wu, Y. et al. Towards a high accuracy wearable hand gesture recognition system using EIT. In International Symposium on Circuits and Systems 1–4 (IEEE, 2018).

  3. Al Mudawi, N. et al. Innovative healthcare solutions: robust hand gesture recognition of daily life routines using 1D CNN. Front. Bioeng. Biotechnol. 12, 1401803 (2024).

    Article  Google Scholar 

  4. Zhao, H., Ma, Y., Wang, S., Watson, A. & Zhou, G. MobiGesture: mobility-aware hand gesture recognition for healthcare. Smart Health 9–10, 129–143 (2018).

    Article  Google Scholar 

  5. Mahmoud, N. M., Fouad, H. & Soliman, A. M. Smart healthcare solutions using the internet of medical things for hand gesture recognition system. Complex Intell. Syst. 7, 1253–1264 (2021).

    Article  Google Scholar 

  6. Wang, Y. & Li, J. Entertainment robot hand gesture recognition. In 2nd International Workshop on Database Technology and Applications 1–3 (IEEE, 2010).

  7. Real-time hand gesture recognition system and application. Sens. Mater. 30, 869–884 (2018).

  8. Han, S. et al. Multiscale nanowire-microfluidic hybrid strain sensors with high sensitivity and stretchability. npj Flex. Electron. 2, 16 (2018).

    Article  Google Scholar 

  9. Chen, F. et al. WristCam: a wearable sensor for hand trajectory gesture recognition and intelligent human–robot interaction. IEEE Sens. J. 19, 8441–8451 (2019).

    Article  Google Scholar 

  10. Wang, X., Veeramani, D. & Zhu, Z. Wearable sensors-based hand gesture recognition for human–robot collaboration in construction. IEEE Sens. J. 23, 495–505 (2023).

    Article  Google Scholar 

  11. Zheng, Y. et al. Development and evaluation of a sensor glove for hand function assessment and preliminary attempts at assessing hand coordination. Measurement 93, 1–12 (2016).

    Article  Google Scholar 

  12. Abhishek, K. S., Qubeley, L. C. F. & Ho, D. Glove-based hand gesture recognition sign language translator using capacitive touch sensor. In International Conference on Electron Devices and Solid-State Circuits 334–337 (IEEE, 2016).

  13. Saggio, G., Riillo, F., Sbernini, L. & Quitadamo, L. R. Resistive flex sensors: a survey. Smart Mater. Struct. 25, 013001 (2016).

    Article  Google Scholar 

  14. Chanu, O. R., Pillai, A., Sinha, S. & Das, P. Comparative study for vision based and data based hand gesture recognition technique. In International Conference on Intelligent Communication and Computational Techniques 26–31 (IEEE, 2017).

  15. Pisharady, P. K. & Saerbeck, M. Recent methods and databases in vision-based hand gesture recognition: a review. Comput. Vis. Image Underst. 141, 152–165 (2015).

    Article  Google Scholar 

  16. Al-Shamayleh, A. S., Ahmad, R., Abushariah, M. A. M., Alam, K. A. & Jomhari, N. A systematic literature review on vision based gesture recognition techniques. Multimed. Tools Appl. 77, 28121–28184 (2018).

    Article  Google Scholar 

  17. Jung, D. et al. Adaptive self-organization of nanomaterials enables strain-insensitive resistance of stretchable metallic nanocomposites. Adv. Mater. 34, 2200980 (2022).

    Article  Google Scholar 

  18. Li, L., Jiang, S., Shull, P. B. & Gu, G. SkinGest: artificial skin for gesture recognition via filmy stretchable strain sensors. Adv. Robot. 32, 1112–1121 (2018).

    Article  Google Scholar 

  19. Balaji, A. N. & Peh, L.-S. AI-on-skin: towards enabling fast and scalable on-body AI inference for wearable on-skin interfaces. Proc. ACM Hum. Comput. Interact. 7, 1–34 (2023).

    Article  Google Scholar 

  20. Dong, W., Yang, L., Gravina, R. & Fortino, G. Soft wrist-worn multi-functional sensor array for real-time hand gesture recognition. IEEE Sens. J. 22, 17505–17514 (2022).

    Article  Google Scholar 

  21. Wen, J. et al. Recent advances in I/E-skin: mechanism, signal processing, and applications. Nano Mater. Sci. https://doi.org/10.1016/j.nanoms.2025.05.003 (2025).

  22. Barona López, L. I., Ferri, F. M., Zea, J., Valdivieso Caraguay, Á. L. & Benalcázar, M. E. CNN-LSTM and post-processing for EMG-based hand gesture recognition. Intell. Syst. Appl. 22, 200352 (2024).

    Google Scholar 

  23. Zhou, G., Cui, Z. & Qi, J. FGDSNet: a lightweight hand gesture recognition network for human robot interaction. IEEE Robot. Autom. Lett. 9, 3076–3083 (2024).

    Article  Google Scholar 

  24. Jang, H. et al. Flexible neuromorphic electronics for wearable near-sensor and in-sensor computing systems. Adv. Mater. 37, 2416073 (2025).

    Article  Google Scholar 

  25. Huron, S., Carpendale, S., Thudt, A., Tang, A. & Mauerer, M. Constructive visualization. In Proc. 2014 Conference on Designing Interactive Systems 433–442 (ACM, 2014).

  26. Shi, Y., Taib, R. & Lichman, S. GestureCam: a smart camera for gesture recognition and gesture-controlled web navigation. In 9th International Conference on Control, Automation, Robotics and Vision 1–6 (IEEE, 2006).

  27. Breuer, P., Eckes, C. & Müller, S. in Computer Vision/Computer Graphics Collaboration Techniques (eds Gagalowicz, A. & Philips, W.) 247–260 (Springer, 2007).

  28. Ryu, D. et al. T-less: a novel touchless human–machine interface based on infrared proximity sensing. In International Conference on Intelligent Robots and Systems 5220–5225 (IEEE, 2010).

  29. Saliba, M. A., Farrugia, F. & Giordmaina, A. A compact glove input device to measure human hand, wrist and forearm joint positions for teleoperation applications. In Proc. International Conference on Mechatronics and Robotics (IEEE, 2004).

  30. Shende, D., Nagpal, N. & Chawla, M. Digital glove for gesture recognition using flex sensor. IOSR J. Eng. 9, 13–17 (2019).

