Abstract
Skin-conformal electronics that naturally adhere to the body are transforming human–machine interfaces (HMIs) by enabling intuitive, real-time gesture recognition with broad potential in immersive applications such as virtual reality, advanced robotics and remote health care. These devices bridge human intentions and machine responses but still require integrated platforms that collect advances in sensing elements, adaptive signal processing and intelligent decision-making algorithms. In this Review, we identify the component innovations and system-level strategies to define a roadmap for skin-conformal gesture recognition as a core element of next-generation HMIs. Advances in conformal device architectures are overcoming the mechanical and signal stability limitations of conventional wearables, enabling reliable operation during continuous use. Integration of sensing and processing enables adaptive, real-time interpretation of gestures aligned with user intent, while emerging computational approaches deliver efficient, low-latency performance inspired by biological learning. Collectively, these developments are shaping design principles for natural, precise and responsive HMIs.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Lee, B. G. & Lee, S. M. Smart wearable hand device for sign language interpretation system with sensors fusion. IEEE Sens. J. 18, 1224–1232 (2018).
Wu, Y. et al. Towards a high accuracy wearable hand gesture recognition system using EIT. In International Symposium on Circuits and Systems 1–4 (IEEE, 2018).
Al Mudawi, N. et al. Innovative healthcare solutions: robust hand gesture recognition of daily life routines using 1D CNN. Front. Bioeng. Biotechnol. 12, 1401803 (2024).
Zhao, H., Ma, Y., Wang, S., Watson, A. & Zhou, G. MobiGesture: mobility-aware hand gesture recognition for healthcare. Smart Health 9–10, 129–143 (2018).
Mahmoud, N. M., Fouad, H. & Soliman, A. M. Smart healthcare solutions using the internet of medical things for hand gesture recognition system. Complex Intell. Syst. 7, 1253–1264 (2021).
Wang, Y. & Li, J. Entertainment robot hand gesture recognition. In 2nd International Workshop on Database Technology and Applications 1–3 (IEEE, 2010).
Real-time hand gesture recognition system and application. Sens. Mater. 30, 869–884 (2018).
Han, S. et al. Multiscale nanowire-microfluidic hybrid strain sensors with high sensitivity and stretchability. npj Flex. Electron. 2, 16 (2018).
Chen, F. et al. WristCam: a wearable sensor for hand trajectory gesture recognition and intelligent human–robot interaction. IEEE Sens. J. 19, 8441–8451 (2019).
Wang, X., Veeramani, D. & Zhu, Z. Wearable sensors-based hand gesture recognition for human–robot collaboration in construction. IEEE Sens. J. 23, 495–505 (2023).
Zheng, Y. et al. Development and evaluation of a sensor glove for hand function assessment and preliminary attempts at assessing hand coordination. Measurement 93, 1–12 (2016).
Abhishek, K. S., Qubeley, L. C. F. & Ho, D. Glove-based hand gesture recognition sign language translator using capacitive touch sensor. In International Conference on Electron Devices and Solid-State Circuits 334–337 (IEEE, 2016).
Saggio, G., Riillo, F., Sbernini, L. & Quitadamo, L. R. Resistive flex sensors: a survey. Smart Mater. Struct. 25, 013001 (2016).
Chanu, O. R., Pillai, A., Sinha, S. & Das, P. Comparative study for vision based and data based hand gesture recognition technique. In International Conference on Intelligent Communication and Computational Techniques 26–31 (IEEE, 2017).
Pisharady, P. K. & Saerbeck, M. Recent methods and databases in vision-based hand gesture recognition: a review. Comput. Vis. Image Underst. 141, 152–165 (2015).
Al-Shamayleh, A. S., Ahmad, R., Abushariah, M. A. M., Alam, K. A. & Jomhari, N. A systematic literature review on vision based gesture recognition techniques. Multimed. Tools Appl. 77, 28121–28184 (2018).
Jung, D. et al. Adaptive self-organization of nanomaterials enables strain-insensitive resistance of stretchable metallic nanocomposites. Adv. Mater. 34, 2200980 (2022).
Li, L., Jiang, S., Shull, P. B. & Gu, G. SkinGest: artificial skin for gesture recognition via filmy stretchable strain sensors. Adv. Robot. 32, 1112–1121 (2018).
Balaji, A. N. & Peh, L.-S. AI-on-skin: towards enabling fast and scalable on-body AI inference for wearable on-skin interfaces. Proc. ACM Hum. Comput. Interact. 7, 1–34 (2023).
Dong, W., Yang, L., Gravina, R. & Fortino, G. Soft wrist-worn multi-functional sensor array for real-time hand gesture recognition. IEEE Sens. J. 22, 17505–17514 (2022).
Wen, J. et al. Recent advances in I/E-skin: mechanism, signal processing, and applications. Nano Mater. Sci. https://doi.org/10.1016/j.nanoms.2025.05.003 (2025).
Barona López, L. I., Ferri, F. M., Zea, J., Valdivieso Caraguay, Á. L. & Benalcázar, M. E. CNN-LSTM and post-processing for EMG-based hand gesture recognition. Intell. Syst. Appl. 22, 200352 (2024).
Zhou, G., Cui, Z. & Qi, J. FGDSNet: a lightweight hand gesture recognition network for human robot interaction. IEEE Robot. Autom. Lett. 9, 3076–3083 (2024).
Jang, H. et al. Flexible neuromorphic electronics for wearable near-sensor and in-sensor computing systems. Adv. Mater. 37, 2416073 (2025).
Huron, S., Carpendale, S., Thudt, A., Tang, A. & Mauerer, M. Constructive visualization. In Proc. 2014 Conference on Designing Interactive Systems 433–442 (ACM, 2014).
Shi, Y., Taib, R. & Lichman, S. GestureCam: a smart camera for gesture recognition and gesture-controlled web navigation. In 9th International Conference on Control, Automation, Robotics and Vision 1–6 (IEEE, 2006).
Breuer, P., Eckes, C. & Müller, S. in Computer Vision/Computer Graphics Collaboration Techniques (eds Gagalowicz, A. & Philips, W.) 247–260 (Springer, 2007).
Ryu, D. et al. T-less: a novel touchless human–machine interface based on infrared proximity sensing. In International Conference on Intelligent Robots and Systems 5220–5225 (IEEE, 2010).
Saliba, M. A., Farrugia, F. & Giordmaina, A. A compact glove input device to measure human hand, wrist and forearm joint positions for teleoperation applications. In Proc. International Conference on Mechatronics and Robotics (IEEE, 2004).
Shende, D., Nagpal, N. & Chawla, M. Digital glove for gesture recognition using flex sensor. IOSR J. Eng. 9, 13–17 (2019).
Kim, J.-H., Thang, N. D. & Kim, T.-S. 3-D hand motion tracking and gesture recognition using a data glove. In International Symposium on Industrial Electronics 1013–1018 (IEEE, 2009).
Galka, J., Masior, M., Zaborski, M. & Barczewska, K. Inertial motion sensing glove for sign language gesture acquisition and recognition. IEEE Sens. J. 16, 6310–6316 (2016).
Chang, H.-T. & Chang, J.-Y. Sensor glove based on novel inertial sensor fusion control algorithm for 3-D real-time hand gestures measurements. IEEE Trans. Ind. Electron. 67, 658–666 (2020).
DelPreto, J., Hughes, J., D’Aria, M., De Fazio, M. & Rus, D. A wearable smart glove and its application of pose and gesture detection to sign language classification. IEEE Robot. Autom. Lett. 7, 10589–10596 (2022).
Chen, S., Lou, Z., Chen, D., Jiang, K. & Shen, G. Polymer-enhanced highly stretchable conductive fiber strain sensor used for electronic data gloves. Adv. Mater. Technol. 1, 1600136 (2016).
Mechael, S. S., Wu, Y., Chen, Y. & Carmichael, T. B. Ready-to-wear strain sensing gloves for human motion sensing. iScience 24, 102525 (2021).
Lee, S., Jo, D., Kim, K.-B., Jang, J. & Park, W. Wearable sign language translation system using strain sensors. Sens. Actuators Phys. 331, 113010 (2021).
Park, M. et al. Stretchable glove for accurate and robust hand pose reconstruction based on comprehensive motion data. Nat. Commun. 15, 5821 (2024).
Dong, W., Yang, L. & Fortino, G. Stretchable human machine interface based on smart glove embedded with PDMS-CB strain sensors. IEEE Sens. J. 20, 8073–8081 (2020).
Yamada, T. et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6, 296–301 (2011).
Wang, R. et al. Carbon nanotube-based strain sensors: structures, fabrication, and applications. Adv. Mater. Technol. 8, 2200855 (2023).
Lee, J. et al. Ultrasensitive strain sensor based on separation of overlapped carbon nanotubes. Small 15, 1805120 (2019).
Chun, S., Choi, Y. & Park, W. All-graphene strain sensor on soft substrate. Carbon 116, 753–759 (2017).
Mehmood, A. et al. Graphene based nanomaterials for strain sensor application — a review. J. Environ. Chem. Eng. 8, 103743 (2020).
Bae, S.-H. et al. Graphene-based transparent strain sensor. Carbon 51, 236–242 (2013).
Jheng, W.-W. et al. Gold nanoparticle thin film-based strain sensors for monitoring human pulse. ACS Appl. Nano Mater. 4, 1712–1718 (2021).
Cheng, H.-W., Yan, S., Shang, G., Wang, S. & Zhong, C.-J. Strain sensors fabricated by surface assembly of nanoparticles. Biosens. Bioelectron. 186, 113268 (2021).
Lee, J. et al. A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Nanoscale 6, 11932–11939 (2014).
Duan, S., Wang, Z., Zhang, L., Liu, J. & Li, C. A highly stretchable, sensitive, and transparent strain sensor based on binary hybrid network consisting of hierarchical multiscale metal nanowires. Adv. Mater. Technol. 3, 1800020 (2018).
Kim, K. K. et al. Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks. Nano Lett. 15, 5240–5247 (2015).
Shengbo, S. et al. Highly sensitive wearable strain sensor based on silver nanowires and nanoparticles. Nanotechnology 29, 255202 (2018).
Cho, J. H., Ha, S.-H. & Kim, J.-M. Transparent and stretchable strain sensors based on metal nanowire microgrids for human motion monitoring. Nanotechnology 29, 155501 (2018).
Chen, J. et al. An overview of stretchable strain sensors from conductive polymer nanocomposites. J. Mater. Chem. C 7, 11710–11730 (2019).
Wang, L., Wang, H., Wan, Q. & Gao, J. Recent development of conductive polymer composite-based strain sensors. J. Polym. Sci. 61, 3167–3185 (2023).
Chen, J. et al. Strain sensing behaviors of stretchable conductive polymer composites loaded with different dimensional conductive fillers. Compos. Sci. Technol. 168, 388–396 (2018).