    Google Scholar 

  31. Kim, J.-H., Thang, N. D. & Kim, T.-S. 3-D hand motion tracking and gesture recognition using a data glove. In International Symposium on Industrial Electronics 1013–1018 (IEEE, 2009).

  32. Galka, J., Masior, M., Zaborski, M. & Barczewska, K. Inertial motion sensing glove for sign language gesture acquisition and recognition. IEEE Sens. J. 16, 6310–6316 (2016).

    Article  Google Scholar 

  33. Chang, H.-T. & Chang, J.-Y. Sensor glove based on novel inertial sensor fusion control algorithm for 3-D real-time hand gestures measurements. IEEE Trans. Ind. Electron. 67, 658–666 (2020).

    Article  Google Scholar 

  34. DelPreto, J., Hughes, J., D’Aria, M., De Fazio, M. & Rus, D. A wearable smart glove and its application of pose and gesture detection to sign language classification. IEEE Robot. Autom. Lett. 7, 10589–10596 (2022).

    Article  Google Scholar 

  35. Chen, S., Lou, Z., Chen, D., Jiang, K. & Shen, G. Polymer-enhanced highly stretchable conductive fiber strain sensor used for electronic data gloves. Adv. Mater. Technol. 1, 1600136 (2016).

    Article  Google Scholar 

  36. Mechael, S. S., Wu, Y., Chen, Y. & Carmichael, T. B. Ready-to-wear strain sensing gloves for human motion sensing. iScience 24, 102525 (2021).

    Article  Google Scholar 

  37. Lee, S., Jo, D., Kim, K.-B., Jang, J. & Park, W. Wearable sign language translation system using strain sensors. Sens. Actuators Phys. 331, 113010 (2021).

    Article  Google Scholar 

  38. Park, M. et al. Stretchable glove for accurate and robust hand pose reconstruction based on comprehensive motion data. Nat. Commun. 15, 5821 (2024).

    Article  Google Scholar 

  39. Dong, W., Yang, L. & Fortino, G. Stretchable human machine interface based on smart glove embedded with PDMS-CB strain sensors. IEEE Sens. J. 20, 8073–8081 (2020).

    Article  Google Scholar 

  40. Yamada, T. et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6, 296–301 (2011).

    Article  Google Scholar 

  41. Wang, R. et al. Carbon nanotube-based strain sensors: structures, fabrication, and applications. Adv. Mater. Technol. 8, 2200855 (2023).

    Article  Google Scholar 

  42. Lee, J. et al. Ultrasensitive strain sensor based on separation of overlapped carbon nanotubes. Small 15, 1805120 (2019).

    Article  Google Scholar 

  43. Chun, S., Choi, Y. & Park, W. All-graphene strain sensor on soft substrate. Carbon 116, 753–759 (2017).

    Article  Google Scholar 

  44. Mehmood, A. et al. Graphene based nanomaterials for strain sensor application — a review. J. Environ. Chem. Eng. 8, 103743 (2020).

    Article  Google Scholar 

  45. Bae, S.-H. et al. Graphene-based transparent strain sensor. Carbon 51, 236–242 (2013).

    Article  Google Scholar 

  46. Jheng, W.-W. et al. Gold nanoparticle thin film-based strain sensors for monitoring human pulse. ACS Appl. Nano Mater. 4, 1712–1718 (2021).

    Article  Google Scholar 

  47. Cheng, H.-W., Yan, S., Shang, G., Wang, S. & Zhong, C.-J. Strain sensors fabricated by surface assembly of nanoparticles. Biosens. Bioelectron. 186, 113268 (2021).

    Article  Google Scholar 

  48. Lee, J. et al. A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Nanoscale 6, 11932–11939 (2014).

    Article  Google Scholar 

  49. Duan, S., Wang, Z., Zhang, L., Liu, J. & Li, C. A highly stretchable, sensitive, and transparent strain sensor based on binary hybrid network consisting of hierarchical multiscale metal nanowires. Adv. Mater. Technol. 3, 1800020 (2018).

    Article  Google Scholar 

  50. Kim, K. K. et al. Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks. Nano Lett. 15, 5240–5247 (2015).

    Article  Google Scholar 

  51. Shengbo, S. et al. Highly sensitive wearable strain sensor based on silver nanowires and nanoparticles. Nanotechnology 29, 255202 (2018).

    Article  Google Scholar 

  52. Cho, J. H., Ha, S.-H. & Kim, J.-M. Transparent and stretchable strain sensors based on metal nanowire microgrids for human motion monitoring. Nanotechnology 29, 155501 (2018).

    Article  Google Scholar 

  53. Chen, J. et al. An overview of stretchable strain sensors from conductive polymer nanocomposites. J. Mater. Chem. C 7, 11710–11730 (2019).

    Article  Google Scholar 

  54. Wang, L., Wang, H., Wan, Q. & Gao, J. Recent development of conductive polymer composite-based strain sensors. J. Polym. Sci. 61, 3167–3185 (2023).

    Article  Google Scholar 

  55. Chen, J. et al. Strain sensing behaviors of stretchable conductive polymer composites loaded with different dimensional conductive fillers. Compos. Sci. Technol. 168, 388–396 (2018).

    Article  Google Scholar 

  56. Simone, L. K., Sundarrajan, N., Luo, X., Jia, Y. & Kamper, D. G. A low cost instrumented glove for extended monitoring and functional hand assessment. J. Neurosci. Methods 160, 335–348 (2007).

    Article  Google Scholar 

  57. Marques, G. & Basterretxea, K. Efficient algorithms for accelerometer-based wearable hand gesture recognition systems. In 13th International Conference on Embedded and Ubiquitous Computing 132–139 (IEEE, 2015).

  58. Tavakoli, M., Benussi, C., Alhais Lopes, P., Osorio, L. B. & De Almeida, A. T. Robust hand gesture recognition with a double channel surface EMG wearable armband and SVM classifier. Biomed. Signal. Process. Control. 46, 121–130 (2018).

    Article  Google Scholar 

  59. Yang, D., Chhatre, N., Campi, F. & Menon, C. Feasibility of support vector machine gesture classification on a wearable embedded device. In Canadian Conference on Electrical and Computer Engineering 1–4 (IEEE, 2016).