Simone, L. K., Sundarrajan, N., Luo, X., Jia, Y. & Kamper, D. G. A low cost instrumented glove for extended monitoring and functional hand assessment. J. Neurosci. Methods 160, 335–348 (2007).
Marques, G. & Basterretxea, K. Efficient algorithms for accelerometer-based wearable hand gesture recognition systems. In 13th International Conference on Embedded and Ubiquitous Computing 132–139 (IEEE, 2015).
Tavakoli, M., Benussi, C., Alhais Lopes, P., Osorio, L. B. & De Almeida, A. T. Robust hand gesture recognition with a double channel surface EMG wearable armband and SVM classifier. Biomed. Signal. Process. Control. 46, 121–130 (2018).
Yang, D., Chhatre, N., Campi, F. & Menon, C. Feasibility of support vector machine gesture classification on a wearable embedded device. In Canadian Conference on Electrical and Computer Engineering 1–4 (IEEE, 2016).
Gu, G. et al. Integrated soft ionotronic skin with stretchable and transparent hydrogel–elastomer ionic sensors for hand-motion monitoring. Soft Robot. 6, 368–376 (2019).
Jiang, S. et al. Stretchable e-skin patch for gesture recognition on the back of the hand. IEEE Trans. Ind. Electron. 67, 647–657 (2020).
Jung, S. M., Jung, H. Y., Fang, W., Dresselhaus, M. S. & Kong, J. A facile methodology for the production of in situ inorganic nanowire hydrogels/aerogels. Nano Lett. 14, 1810–1817 (2014).
Ahn, Y., Lee, H., Lee, D. & Lee, Y. Highly conductive and flexible silver nanowire-based microelectrodes on biocompatible hydrogel. ACS Appl. Mater. Interfaces 6, 18401–18407 (2014).
Chen, Y. et al. Multifunctional conductive hydrogel composites with nickel nanowires and liquid metal conductive highways. ACS Appl. Mater. Interfaces 16, 29267–29281 (2024).
Zhang, Y.-Z. et al. MXenes stretch hydrogel sensor performance to new limits. Sci. Adv. 4, eaat0098 (2018).
Tian, L. et al. Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring. Nat. Biomed. Eng. 3, 194–205 (2019).
Yasami, S., Mazinani, S. & Abdouss, M. Developed composites materials for flexible supercapacitors electrode: ‘recent progress & future aspects’. J. Energy Storage 72, 108807 (2023).
Muralee Gopi, C. V. V., Ravi, S., Rao, S. S., Eswar Reddy, A. & Kim, H.-J. Carbon nanotube/metal-sulfide composite flexible electrodes for high-performance quantum dot-sensitized solar cells and supercapacitors. Sci. Rep. 7, 46519 (2017).
Guo, Y., Zhu, J., Xiong, L. & Guan, J. Finger motion detection based on optical fiber Bragg grating with polyimide substrate. Sens. Actuators Phys. 338, 113482 (2022).
Du, B. et al. A water-resistant, ultrathin, conformable organic photodetector for vital sign monitoring. Sci. Adv. 10, eadp2679 (2024).
Lou, Z. et al. Near-infrared organic photodetectors toward skin-integrated photoplethysmography-electrocardiography multimodal sensing system. Adv. Sci. 10, 2304174 (2023).
Park, Y. et al. Skin-like low-noise elastomeric organic photodiodes. Sci. Adv. 7, eabj6565 (2021).
Simões, J., Dong, T. & Yang, Z. Non-fullerene acceptor organic photodetector for skin-conformable photoplethysmography applications. Adv. Mater. Interfaces 9, 2101897 (2022).
Wang, R. et al. A highly stretchable and transparent silver nanowire/thermoplastic polyurethane film strain sensor for human motion monitoring. Inorg. Chem. Front. 6, 3119–3124 (2019).
Li, L., Jiang, S., Tao, Y., Shull, P. B. & Gu, G. Fabrication and testing of a filmy ‘feelingless’ stretchable strain sensor. In International Symposium on System Integration 362–367 (IEEE, 2017).
He, J. et al. Multi-directional strain sensor based on carbon nanotube array for human motion monitoring and gesture recognition. Carbon 226, 119201 (2024).
Amjadi, M., Yoon, Y. J. & Park, I. Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes–Ecoflex nanocomposites. Nanotechnology 26, 375501 (2015).
Lu, H., Zhang, S., Guo, L. & Li, W. Applications of graphene-based composite hydrogels: a review. RSC Adv. 7, 51008–51020 (2017).
Tang, S., Liu, Z. & Xiang, X. Graphene oxide composite hydrogels for wearable devices. Carbon Lett. 32, 1395–1410 (2022).
Ma, J., Du, W., Chen, Z., Wang, W. & Zhang, L. Preparation of graphene-based hydrogel thermal interface materials with excellent heat dissipation and mechanical properties. Macromol. Mater. Eng. 308, 2200332 (2023).
Ye, L. et al. Carbon nanotube–hydrogel composites facilitate neuronal differentiation while maintaining homeostasis of network activity. Adv. Mater. 33, 2102981 (2021).
Liu, X.-W. et al. Conductive carbon nanotube hydrogel as a bioanode for enhanced microbial electrocatalysis. ACS Appl. Mater. Interfaces 6, 8158–8164 (2014).
Ding, X. et al. Multifunctional carbon nanotube hydrogels with on-demand removability for wearable electronics. Nano Today 54, 102124 (2024).
Zhang, A. et al. Research status of self-healing hydrogel for wound management: a review. Int. J. Biol. Macromol. 164, 2108–2123 (2020).
Taylor, D. L. & In Het Panhuis, M. Self-healing hydrogels. Adv. Mater. 28, 9060–9093 (2016).
Fan, J. A. et al. Fractal design concepts for stretchable electronics. Nat. Commun. 5, 3266 (2014).
Tang, L., Shang, J. & Jiang, X. Multilayered electronic transfer tattoo that can enable the crease amplification effect. Sci. Adv. 7, eabe3778 (2021).
Park, J. et al. Imperceptive and reusable dermal surface EMG for lower extremity neuro-prosthetic control and clinical assessment. npj Flex. Electron. 7, 49 (2023).
Li, G. et al. sEMG and IMU data-based hand gesture recognition method using multistream CNN with a fine-tuning transfer framework. IEEE Sens. J. 23, 31414–31424 (2023).
Kumar, D. & Ganesh, A. A critical review on hand gesture recognition using sEMG: challenges, application, process and techniques. J. Phys. Conf. Ser. 2327, 012075 (2022).
Yang, H. et al. Adhesive biocomposite electrodes on sweaty skin for long-term continuous electrophysiological monitoring. ACS Mater. Lett. 2, 478–484 (2020).
Zhang, L. et al. Fully organic compliant dry electrodes self-adhesive to skin for long-term motion-robust epidermal biopotential monitoring. Nat. Commun. 11, 4683 (2020).
Cai, P. et al. Locally coupled electromechanical interfaces based on cytoadhesion-inspired hybrids to identify muscular excitation–contraction signatures. Nat. Commun. 11, 2183 (2020).
Jiang, Y. et al. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science 375, 1411–1417 (2022).
Choi, S. et al. Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 13, 1048–1056 (2018).
Zhang, X., Yang, Z., Chen, T., Chen, D. & Huang, M.-C. Cooperative sensing and wearable computing for sequential hand gesture recognition. IEEE Sens. J. 19, 5775–5783 (2019).
Pan, J. et al. A wireless multi-channel capacitive sensor system for efficient glove-based gesture recognition with AI at the edge. IEEE Trans. Circuits Syst. II Express Briefs 67, 1624–1628 (2020).
Ahn, J. et al. Skin-conformal motion monitoring film for deep-learning-based immersive extended reality. Adv. Funct. Mater. 35, 2502568 (2025).
Kammarchedu, V., AlSiyabi, M. & Ebrahimi, A. Skin-conformal myography for real-time hand tracking using a laser-induced graphene strain sensor array. Adv. Intell. Syst. 7, 2400812 (2025).
Pyun, K. R. et al. Machine-learned wearable sensors for real-time hand-motion recognition: toward practical applications. Natl Sci. Rev. 11, nwad298 (2024).
Dudley, J., Yin, L., Garaj, V. & Kristensson, P. O. Inclusive immersion: a review of efforts to improve accessibility in virtual reality, augmented reality and the metaverse. Virtual Real. 27, 2989–3020 (2023).
Liu, Y. et al. Electronic skin as wireless human–machine interfaces for robotic VR. Sci. Adv. 8, eabl6700 (2022).
Kim, H. et al. AR-enabled persistent human–machine interfaces via a scalable soft electrode array. Adv. Sci. 11, 2305871 (2024).
Song, Y., Nguyen, T. H., Lee, D. & Kim, J. Machine learning-enabled environmentally adaptable skin-electronic sensor for human gesture recognition. ACS Appl. Mater. Interfaces 16, 9551–9560 (2024).
Wang, J. et al. An infrared near-sensor reservoir computing system based on large-dynamic-space memristor with tens of thousands of states for dynamic gesture perception. Adv. Sci. 11, 2307359 (2024).
Cho, J.-Y. et al. Tactile near-sensor computing systems incorporating hourglass-shaped microstructured capacitive sensors for bio-realistic energy efficiency. npj Flex. Electron. 9, 34 (2025).
Zhou, Z. et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 3, 571–578 (2020).
Duan, S. et al. Water-modulated biomimetic hyper-attribute-gel electronic skin for robotics and skin-attachable wearables. ACS Nano 17, 1355–1371 (2023).
Yuan, L. et al. Gesture recognition device based on cross reticulated graphene strain sensors. J. Mater. Sci. Mater. Electron. 32, 8410–8417 (2021).
Ben-Ari, L., Ben-Ari, A., Hermon, C. & Hanein, Y. Finger gesture recognition with smart skin technology and deep learning. Flex. Print. Electron. 8, 025012 (2023).
Moin, A. et al. A wearable biosensing system with in-sensor adaptive machine learning for hand gesture recognition. Nat. Electron. 4, 54–63 (2020).
Cho, H. et al. Real-time finger motion recognition using skin-conformable electronics. Nat. Electron. 6, 619–629 (2023).
Heydarian, H. et al. Deep learning for intake gesture detection from wrist-worn inertial sensors: the effects of data preprocessing, sensor modalities, and sensor positions. IEEE Access8, 164936–164949 (2020).
Liu, D. et al. A wearable in-sensor computing platform based on stretchable organic electrochemical transistors. Nat. Electron. 7, 1176–1185 (2024).
Chen, B., Yao, J., Xia, J., Yang, R. & Miao, X. A strain-sensitive flexible MoTe2-based memristor for gesture recognition. IEEE Electron. Device Lett. 44, 622–625 (2023).