  60. Gu, G. et al. Integrated soft ionotronic skin with stretchable and transparent hydrogel–elastomer ionic sensors for hand-motion monitoring. Soft Robot. 6, 368–376 (2019).

    Article  Google Scholar 

  61. Jiang, S. et al. Stretchable e-skin patch for gesture recognition on the back of the hand. IEEE Trans. Ind. Electron. 67, 647–657 (2020).

    Article  Google Scholar 

  62. Jung, S. M., Jung, H. Y., Fang, W., Dresselhaus, M. S. & Kong, J. A facile methodology for the production of in situ inorganic nanowire hydrogels/aerogels. Nano Lett. 14, 1810–1817 (2014).

    Article  Google Scholar 

  63. Ahn, Y., Lee, H., Lee, D. & Lee, Y. Highly conductive and flexible silver nanowire-based microelectrodes on biocompatible hydrogel. ACS Appl. Mater. Interfaces 6, 18401–18407 (2014).

    Article  Google Scholar 

  64. Chen, Y. et al. Multifunctional conductive hydrogel composites with nickel nanowires and liquid metal conductive highways. ACS Appl. Mater. Interfaces 16, 29267–29281 (2024).

    Article  Google Scholar 

  65. Zhang, Y.-Z. et al. MXenes stretch hydrogel sensor performance to new limits. Sci. Adv. 4, eaat0098 (2018).

    Article  Google Scholar 

  66. Tian, L. et al. Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring. Nat. Biomed. Eng. 3, 194–205 (2019).

    Article  Google Scholar 

  67. Yasami, S., Mazinani, S. & Abdouss, M. Developed composites materials for flexible supercapacitors electrode: ‘recent progress & future aspects’. J. Energy Storage 72, 108807 (2023).

    Article  Google Scholar 

  68. Muralee Gopi, C. V. V., Ravi, S., Rao, S. S., Eswar Reddy, A. & Kim, H.-J. Carbon nanotube/metal-sulfide composite flexible electrodes for high-performance quantum dot-sensitized solar cells and supercapacitors. Sci. Rep. 7, 46519 (2017).

    Article  Google Scholar 

  69. Guo, Y., Zhu, J., Xiong, L. & Guan, J. Finger motion detection based on optical fiber Bragg grating with polyimide substrate. Sens. Actuators Phys. 338, 113482 (2022).

    Article  Google Scholar 

  70. Du, B. et al. A water-resistant, ultrathin, conformable organic photodetector for vital sign monitoring. Sci. Adv. 10, eadp2679 (2024).

    Article  Google Scholar 

  71. Lou, Z. et al. Near-infrared organic photodetectors toward skin-integrated photoplethysmography-electrocardiography multimodal sensing system. Adv. Sci. 10, 2304174 (2023).

    Article  Google Scholar 

  72. Park, Y. et al. Skin-like low-noise elastomeric organic photodiodes. Sci. Adv. 7, eabj6565 (2021).

    Article  Google Scholar 

  73. Simões, J., Dong, T. & Yang, Z. Non-fullerene acceptor organic photodetector for skin-conformable photoplethysmography applications. Adv. Mater. Interfaces 9, 2101897 (2022).

    Article  Google Scholar 

  74. Wang, R. et al. A highly stretchable and transparent silver nanowire/thermoplastic polyurethane film strain sensor for human motion monitoring. Inorg. Chem. Front. 6, 3119–3124 (2019).

    Article  Google Scholar 

  75. Li, L., Jiang, S., Tao, Y., Shull, P. B. & Gu, G. Fabrication and testing of a filmy ‘feelingless’ stretchable strain sensor. In International Symposium on System Integration 362–367 (IEEE, 2017).

  76. He, J. et al. Multi-directional strain sensor based on carbon nanotube array for human motion monitoring and gesture recognition. Carbon 226, 119201 (2024).

    Article  Google Scholar 

  77. Amjadi, M., Yoon, Y. J. & Park, I. Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes–Ecoflex nanocomposites. Nanotechnology 26, 375501 (2015).

    Article  Google Scholar 

  78. Lu, H., Zhang, S., Guo, L. & Li, W. Applications of graphene-based composite hydrogels: a review. RSC Adv. 7, 51008–51020 (2017).

    Article  Google Scholar 

  79. Tang, S., Liu, Z. & Xiang, X. Graphene oxide composite hydrogels for wearable devices. Carbon Lett. 32, 1395–1410 (2022).

    Article  Google Scholar 

  80. Ma, J., Du, W., Chen, Z., Wang, W. & Zhang, L. Preparation of graphene-based hydrogel thermal interface materials with excellent heat dissipation and mechanical properties. Macromol. Mater. Eng. 308, 2200332 (2023).

    Article  Google Scholar 

  81. Ye, L. et al. Carbon nanotube–hydrogel composites facilitate neuronal differentiation while maintaining homeostasis of network activity. Adv. Mater. 33, 2102981 (2021).

    Article  Google Scholar 

  82. Liu, X.-W. et al. Conductive carbon nanotube hydrogel as a bioanode for enhanced microbial electrocatalysis. ACS Appl. Mater. Interfaces 6, 8158–8164 (2014).

    Article  Google Scholar 

  83. Ding, X. et al. Multifunctional carbon nanotube hydrogels with on-demand removability for wearable electronics. Nano Today 54, 102124 (2024).

    Article  Google Scholar 

  84. Zhang, A. et al. Research status of self-healing hydrogel for wound management: a review. Int. J. Biol. Macromol. 164, 2108–2123 (2020).

    Article  Google Scholar 

  85. Taylor, D. L. & In Het Panhuis, M. Self-healing hydrogels. Adv. Mater. 28, 9060–9093 (2016).

    Article  Google Scholar 

  86. Fan, J. A. et al. Fractal design concepts for stretchable electronics. Nat. Commun. 5, 3266 (2014).

    Article  Google Scholar 

  87. Tang, L., Shang, J. & Jiang, X. Multilayered electronic transfer tattoo that can enable the crease amplification effect. Sci. Adv. 7, eabe3778 (2021).

    Article  Google Scholar 

  88. Park, J. et al. Imperceptive and reusable dermal surface EMG for lower extremity neuro-prosthetic control and clinical assessment. npj Flex. Electron. 7, 49 (2023).