Chen, F. et al. Bio-inspired artificial perceptual devices for neuromorphic computing and gesture recognition. Adv. Funct. Mater. 33, 2300266 (2023).
Kim, D. et al. Highly reliable 3D channel memory and its application in a neuromorphic sensory system for hand gesture recognition. ACS Nano 17, 24826–24840 (2023).
Wang, Y. et al. Flexible Zn-TCPP nanosheet-based memristor for ultralow-power biomimetic sensing system and high-precision gesture recognition. Adv. Funct. Mater. 34, 2316397 (2024).
Lee, K. et al. Artificially intelligent tactile ferroelectric skin. Adv. Sci. 7, 2001662 (2020).
Liu, L. et al. Stretchable neuromorphic transistor that combines multisensing and information processing for epidermal gesture recognition. ACS Nano 16, 2282–2291 (2022).
Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).
Aguirre, F. et al. Hardware implementation of memristor-based artificial neural networks. Nat. Commun. 15, 1974 (2024).
Han, P., Liang, S., Zou, H. & Wang, X. Structure, principle and performance of flexible conductive polymer strain sensors: a review. J. Mater. Sci. Mater. Electron. 35, 775 (2024).
Nesser, H. & Lubineau, G. Strain sensing by electrical capacitive variation: from stretchable materials to electronic interfaces. Adv. Electron. Mater. 7, 2100190 (2021).
Wang, X., Deng, Y., Jiang, P., Chen, X. & Yu, H. Low-hysteresis, pressure-insensitive, and transparent capacitive strain sensor for human activity monitoring. Microsyst. Nanoeng. 8, 113 (2022).
Nur, R. et al. A highly sensitive capacitive-type strain sensor using wrinkled ultrathin gold films. Nano Lett. 18, 5610–5617 (2018).
Cheng, A. J. et al. Recent advances of capacitive sensors: materials, microstructure designs, applications, and opportunities. Adv. Mater. Technol. 8, 2201959 (2023).
Huang, X. et al. High-stretchability and low-hysteresis strain sensors using origami-inspired 3D mesostructures. Sci. Adv. 9, eadh9799 (2023).
Li, F. et al. Recent advances in strain-induced piezoelectric and piezoresistive effect-engineered 2D semiconductors for adaptive electronics and optoelectronics. Nano-Micro Lett. 12, 106 (2020).
Choi, S., Lee, H., Ghaffari, R., Hyeon, T. & Kim, D. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater. 28, 4203–4218 (2016).
Lim, S. et al. Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures. Adv. Funct. Mater. 25, 375–383 (2015).
Kim, Y.-G., Song, J.-H., Hong, S. & Ahn, S.-H. Piezoelectric strain sensor with high sensitivity and high stretchability based on kirigami design cutting. npj Flex. Electron. 6, 52 (2022).
Zhu, K., Guo, W., Yang, G., Li, Z. & Wu, H. High-fidelity recording of EMG signals by multichannel on-skin electrode arrays from target muscles for effective human–machine interfaces. ACS Appl. Electron. Mater. 3, 1350–1358 (2021).
Ghazal, M., Kumar, A., Garg, N., Pecqueur, S. & Alibart, F. Neuromorphic signal classification using organic electrochemical transistor array and spiking neural simulations. IEEE Sens. J. 24, 9104–9114 (2024).
Nawaz, A., Liu, Q., Leong, W. L., Fairfull-Smith, K. E. & Sonar, P. Organic electrochemical transistors for in vivo bioelectronics. Adv. Mater. 33, 2101874 (2021).
Lee, I. et al. Ultraflexible vertical Corbino organic electrochemical transistors for epidermal signal monitoring. Adv. Mater. 37, 2410444 (2025).
Kim, J. H. et al. Sterilizable vertical n-type organic electrochemical transistors for skin-conformal ECG monitoring. Mater. Sci. Eng. R Rep. 165, 101003 (2025).
Zhong, Y. et al. Eutectogels as a semisolid electrolyte for organic electrochemical transistors. Chem. Mater. 36, 1841–1854 (2024).
Lee, H. et al. Stretchable organic optoelectronic devices: design of materials, structures, and applications. Mater. Sci. Eng. R Rep. 146, 100631 (2021).
Park, S. et al. Ultraflexible near-infrared organic photodetectors for conformal photoplethysmogram sensors. Adv. Mater. 30, 1802359 (2018).
Lee, H. et al. Ultra-flexible semitransparent organic photovoltaics. npj Flex. Electron. 7, 27 (2023).
Eun, H. J. et al. Strain-durable dark current in near-infrared organic photodetectors for skin-conformal photoplethysmographic sensors. iScience 25, 104194 (2022).
Park, S. et al. Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature 561, 516–521 (2018).
Li, T. et al. A skin-conformal and breathable humidity sensor for emotional mode recognition and non-contact human-machine interface. npj Flex. Electron. 8, 1–9 (2024).
Ershad, F. et al. Ultra-conformal drawn-on-skin electronics for multifunctional motion artifact-free sensing and point-of-care treatment. Nat. Commun. 11, 3823 (2020).
Chen, W. et al. Customized surface adhesive and wettability properties of conformal electronic devices. Mater. Horiz. 11, 6289–6325 (2024).
Li, M. et al. Sweat-resistant bioelectronic skin sensor. Device 1, 100006 (2023).
Tchantchane, R., Zhou, H., Zhang, S. & Alici, G. A review of hand gesture recognition systems based on noninvasive wearable sensors. Adv. Intell. Syst. 5, 2300207 (2023).