    Article  Google Scholar 

  89. Li, G. et al. sEMG and IMU data-based hand gesture recognition method using multistream CNN with a fine-tuning transfer framework. IEEE Sens. J. 23, 31414–31424 (2023).

    Article  Google Scholar 

  90. Kumar, D. & Ganesh, A. A critical review on hand gesture recognition using sEMG: challenges, application, process and techniques. J. Phys. Conf. Ser. 2327, 012075 (2022).

    Article  Google Scholar 

  91. Yang, H. et al. Adhesive biocomposite electrodes on sweaty skin for long-term continuous electrophysiological monitoring. ACS Mater. Lett. 2, 478–484 (2020).

    Article  Google Scholar 

  92. Zhang, L. et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat. Commun. 11, 4683 (2020).

    Article  Google Scholar 

  93. Cai, P. et al. Locally coupled electromechanical interfaces based on cytoadhesion-inspired hybrids to identify muscular excitation–contraction signatures. Nat. Commun. 11, 2183 (2020).

    Article  Google Scholar 

  94. Jiang, Y. et al. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science 375, 1411–1417 (2022).

    Article  Google Scholar 

  95. Choi, S. et al. Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 13, 1048–1056 (2018).

    Article  Google Scholar 

  96. Zhang, X., Yang, Z., Chen, T., Chen, D. & Huang, M.-C. Cooperative sensing and wearable computing for sequential hand gesture recognition. IEEE Sens. J. 19, 5775–5783 (2019).

    Article  Google Scholar 

  97. Pan, J. et al. A wireless multi-channel capacitive sensor system for efficient glove-based gesture recognition with AI at the edge. IEEE Trans. Circuits Syst. II Express Briefs 67, 1624–1628 (2020).

    Google Scholar 

  98. Ahn, J. et al. Skin-conformal motion monitoring film for deep-learning-based immersive extended reality. Adv. Funct. Mater. 35, 2502568 (2025).

    Article  Google Scholar 

  99. Kammarchedu, V., AlSiyabi, M. & Ebrahimi, A. Skin-conformal myography for real-time hand tracking using a laser-induced graphene strain sensor array. Adv. Intell. Syst. 7, 2400812 (2025).

    Article  Google Scholar 

  100. Pyun, K. R. et al. Machine-learned wearable sensors for real-time hand-motion recognition: toward practical applications. Natl Sci. Rev. 11, nwad298 (2024).

    Article  Google Scholar 

  101. Dudley, J., Yin, L., Garaj, V. & Kristensson, P. O. Inclusive immersion: a review of efforts to improve accessibility in virtual reality, augmented reality and the metaverse. Virtual Real. 27, 2989–3020 (2023).

    Article  Google Scholar 

  102. Liu, Y. et al. Electronic skin as wireless human–machine interfaces for robotic VR. Sci. Adv. 8, eabl6700 (2022).

    Article  Google Scholar 

  103. Kim, H. et al. AR-enabled persistent human–machine interfaces via a scalable soft electrode array. Adv. Sci. 11, 2305871 (2024).

    Article  Google Scholar 

  104. Song, Y., Nguyen, T. H., Lee, D. & Kim, J. Machine learning-enabled environmentally adaptable skin-electronic sensor for human gesture recognition. ACS Appl. Mater. Interfaces 16, 9551–9560 (2024).

    Article  Google Scholar 

  105. Wang, J. et al. An infrared near-sensor reservoir computing system based on large-dynamic-space memristor with tens of thousands of states for dynamic gesture perception. Adv. Sci. 11, 2307359 (2024).

    Article  Google Scholar 

  106. Cho, J.-Y. et al. Tactile near-sensor computing systems incorporating hourglass-shaped microstructured capacitive sensors for bio-realistic energy efficiency. npj Flex. Electron. 9, 34 (2025).

    Article  Google Scholar 

  107. Zhou, Z. et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 3, 571–578 (2020).

    Article  Google Scholar 

  108. Duan, S. et al. Water-modulated biomimetic hyper-attribute-gel electronic skin for robotics and skin-attachable wearables. ACS Nano 17, 1355–1371 (2023).

    Article  Google Scholar 

  109. Yuan, L. et al. Gesture recognition device based on cross reticulated graphene strain sensors. J. Mater. Sci. Mater. Electron. 32, 8410–8417 (2021).

    Article  Google Scholar 

  110. Ben-Ari, L., Ben-Ari, A., Hermon, C. & Hanein, Y. Finger gesture recognition with smart skin technology and deep learning. Flex. Print. Electron. 8, 025012 (2023).

    Article  Google Scholar 

  111. Moin, A. et al. A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nat. Electron. 4, 54–63 (2020).

    Article  Google Scholar 

  112. Cho, H. et al. Real-time finger motion recognition using skin-conformable electronics. Nat. Electron. 6, 619–629 (2023).

    Article  Google Scholar 

  113. Heydarian, H. et al. Deep learning for intake gesture detection from wrist-worn inertial sensors: the effects of data preprocessing, sensor modalities, and sensor positions. IEEE Access8, 164936–164949 (2020).

    Article  Google Scholar 

  114. Liu, D. et al. A wearable in-sensor computing platform based on stretchable organic electrochemical transistors. Nat. Electron. 7, 1176–1185 (2024).

    Article  Google Scholar 

  115. Chen, B., Yao, J., Xia, J., Yang, R. & Miao, X. A strain-sensitive flexible MoTe2-based memristor for gesture recognition. IEEE Electron. Device Lett. 44, 622–625 (2023).

    Article  Google Scholar 

  116. Chen, F. et al. Bio-inspired artificial perceptual devices for neuromorphic computing and gesture recognition. Adv. Funct. Mater. 33, 2300266 (2023).

    Article  Google Scholar 

  117. Kim, D. et al. Highly reliable 3D channel memory and its application in a neuromorphic sensory system for hand gesture recognition. ACS Nano 17, 24826–24840 (2023).

    Article  Google Scholar 

  118. Wang, Y. et al. Flexible Zn-TCPP nanosheet-based memristor for ultralow-power biomimetic sensing system and high-precision gesture recognition. Adv. Funct. Mater. 34, 2316397 (2024).

    Article  Google Scholar 

  119. Lee, K. et al. Artificially intelligent tactile ferroelectric skin. Adv. Sci. 7, 2001662 (2020).

    Article  Google Scholar 

  120. Liu, L. et al. Stretchable neuromorphic transistor that combines multisensing and information processing for epidermal gesture recognition. ACS Nano 16, 2282–2291 (2022).