Jiang, W. et al. Wearable on-device deep learning system for hand gesture recognition based on FPGA accelerator. Math. Biosci. Eng. 18, 132–153 (2021).
Choi, S., Yang, J. & Wang, G. Emerging memristive artificial synapses and neurons for energy-efficient neuromorphic computing. Adv. Mater. 32, 2004659 (2020).
Prezioso, M. et al. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 61–64 (2015).
Jeon, K. et al. Purely self-rectifying memristor-based passive crossbar array for artificial neural network accelerators. Nat. Commun. 15, 129 (2024).
Kim, H., Mahmoodi, M. R., Nili, H. & Strukov, D. B. 4K-memristor analog-grade passive crossbar circuit. Nat. Commun. 12, 5198 (2021).
Choi, S. et al. 3D-integrated multilayered physical reservoir array for learning and forecasting time-series information. Nat. Commun. 15, 2044 (2024).
Choi, S., Moon, T., Wang, G. & Yang, J. J. Filament-free memristors for computing. Nano Converg. 10, 58 (2023).
Yang, J. J., Strukov, D. B. & Stewart, D. R. Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013).
Su, Y.-T. et al. A method to reduce forming voltage without degrading device performance in hafnium oxide-based 1T1R resistive random access memory. IEEE J. Electron. Devices Soc. 6, 341–345 (2018).
Zhang, Y. et al. Evolution of the conductive filament system in HfO2-based memristors observed by direct atomic-scale imaging. Nat. Commun. 12, 7232 (2021).
Han, C. et al. Reconfigurable organic electrochemical transistors with high dynamic ranges for fully integrated physical reservoir computing. Adv. Funct. Mater. 35, 2423814 (2025).
Zucker, R. S. Short-term synaptic plasticity. Annu. Rev. Neurosci. 12, 13–31 (1989).
Abbott, L. F. & Regehr, W. G. Synaptic computation. Nature 431, 796–803 (2004).
Choi, Y. et al. Physically defined long-term and short-term synapses for the development of reconfigurable analog-type operators capable of performing health care tasks. Sci. Adv. 9, eadg5946 (2023).
Zhong, Y. et al. A memristor-based analogue reservoir computing system for real-time and power-efficient signal processing. Nat. Electron. 5, 672–681 (2022).
Atluri, P. P. & Regehr, W. G. Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse. J. Neurosci. 16, 5661–5671 (1996).
Feldman, D. E. The spike-timing dependence of plasticity. Neuron 75, 556–571 (2012).
Yan, J., Armstrong, J. P. K., Scarpa, F. & Perriman, A. W. Hydrogel-based artificial synapses for sustainable neuromorphic electronics. Adv. Mater. 36, 2403937 (2024).
Cong, S. & Zhou, Y. A review of convolutional neural network architectures and their optimizations. Artif. Intell. Rev. 56, 1905–1969 (2023).
Azghadi, M. R. et al. Hardware implementation of deep network accelerators towards healthcare and biomedical applications. IEEE Trans. Biomed. Circuits Syst. 14, 1138–1159 (2020).
Ge, X. et al. Flexible microfluidic triboelectric sensor for gesture recognition and information encoding. Nano Energy 113, 108541 (2023).
Yang, K. et al. Conformal, stretchable, breathable, wireless epidermal surface electromyography sensor system for hand gesture recognition and rehabilitation of stroke hand function. Mater. Des. 243, 113029 (2024).
Ceolini, E. et al. Hand-gesture recognition based on EMG and event-based camera sensor fusion: a benchmark in neuromorphic computing. Front. Neurosci. 14, 637 (2020).
Ozdemir, M. A., Kisa, D. H., Guren, O. & Akan, A. Hand gesture classification using time–frequency images and transfer learning based on CNN. Biomed. Signal Process. Control. 77, 103787 (2022).
Bengio, Y., Simard, P. & Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 5, 157–166 (1994).
Hochreiter, S. Long Short-Term Memory (MIT-Press, 1997).
Lukoševičius, M. & Jaeger, H. Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3, 127–149 (2009).
Wu, C., Kim, T. W., Choi, H. Y., Strukov, D. B. & Yang, J. J. Flexible three-dimensional artificial synapse networks with correlated learning and trainable memory capability. Nat. Commun. 8, 752 (2017).
Li, Y., Wang, J., Yang, Q. & Shen, G. Flexible artificial optoelectronic synapse based on lead-free metal halide nanocrystals for neuromorphic computing and color recognition. Adv. Sci. 9, 2202123 (2022).
Liu, C. et al. Ultraflexible and energy-efficient artificial synapses based on molecular/atomic layer deposited organic–inorganic hybrid thin Films. Adv. Electron. Mater. 9, 2200821 (2023).
Hwang, Y. et al. A bioinspired ultra flexible artificial van der Waals 2D-MoS2 Channel/LiSiOx solid electrolyte synapse arrays via laser-lift off process for wearable adaptive neuromorphic computing. Small Methods 7, 2201719 (2023).
Liu, J. et al. Multidimensional free shape-morphing flexible neuromorphic devices with regulation at arbitrary points. Nat. Commun. 16, 756 (2025).
Oh, S. et al. Flexible artificial Si-In-Zn-O/ion gel synapse and its application to sensory-neuromorphic system for sign language translation. Sci. Adv. 7, eabg9450 (2021).
Lin, Y. et al. Photoreduced nanocomposites of graphene oxide/N-doped carbon dots toward all-carbon memristive synapses. NPG Asia Mater. 12, 1–11 (2020).
Wang, R. et al. All-in-one compression and encryption engine based on flexible polyimide memristor. Small Sci. 3, 2200082 (2023).
Wang, T. et al. Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics. Nat. Commun. 13, 7432 (2022).
Wang, K., Jia, Y. & Yan, X. A biomimetic afferent nervous system based on the flexible artificial synapse. Nano Energy 100, 107486 (2022).
Patil, H. et al. Flexible organic–inorganic halide perovskite-based diffusive memristor for artificial nociceptors. ACS Appl. Mater. Interfaces 15, 13238–13248 (2023).
He, K. et al. Artificial neural pathway based on a memristor synapse for optically mediated motion learning. ACS Nano 16, 9691–9700 (2022).
Li, X. et al. Sliding ferroelectric memories and synapses based on rhombohedral-stacked bilayer MoS2. Nat. Commun. 15, 10921 (2024).
Li, Q.-X. et al. Ferroelectric artificial synapse for neuromorphic computing and flexible applications. Fundam. Res. 3, 960–966 (2023).
Moon, J. et al. Temporal data classification and forecasting using a memristor-based reservoir computing system. Nat. Electron. 2, 480–487 (2019).
Liu, S., Zhang, J., Zhang, Y. & Zhu, R. A wearable motion capture device able to detect dynamic motion of human limbs. Nat. Commun. 11, 5615 (2020).
Rahman, H. U., Ritu, A. T., Jerin Rasha, H. & Anower, Md. S. Comparative analysis of microcontrollers in wearable devices for real-time arrhythmia classification: an embedded machine learning approach. In 6th International Conference on Electrical Engineering and Information & Communication Technology 1327–1331 (2024).
Ingolfsson, T. M. et al. ECG-TCN: wearable cardiac arrhythmia detection with a temporal convolutional network. In 3rd International Conference on Artificial Intelligence Circuits and Systems 1–4 (2021).
Lee, S. et al. An ultrasoft nanomesh strain sensor with extreme mechanical durability against friction for on-skin applications. Device 3, 100559 (2025).
Duan, S. et al. A hybrid multimodal fusion framework for sEMG-ACC-based hand gesture recognition. IEEE Sens. J. 23, 2773–2782 (2023).
Liu, H. & Liu, Z. A multimodal dynamic hand gesture recognition based on radar–vision fusion. IEEE Trans. Instrum. Meas. 72, 1–15 (2023).
Duan, S., Wu, L., Liu, A. & Chen, X. Alignment-enhanced interactive fusion model for complete and incomplete multimodal hand gesture recognition. IEEE Trans. Neural Syst. Rehabil. Eng. 31, 4661–4671 (2023).
Sun, J. et al. Human skin-inspired neuromorphic sensors. Soft Sci. 5, 18 (2025).
Lee, S. et al. Non-centrosymmetric crystallization in ferroelectric hafnium zirconium oxide via photon-assisted defect modulation. Mater. Sci. Eng. R Rep. 159, 100800 (2024).
Park, M. H. et al. Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv. Mater. 27, 1811–1831 (2015).
Panca, A. et al. Flexible oxide thin film transistors, memristors, and their integration. Adv. Funct. Mater. 33, 2213762 (2023).
Oh, J. Y., Lee, Y. & Lee, T.-W. Skin-mountable functional electronic materials for bio-integrated devices. Adv. Healthc. Mater. 13, 2303797 (2024).
Lee, Y. et al. A low-power stretchable neuromorphic nerve with proprioceptive feedback. Nat. Biomed. Eng. 7, 511–519 (2023).
Teja Nibhanupudi, S. S. et al. Ultra-fast switching memristors based on two-dimensional materials. Nat. Commun. 15, 2334 (2024).
Liu, H. et al. Controlled formation of conduction channels in memristive devices observed by X-ray multimodal imaging. Adv. Mater. 34, 2203209 (2022).
Yu, J., Qin, M. & Zhou, S. Dynamic gesture recognition based on 2D convolutional neural network and feature fusion. Sci. Rep. 12, 4345 (2022).
Shen, C. et al. Toward generalization of sEMG-based pattern recognition: a novel feature extraction for gesture recognition. IEEE Trans. Instrum. Meas. 71, 1–12 (2022).
Davies, M. et al. Advancing neuromorphic computing with loihi: a survey of results and outlook. Proc. IEEE 109, 911–934 (2021).
Zhong, C. et al. A flexible wearable e-skin sensing system for robotic teleoperation. Robotica 41, 1025–1038 (2023).
Yiu, C. et al. Skin-interfaced multimodal sensing and tactile feedback system as enhanced human–machine interface for closed-loop drone control. Sci. Adv. 11, eadt6041 (2025).
Sun, Z., Zhu, M., Shan, X. & Lee, C. Augmented tactile-perception and haptic-feedback rings as human–machine interfaces aiming for immersive interactions. Nat. Commun. 13, 5224 (2022).
Oh, J. et al. A liquid metal based multimodal sensor and haptic feedback device for thermal and tactile sensation generation in virtual reality. Adv. Funct. Mater. 31, 2007772 (2021).
Abbel, R., Galagan, Y. & Groen, P. Roll-to-roll fabrication of solution processed electronics. Adv. Eng. Mater. 20, 1701190 (2018).
Lim, Y. R. et al. Roll-to-roll production of layer-controlled molybdenum disulfide: a platform for 2D semiconductor-based industrial applications. Adv. Mater. 30, 1705270 (2018).
Lee, W.-J., Kwak, T., Choi, J.-G., Park, S. & Yoon, M.-H. Solution-processed metal oxide dielectric films: progress and outlook. APL Mater. 9, 120701 (2021).
Baek, S. et al. Bias-stress-stable sub-1.5 V oxide thin-film transistors via synergistic composition of sol–gel quaternary high-k oxide dielectrics. J. Alloy Compd. 994, 174636 (2024).
Gibson, I., Rosen, D., Stucker, B. & Khorasani, M. Additive Manufacturing Technologies (Springer International, 2021).
Pan, J. et al. Hybrid-flexible bimodal sensing wearable glove system for complex hand gesture recognition. ACS Sens. 6, 4156–4166 (2021).
Shen, H.-Y. et al. Machine learning-assisted gesture sensor made with graphene/carbon nanotubes for sign language recognition. ACS Appl. Mater. Interfaces 16, 52911–52920 (2024).
Isano, Y. et al. Soft intelligent systems based on stretchable hybrid devices integrated with machine learning. Device 2, 100496 (2024).
Lee, H. et al. Stretchable array electromyography sensor with graph neural network for static and dynamic gestures recognition system. npj Flex. Electron. 7, 20 (2023).
Kwak, J. W. et al. Wireless sensors for continuous, multimodal measurements at the skin interface with lower limb prostheses. Sci. Transl. Med. 12, eabc4327 (2020).
Kong, L. et al. Wireless technologies in flexible and wearable sensing: from materials design, system integration to applications. Adv. Mater. 36, 2400333 (2024).
Wang, Z., Xiao, X., Wu, W., Zhang, X. & Pang, Y. Ultra-conformal epidermal antenna for multifunctional motion artifact-free sensing and point-of-care monitoring. Biosens. Bioelectron. 253, 116150 (2024).
Kimionis, J., Georgiadis, A., Daskalakis, S. N. & Tentzeris, M. M. A printed millimetre-wave modulator and antenna array for backscatter communications at gigabit data rates. Nat. Electron. 4, 439–446 (2021).
Hu, K., Zhou, Y., Sitaraman, S. K. & Tentzeris, M. M. Additively manufactured flexible on-package phased array antennas for 5 G/mmWave wearable and conformal digital twin and massive MIMO applications. Sci. Rep. 13, 12515 (2023).
Kim, M. H. et al. Thermoelectric energy harvesting electronic skin (e-skin) patch with reconfigurable carbon nanotube clays. Nano Energy 87, 106156 (2021).
García Núñez, C., Manjakkal, L. & Dahiya, R. Energy autonomous electronic skin. npj Flex. Electron. 3, 1–24 (2019).
Nam, Y. et al. Ultra-thin GaAs single-junction solar cells for self-powered skin-compatible electrocardiogram sensors. Small Methods 8, 2301735 (2024).
Lei, S. et al. Opportunities for biocompatible and safe zinc-based batteries. Energy Environ. Sci. 15, 4911–4927 (2022).
Li, H., Chen, J. & Fang, J. Recent advances in wearable aqueous metal-air batteries: from configuration design to materials fabrication. Adv. Mater. Technol. 8, 2201762 (2023).
Sha, D., Zhang, D. & Zhang, J. A single-stage dual-active-bridge AC–DC converter employing mode transition based on real-time calculation. IEEE Trans. Power Electron. 36, 10081–10088 (2021).
Vazquez, S. et al. An artificial intelligence approach for real-time tuning of weighting factors in FCS-MPC for power converters. IEEE Trans. Ind. Electron. 69, 11987–11998 (2022).
Zhao, Y. et al. Superelastic alloy based electrical interconnects for highly stretchable electronics. npj Flex. Electron. 6, 1–8 (2022).
Jiao, R. et al. Vertical serpentine interconnect-enabled stretchable and curved electronics. Microsyst. Nanoeng. 9, 1–10 (2023).
Lopes, P. A., Santos, B. C., de Almeida, A. T. & Tavakoli, M. Reversible polymer–gel transition for ultra-stretchable chip-integrated circuits through self-soldering and self-coating and self-healing. Nat. Commun. 12, 4666 (2021).
Sun, F. et al. Stretchable interconnected modular electrochromic devices enabled by self-healing, self-adhesive, and ion-conducting polymer electrolyte. Chem. Eng. J. 494, 153107 (2024).
Acknowledgements
This research was supported by the National Research Foundation of Korea grant funded by the Ministry of Science and ICT (RS-2024-00403639, RS-2023-00213089, RS-2024-00403163, RS-2025-00520264, RS-2024-00407271 and RS-2024-00451891) and the Ministry of Education (RS-2023-00220077), and by the Technology Innovation Program funded by the Ministry of Trade, Industry and Energy (RS-2022-00154781).
Author information
Authors and Affiliations
Contributions
I.L., S.H. and H.C. researched data for the article. G.W. and S.P. substantially contributed to the discussion of the content. I.L. and J.-G.C. wrote the manuscript. S.H., J.-G.C., G.W. and S.P reviewed and edited the manuscript before submission.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Peer review
Peer review information
Nature Reviews Electrical Engineering thanks Ho Won Jang, Yu Chang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Lee, I., Hyojin, S., Cho, H. et al. Skin-conformal electronics for intelligent gesture recognition. Nat Rev Electr Eng (2025). https://doi.org/10.1038/s44287-025-00215-0
Accepted:
Published:
DOI: https://doi.org/10.1038/s44287-025-00215-0