    Article  Google Scholar 

  121. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).

    Article  Google Scholar 

  122. Aguirre, F. et al. Hardware implementation of memristor-based artificial neural networks. Nat. Commun. 15, 1974 (2024).

    Article  Google Scholar 

  123. Han, P., Liang, S., Zou, H. & Wang, X. Structure, principle and performance of flexible conductive polymer strain sensors: a review. J. Mater. Sci. Mater. Electron. 35, 775 (2024).

    Article  Google Scholar 

  124. Nesser, H. & Lubineau, G. Strain sensing by electrical capacitive variation: from stretchable materials to electronic interfaces. Adv. Electron. Mater. 7, 2100190 (2021).

    Article  Google Scholar 

  125. Wang, X., Deng, Y., Jiang, P., Chen, X. & Yu, H. Low-hysteresis, pressure-insensitive, and transparent capacitive strain sensor for human activity monitoring. Microsyst. Nanoeng. 8, 113 (2022).

    Article  Google Scholar 

  126. Nur, R. et al. A highly sensitive capacitive-type strain sensor using wrinkled ultrathin gold films. Nano Lett. 18, 5610–5617 (2018).

    Article  Google Scholar 

  127. Cheng, A. J. et al. Recent advances of capacitive sensors: materials, microstructure designs, applications, and opportunities. Adv. Mater. Technol. 8, 2201959 (2023).

    Article  Google Scholar 

  128. Huang, X. et al. High-stretchability and low-hysteresis strain sensors using origami-inspired 3D mesostructures. Sci. Adv. 9, eadh9799 (2023).

    Article  Google Scholar 

  129. Li, F. et al. Recent advances in strain-induced piezoelectric and piezoresistive effect-engineered 2D semiconductors for adaptive electronics and optoelectronics. Nano-Micro Lett. 12, 106 (2020).

    Article  Google Scholar 

  130. Choi, S., Lee, H., Ghaffari, R., Hyeon, T. & Kim, D. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater. 28, 4203–4218 (2016).

    Article  Google Scholar 

  131. Lim, S. et al. Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures. Adv. Funct. Mater. 25, 375–383 (2015).

    Article  Google Scholar 

  132. Kim, Y.-G., Song, J.-H., Hong, S. & Ahn, S.-H. Piezoelectric strain sensor with high sensitivity and high stretchability based on kirigami design cutting. npj Flex. Electron. 6, 52 (2022).

    Article  Google Scholar 

  133. Zhu, K., Guo, W., Yang, G., Li, Z. & Wu, H. High-fidelity recording of EMG signals by multichannel on-skin electrode arrays from target muscles for effective human–machine interfaces. ACS Appl. Electron. Mater. 3, 1350–1358 (2021).

    Article  Google Scholar 

  134. Ghazal, M., Kumar, A., Garg, N., Pecqueur, S. & Alibart, F. Neuromorphic signal classification using organic electrochemical transistor array and spiking neural simulations. IEEE Sens. J. 24, 9104–9114 (2024).

    Article  Google Scholar 

  135. Nawaz, A., Liu, Q., Leong, W. L., Fairfull-Smith, K. E. & Sonar, P. Organic electrochemical transistors for in vivo bioelectronics. Adv. Mater. 33, 2101874 (2021).

    Article  Google Scholar 

  136. Lee, I. et al. Ultraflexible vertical Corbino organic electrochemical transistors for epidermal signal monitoring. Adv. Mater. 37, 2410444 (2025).

    Article  Google Scholar 

  137. Kim, J. H. et al. Sterilizable vertical n-type organic electrochemical transistors for skin-conformal ECG monitoring. Mater. Sci. Eng. R Rep. 165, 101003 (2025).

    Article  Google Scholar 

  138. Zhong, Y. et al. Eutectogels as a semisolid electrolyte for organic electrochemical transistors. Chem. Mater. 36, 1841–1854 (2024).

    Article  Google Scholar 

  139. Lee, H. et al. Stretchable organic optoelectronic devices: design of materials, structures, and applications. Mater. Sci. Eng. R Rep. 146, 100631 (2021).

    Article  Google Scholar 

  140. Park, S. et al. Ultraflexible near-infrared organic photodetectors for conformal photoplethysmogram sensors. Adv. Mater. 30, 1802359 (2018).

    Article  Google Scholar 

  141. Lee, H. et al. Ultra-flexible semitransparent organic photovoltaics. npj Flex. Electron. 7, 27 (2023).

    Article  Google Scholar 

  142. Eun, H. J. et al. Strain-durable dark current in near-infrared organic photodetectors for skin-conformal photoplethysmographic sensors. iScience 25, 104194 (2022).

    Article  Google Scholar 

  143. Park, S. et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature 561, 516–521 (2018).

    Article  Google Scholar 

  144. Li, T. et al. A skin-conformal and breathable humidity sensor for emotional mode recognition and non-contact human-machine interface. npj Flex. Electron. 8, 1–9 (2024).

    Article  Google Scholar 

  145. Ershad, F. et al. Ultra-conformal drawn-on-skin electronics for multifunctional motion artifact-free sensing and point-of-care treatment. Nat. Commun. 11, 3823 (2020).

    Article  Google Scholar 

  146. Chen, W. et al. Customized surface adhesive and wettability properties of conformal electronic devices. Mater. Horiz. 11, 6289–6325 (2024).

    Article  Google Scholar 

  147. Li, M. et al. Sweat-resistant bioelectronic skin sensor. Device 1, 100006 (2023).

    Article  Google Scholar 

  148. Tchantchane, R., Zhou, H., Zhang, S. & Alici, G. A review of hand gesture recognition systems based on noninvasive wearable sensors. Adv. Intell. Syst. 5, 2300207 (2023).

    Article  Google Scholar 

  149. Jiang, W. et al. Wearable on-device deep learning system for hand gesture recognition based on FPGA accelerator. Math. Biosci. Eng. 18, 132–153 (2021).

    Article  Google Scholar 

  150. Choi, S., Yang, J. & Wang, G. Emerging memristive artificial synapses and neurons for energy-efficient neuromorphic computing. Adv. Mater. 32, 2004659 (2020).

    Article  Google Scholar 

  151. Prezioso, M. et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015).

    Article  Google Scholar 

  152. Jeon, K. et al. Purely self-rectifying memristor-based passive crossbar array for artificial neural network accelerators. Nat. Commun. 15, 129 (2024).

    Article  Google Scholar 

  153. Kim, H., Mahmoodi, M. R., Nili, H. & Strukov, D. B. 4K-memristor analog-grade passive crossbar circuit. Nat. Commun. 12, 5198 (2021).

    Article  Google Scholar 

  154. Choi, S. et al. 3D-integrated multilayered physical reservoir array for learning and forecasting time-series information. Nat. Commun. 15, 2044 (2024).

    Article  Google Scholar 

  155. Choi, S., Moon, T., Wang, G. & Yang, J. J. Filament-free memristors for computing. Nano Converg. 10, 58 (2023).

    Article  Google Scholar 

  156. Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013).

    Article  Google Scholar 

  157. Su, Y.-T. et al. A method to reduce forming voltage without degrading device performance in hafnium oxide-based 1T1R resistive random access memory. IEEE J. Electron. Devices Soc. 6, 341–345 (2018).

    Article  Google Scholar 

  158. Zhang, Y. et al. Evolution of the conductive filament system in HfO2-based memristors observed by direct atomic-scale imaging. Nat. Commun. 12, 7232 (2021).

    Article  Google Scholar 

  159. Han, C. et al. Reconfigurable organic electrochemical transistors with high dynamic ranges for fully integrated physical reservoir computing. Adv. Funct. Mater. 35, 2423814 (2025).

    Article  Google Scholar 

  160. Zucker, R. S. Short-term synaptic plasticity. Annu. Rev. Neurosci. 12, 13–31 (1989).

    Article  Google Scholar 

  161. Abbott, L. F. & Regehr, W. G. Synaptic computation. Nature 431, 796–803 (2004).

    Article  Google Scholar 

  162. Choi, Y. et al. Physically defined long-term and short-term synapses for the development of reconfigurable analog-type operators capable of performing health care tasks. Sci. Adv. 9, eadg5946 (2023).

    Article  Google Scholar 

  163. Zhong, Y. et al. A memristor-based analogue reservoir computing system for real-time and power-efficient signal processing. Nat. Electron. 5, 672–681 (2022).

    Article  Google Scholar 

  164. Atluri, P. P. & Regehr, W. G. Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse. J. Neurosci. 16, 5661–5671 (1996).

    Article  Google Scholar 

  165. Feldman, D. E. The spike-timing dependence of plasticity. Neuron 75, 556–571 (2012).

    Article  Google Scholar 

  166. Yan, J., Armstrong, J. P. K., Scarpa, F. & Perriman, A. W. Hydrogel-based artificial synapses for sustainable neuromorphic electronics. Adv. Mater. 36, 2403937 (2024).

    Article  Google Scholar 

  167. Cong, S. & Zhou, Y. A review of convolutional neural network architectures and their optimizations. Artif. Intell. Rev. 56, 1905–1969 (2023).

    Article  Google Scholar 

  168. Azghadi, M. R. et al. Hardware implementation of deep network accelerators towards healthcare and biomedical applications. IEEE Trans. Biomed. Circuits Syst. 14, 1138–1159 (2020).

    Article  Google Scholar 

  169. Ge, X. et al. Flexible microfluidic triboelectric sensor for gesture recognition and information encoding. Nano Energy 113, 108541 (2023).

    Article  Google Scholar 

  170. Yang, K. et al. Conformal, stretchable, breathable, wireless epidermal surface electromyography sensor system for hand gesture recognition and rehabilitation of stroke hand function. Mater. Des. 243, 113029 (2024).

    Article  Google Scholar 

  171. Ceolini, E. et al. Hand-gesture recognition based on EMG and event-based camera sensor fusion: a benchmark in neuromorphic computing. Front. Neurosci. 14, 637 (2020).

    Article  Google Scholar 

  172. Ozdemir, M. A., Kisa, D. H., Guren, O. & Akan, A. Hand gesture classification using time–frequency images and transfer learning based on CNN. Biomed. Signal Process. Control. 77, 103787 (2022).

    Article  Google Scholar 

  173. Bengio, Y., Simard, P. & Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5, 157–166 (1994).

    Article  Google Scholar 

  174. Hochreiter, S. Long Short-Term Memory (MIT-Press, 1997).

  175. Lukoševičius, M. & Jaeger, H. Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3, 127–149 (2009).

    Article  Google Scholar 

  176. Wu, C., Kim, T. W., Choi, H. Y., Strukov, D. B. & Yang, J. J. Flexible three-dimensional artificial synapse networks with correlated learning and trainable memory capability. Nat. Commun. 8, 752 (2017).

    Article  Google Scholar 

  177. Li, Y., Wang, J., Yang, Q. & Shen, G. Flexible artificial optoelectronic synapse based on lead-free metal halide nanocrystals for neuromorphic computing and color recognition. Adv. Sci. 9, 2202123 (2022).

    Article  Google Scholar 

  178. Liu, C. et al. Ultraflexible and energy-efficient artificial synapses based on molecular/atomic layer deposited organic–inorganic hybrid thin Films. Adv. Electron. Mater. 9, 2200821 (2023).

    Article  Google Scholar 

  179. Hwang, Y. et al. A bioinspired ultra flexible artificial van der Waals 2D-MoS2 Channel/LiSiOx solid electrolyte synapse arrays via laser-lift off process for wearable adaptive neuromorphic computing. Small Methods 7, 2201719 (2023).

    Article  Google Scholar 

  180. Liu, J. et al. Multidimensional free shape-morphing flexible neuromorphic devices with regulation at arbitrary points. Nat. Commun. 16, 756 (2025).

    Article  Google Scholar 

  181. Oh, S. et al. Flexible artificial Si-In-Zn-O/ion gel synapse and its application to sensory-neuromorphic system for sign language translation. Sci. Adv. 7, eabg9450 (2021).

    Article  Google Scholar 

  182. Lin, Y. et al. Photoreduced nanocomposites of graphene oxide/N-doped carbon dots toward all-carbon memristive synapses. NPG Asia Mater. 12, 1–11 (2020).

    Article  Google Scholar 

  183. Wang, R. et al. All-in-one compression and encryption engine based on flexible polyimide memristor. Small Sci. 3, 2200082 (2023).

    Article  Google Scholar 

  184. Wang, T. et al. Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics. Nat. Commun. 13, 7432 (2022).

    Article  Google Scholar 

  185. Wang, K., Jia, Y. & Yan, X. A biomimetic afferent nervous system based on the flexible artificial synapse. Nano Energy 100, 107486 (2022).

    Article  Google Scholar 

  186. Patil, H. et al. Flexible organic–inorganic halide perovskite-based diffusive memristor for artificial nociceptors. ACS Appl. Mater. Interfaces 15, 13238–13248 (2023).

    Article  Google Scholar 

  187. He, K. et al. Artificial neural pathway based on a memristor synapse for optically mediated motion learning. ACS Nano 16, 9691–9700 (2022).

    Article  Google Scholar 

  188. Li, X. et al. Sliding ferroelectric memories and synapses based on rhombohedral-stacked bilayer MoS2. Nat. Commun. 15, 10921 (2024).

    Article  Google Scholar 

  189. Li, Q.-X. et al. Ferroelectric artificial synapse for neuromorphic computing and flexible applications. Fundam. Res. 3, 960–966 (2023).

    Article  Google Scholar 

  190. Moon, J. et al. Temporal data classification and forecasting using a memristor-based reservoir computing system. Nat. Electron. 2, 480–487 (2019).

    Article  Google Scholar 

  191. Liu, S., Zhang, J., Zhang, Y. & Zhu, R. A wearable motion capture device able to detect dynamic motion of human limbs. Nat. Commun. 11, 5615 (2020).

    Article  Google Scholar 

  192. Rahman, H. U., Ritu, A. T., Jerin Rasha, H. & Anower, Md. S. Comparative analysis of microcontrollers in wearable devices for real-time arrhythmia classification: an embedded machine learning approach. In 6th International Conference on Electrical Engineering and Information & Communication Technology 1327–1331 (2024).

  193. Ingolfsson, T. M. et al. ECG-TCN: wearable cardiac arrhythmia detection with a temporal convolutional network. In 3rd International Conference on Artificial Intelligence Circuits and Systems 1–4 (2021).

  194. Lee, S. et al. An ultrasoft nanomesh strain sensor with extreme mechanical durability against friction for on-skin applications. Device 3, 100559 (2025).

    Article  Google Scholar 

  195. Duan, S. et al. A hybrid multimodal fusion framework for sEMG-ACC-based hand gesture recognition. IEEE Sens. J. 23, 2773–2782 (2023).

    Article  Google Scholar 

  196. Liu, H. & Liu, Z. A multimodal dynamic hand gesture recognition based on radar–vision fusion. IEEE Trans. Instrum. Meas. 72, 1–15 (2023).

    Google Scholar 

  197. Duan, S., Wu, L., Liu, A. & Chen, X. Alignment-enhanced interactive fusion model for complete and incomplete multimodal hand gesture recognition. IEEE Trans. Neural Syst. Rehabil. Eng. 31, 4661–4671 (2023).

    Article  Google Scholar 

  198. Sun, J. et al. Human skin-inspired neuromorphic sensors. Soft Sci. 5, 18 (2025).

    Article  Google Scholar 

  199. Lee, S. et al. Non-centrosymmetric crystallization in ferroelectric hafnium zirconium oxide via photon-assisted defect modulation. Mater. Sci. Eng. R Rep. 159, 100800 (2024).

    Article  Google Scholar 

  200. Park, M. H. et al. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv. Mater. 27, 1811–1831 (2015).

    Article  Google Scholar 

  201. Panca, A. et al. Flexible oxide thin film transistors, memristors, and their integration. Adv. Funct. Mater. 33, 2213762 (2023).

    Article  Google Scholar 

  202. Oh, J. Y., Lee, Y. & Lee, T.-W. Skin-mountable functional electronic materials for bio-integrated devices. Adv. Healthc. Mater. 13, 2303797 (2024).

    Article  Google Scholar 

  203. Lee, Y. et al. A low-power stretchable neuromorphic nerve with proprioceptive feedback. Nat. Biomed. Eng. 7, 511–519 (2023).

    Article  Google Scholar 

  204. Teja Nibhanupudi, S. S. et al. Ultra-fast switching memristors based on two-dimensional materials. Nat. Commun. 15, 2334 (2024).

    Article  Google Scholar 

  205. Liu, H. et al. Controlled formation of conduction channels in memristive devices observed by X-ray multimodal imaging. Adv. Mater. 34, 2203209 (2022).

    Article  Google Scholar 

  206. Yu, J., Qin, M. & Zhou, S. Dynamic gesture recognition based on 2D convolutional neural network and feature fusion. Sci. Rep. 12, 4345 (2022).

    Article  Google Scholar 

  207. Shen, C. et al. Toward generalization of sEMG-based pattern recognition: a novel feature extraction for gesture recognition. IEEE Trans. Instrum. Meas. 71, 1–12 (2022).

    Google Scholar 

  208. Davies, M. et al. Advancing neuromorphic computing with loihi: a survey of results and outlook. Proc. IEEE 109, 911–934 (2021).

    Article  Google Scholar 

  209. Zhong, C. et al. A flexible wearable e-skin sensing system for robotic teleoperation. Robotica 41, 1025–1038 (2023).

    Article  Google Scholar 

  210. Yiu, C. et al. Skin-interfaced multimodal sensing and tactile feedback system as enhanced human–machine interface for closed-loop drone control. Sci. Adv. 11, eadt6041 (2025).

    Article  Google Scholar 

  211. Sun, Z., Zhu, M., Shan, X. & Lee, C. Augmented tactile-perception and haptic-feedback rings as human–machine interfaces aiming for immersive interactions. Nat. Commun. 13, 5224 (2022).

    Article  Google Scholar 

  212. Oh, J. et al. A liquid metal based multimodal sensor and haptic feedback device for thermal and tactile sensation generation in virtual reality. Adv. Funct. Mater. 31, 2007772 (2021).

    Article  Google Scholar 

  213. Abbel, R., Galagan, Y. & Groen, P. Roll-to-roll fabrication of solution processed electronics. Adv. Eng. Mater. 20, 1701190 (2018).

    Article  Google Scholar 

  214. Lim, Y. R. et al. Roll-to-roll production of layer-controlled molybdenum disulfide: a platform for 2D semiconductor-based industrial applications. Adv. Mater. 30, 1705270 (2018).

    Article  Google Scholar 

  215. Lee, W.-J., Kwak, T., Choi, J.-G., Park, S. & Yoon, M.-H. Solution-processed metal oxide dielectric films: progress and outlook. APL Mater. 9, 120701 (2021).

    Article  Google Scholar 

  216. Baek, S. et al. Bias-stress-stable sub-1.5 V oxide thin-film transistors via synergistic composition of sol–gel quaternary high-k oxide dielectrics. J. Alloy Compd. 994, 174636 (2024).

    Article  Google Scholar 

  217. Gibson, I., Rosen, D., Stucker, B. & Khorasani, M. Additive Manufacturing Technologies (Springer International, 2021).

  218. Pan, J. et al. Hybrid-flexible bimodal sensing wearable glove system for complex hand gesture recognition. ACS Sens. 6, 4156–4166 (2021).

    Article  Google Scholar 

  219. Shen, H.-Y. et al. Machine learning-assisted gesture sensor made with graphene/carbon nanotubes for sign language recognition. ACS Appl. Mater. Interfaces 16, 52911–52920 (2024).

    Article  Google Scholar 

  220. Isano, Y. et al. Soft intelligent systems based on stretchable hybrid devices integrated with machine learning. Device 2, 100496 (2024).

    Article  Google Scholar 

  221. Lee, H. et al. Stretchable array electromyography sensor with graph neural network for static and dynamic gestures recognition system. npj Flex. Electron. 7, 20 (2023).

    Article  Google Scholar 

  222. Kwak, J. W. et al. Wireless sensors for continuous, multimodal measurements at the skin interface with lower limb prostheses. Sci. Transl. Med. 12, eabc4327 (2020).

    Article  Google Scholar 

  223. Kong, L. et al. Wireless technologies in flexible and wearable sensing: from materials design, system integration to applications. Adv. Mater. 36, 2400333 (2024).

    Article  Google Scholar 

  224. Wang, Z., Xiao, X., Wu, W., Zhang, X. & Pang, Y. Ultra-conformal epidermal antenna for multifunctional motion artifact-free sensing and point-of-care monitoring. Biosens. Bioelectron. 253, 116150 (2024).

    Article  Google Scholar 

  225. Kimionis, J., Georgiadis, A., Daskalakis, S. N. & Tentzeris, M. M. A printed millimetre-wave modulator and antenna array for backscatter communications at gigabit data rates. Nat. Electron. 4, 439–446 (2021).

    Article  Google Scholar 

  226. Hu, K., Zhou, Y., Sitaraman, S. K. & Tentzeris, M. M. Additively manufactured flexible on-package phased array antennas for 5 G/mmWave wearable and conformal digital twin and massive MIMO applications. Sci. Rep. 13, 12515 (2023).

    Article  Google Scholar 

  227. Kim, M. H. et al. Thermoelectric energy harvesting electronic skin (e-skin) patch with reconfigurable carbon nanotube clays. Nano Energy 87, 106156 (2021).

    Article  Google Scholar 

  228. García Núñez, C., Manjakkal, L. & Dahiya, R. Energy autonomous electronic skin. npj Flex. Electron. 3, 1–24 (2019).

    Article  Google Scholar 

  229. Nam, Y. et al. Ultra-thin GaAs single-junction solar cells for self-powered skin-compatible electrocardiogram sensors. Small Methods 8, 2301735 (2024).

    Article  Google Scholar 

  230. Lei, S. et al. Opportunities for biocompatible and safe zinc-based batteries. Energy Environ. Sci. 15, 4911–4927 (2022).

    Article  Google Scholar 

  231. Li, H., Chen, J. & Fang, J. Recent advances in wearable aqueous metal-air batteries: from configuration design to materials fabrication. Adv. Mater. Technol. 8, 2201762 (2023).

    Article  Google Scholar 

  232. Sha, D., Zhang, D. & Zhang, J. A single-stage dual-active-bridge AC–DC converter employing mode transition based on real-time calculation. IEEE Trans. Power Electron. 36, 10081–10088 (2021).

    Article  Google Scholar 

  233. Vazquez, S. et al. An artificial intelligence approach for real-time tuning of weighting factors in FCS-MPC for power converters. IEEE Trans. Ind. Electron. 69, 11987–11998 (2022).

    Article  Google Scholar 

  234. Zhao, Y. et al. Superelastic alloy based electrical interconnects for highly stretchable electronics. npj Flex. Electron. 6, 1–8 (2022).

    Article  Google Scholar 

  235. Jiao, R. et al. Vertical serpentine interconnect-enabled stretchable and curved electronics. Microsyst. Nanoeng. 9, 1–10 (2023).

    Article  Google Scholar 

  236. Lopes, P. A., Santos, B. C., de Almeida, A. T. & Tavakoli, M. Reversible polymer–gel transition for ultra-stretchable chip-integrated circuits through self-soldering and self-coating and self-healing. Nat. Commun. 12, 4666 (2021).

    Article  Google Scholar 

  237. Sun, F. et al. Stretchable interconnected modular electrochromic devices enabled by self-healing, self-adhesive, and ion-conducting polymer electrolyte. Chem. Eng. J. 494, 153107 (2024).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea grant funded by the Ministry of Science and ICT (RS-2024-00403639, RS-2023-00213089, RS-2024-00403163, RS-2025-00520264, RS-2024-00407271 and RS-2024-00451891) and the Ministry of Education (RS-2023-00220077), and by the Technology Innovation Program funded by the Ministry of Trade, Industry and Energy (RS-2022-00154781).

Author information

Authors and Affiliations

Authors

Contributions

I.L., S.H. and H.C. researched data for the article. G.W. and S.P. substantially contributed to the discussion of the content. I.L. and J.-G.C. wrote the manuscript. S.H., J.-G.C., G.W. and S.P reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Jun-Gyu Choi, Gunuk Wang or Sungjun Park.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Peer review

Peer review information

Nature Reviews Electrical Engineering thanks Ho Won Jang, Yu Chang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, I., Hyojin, S., Cho, H. et al. Skin-conformal electronics for intelligent gesture recognition. Nat Rev Electr Eng (2025). https://doi.org/10.1038/s44287-025-00215-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44287-025-00215-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing