Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Causes and consequences of insect decline in tropical forests

Abstract

Insects are crucial for the functioning of ecosystems and might be facing declines globally, although data are biased away from the tropics where insect diversity and abundance are highest. In this Review, we assess the current status of insect populations in the tropics and discuss the prevailing threats to tropical insect biodiversity. Burgeoning human populations, increasing urbanization and land-use changes are leading to habitat loss and fragmentation, as well as increased pollution, including both light and pesticides. Insects on tropical islands are particularly sensitive to invasive species, which have already led to the extinction of multiple unique endemic species. Climate change further threatens insect populations across the tropics and might be disrupting crucial weather cycles such as El Niño and La Niña, which are important drivers of phenology and synchrony at these latitudes. Tropical insect declines might alter fundamental ecosystem processes such as nutrient cycling, carbon sequestration and herbivory. Disruption of food webs could lead to increased outbreaks of pests and of insect-vectored diseases in humans and livestock, affecting human health and reducing food security. Methodological advances — including artificial intelligence and computer vision, remote sensing and meta-barcoding — are facilitating taxonomy, speeding up identification of diverse samples and improving the monitoring of tropical insect biodiversity to guide future conservation efforts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Geographic distribution of publicly accessible datasets for tracking tropical insect communities through time.
Fig. 2: The global distribution of threats to tropical insects.
Fig. 3: Ecological effects of declining insect diversity and abundance.

Similar content being viewed by others

References

  1. Van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).

    Article  Google Scholar 

  2. Lister, B. C. & Garcia, A. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl Acad. Sci. USA 115, E10397–E10406 (2018).

    Article  CAS  Google Scholar 

  3. Northrup, J. M., Rivers, J. W., Yang, Z. & Betts, M. G. Synergistic effects of climate and land‐use change influence broad‐scale avian population declines. Glob. Change Biol. 25, 1561–1575 (2019).

    Article  Google Scholar 

  4. Salcido, D. M., Forister, M. L., Garcia Lopez, H. & Dyer, L. A. Loss of dominant caterpillar genera in a protected tropical forest. Sci. Rep. 10, 422 (2020).

    Article  CAS  Google Scholar 

  5. Pillay, R. et al. Tropical forests are home to over half of the world’s vertebrate species. Front. Ecol. Env. 20, 10–15 (2022).

    Article  Google Scholar 

  6. Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827–832 (2015).

    Article  CAS  Google Scholar 

  7. Stork, N. E. How many species of insects and other terrestrial arthropods are there on Earth? Annu. Rev. Entomol. 63, 31–45 (2018).

    Article  CAS  Google Scholar 

  8. Eggleton, P. The state of the world’s insects. Annu. Rev. Environ. Resour. 45, 61–82 (2020).

    Article  Google Scholar 

  9. Simmons, B. I. et al. Worldwide insect declines: an important message, but interpret with caution. Ecol. Evol. 9, 3678–3680 (2019).

    Article  Google Scholar 

  10. Titley, M. A., Snaddon, J. L. & Turner, E. C. Scientific research on animal biodiversity is systematically biased towards vertebrates and temperate regions. PLoS ONE 12, e0189577 (2017).

    Article  Google Scholar 

  11. McRae, L., Deinet, S. & Freeman, R. The diversity-weighted living planet index: controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE 12, e0169156 (2017).

    Article  Google Scholar 

  12. Li, X. & Wiens, J. J. Estimating global biodiversity: the role of cryptic insect species. Syst. Biol. 72, 391–403 (2023).

    Article  Google Scholar 

  13. van Klink, R. et al. Disproportionate declines of formerly abundant species underlie insect loss. Nature 628, 359–364 (2024).

    Article  Google Scholar 

  14. Lindenmayer, D. B. et al. Value of long‐term ecological studies. Austral Ecol. 37, 745–757 (2012).

    Article  Google Scholar 

  15. Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insect decline in the anthropocene: death by a thousand cuts. Proc. Natl Acad. Sci. USA 118, e2023989118 (2021).

    Article  CAS  Google Scholar 

  16. Raven, P. H. & Wagner, D. L. Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proc. Natl Acad. Sci. USA 118, e2002548117 (2021).

    Article  CAS  Google Scholar 

  17. Bonebrake, T. C. & Deutsch, C. A. Climate heterogeneity modulates impact of warming on tropical insects. Ecology 93, 449–455 (2012).

    Article  Google Scholar 

  18. Outhwaite, C. L., McCann, P. & Newbold, T. Agriculture and climate change are reshaping insect biodiversity worldwide. Nature 605, 97–102 (2022).

    Article  CAS  Google Scholar 

  19. Nash, L. N. et al. Latitudinal patterns of aquatic insect emergence driven by climate. Glob. Ecol. Biogeogr. 32, 1323–1335 (2023).

    Article  Google Scholar 

  20. Dewenter, B. S. et al. The thermal breadth of temperate and tropical freshwater insects supports the climate variability hypothesis. Ecol. Evol. 14, e10937 (2024).

    Article  Google Scholar 

  21. Colwell, R. K. & Feeley, K. J. Still little evidence of poleward range shifts in the tropics, but lowland biotic attrition may be underway. Biotropica https://doi.org/10.1111/btp.13358 (2024).

  22. Newbold, T., Oppenheimer, P., Etard, A. & Williams, J. J. Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nat. Ecol. Evol. 4, 1630–1638 (2020).

    Article  Google Scholar 

  23. Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).

    Article  CAS  Google Scholar 

  24. Senior, R. A., Hill, J. K., González del Pliego, P., Goode, L. K. & Edwards, D. P. A pantropical analysis of the impacts of forest degradation and conversion on local temperature. Ecol. Evol. 7, 7897–7908 (2017).

    Article  Google Scholar 

  25. Bello, C. et al. Defaunation affects carbon storage in tropical forests. Sci. Adv. 1, e1501105 (2015).

    Article  Google Scholar 

  26. Ewers, R. M. et al. Logging cuts the functional importance of invertebrates in tropical rainforest. Nat. Commun. 6, 6836 (2015).

    Article  CAS  Google Scholar 

  27. Crespo-Pérez, V., Kazakou, E., Roubik, D. W. & Cárdenas, R. E. The importance of insects on land and in water: a tropical view. Curr. Opin. Insect Sci. 40, 31–38 (2020).

    Article  Google Scholar 

  28. Bagchi, R. et al. Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506, 85–88 (2014).

    Article  CAS  Google Scholar 

  29. Agrawal, A. A., Hastings, A. P., Johnson, M. T. J., Maron, J. L. & Salminen, J.-P. Insect herbivores drive real-time ecological and evolutionary change in plant populations. Science 338, 113–116 (2012).

    Article  CAS  Google Scholar 

  30. Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    Article  CAS  Google Scholar 

  31. Lawrence, D., Coe, M., Walker, W., Verchot, L. & Vandecar, K. The unseen effects of deforestation: biophysical effects on climate. Front. For. Glob. Change 5, 756115 (2022).

    Article  Google Scholar 

  32. Hudson, L. N. et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol. Evol. 7, 145–188 (2017).

    Article  Google Scholar 

  33. Wright, S. J. Tropical forests in a changing environment. Trends Ecol. Evol. 20, 553–560 (2005).

    Article  Google Scholar 

  34. Nunes, C. A. et al. Linking land-use and land-cover transitions to their ecological impact in the Amazon. Proc. Natl Acad. Sci. USA 119, e2202310119 (2022).

    Article  CAS  Google Scholar 

  35. Olarewaju, J. A., Akinlolu, S. A., Olalekan, K. A. & Abiodun, M. A. in Vegetation Dynamics, Changing Ecosystems and Human Responsibility (eds Hufnagel, L. & El-Esawi, M. A.) Ch. 9 (InTechOpen, 2022).

  36. Faria, D. et al. The breakdown of ecosystem functionality driven by deforestation in a global biodiversity hotspot. Biol. Conserv. 283, 110126 (2023).

    Article  Google Scholar 

  37. Bos, M. M. et al. in Stability of Tropical Rainforest Margins: Linking Ecological, Economic and Social Constraints of Land Use and Conservation (eds. Tscharntke, T. et al.) 277–294 (Springer, 2007).

  38. Wagner, D. L., Fox, R., Salcido, D. M. & Dyer, L. A. A window to the world of global insect declines: moth biodiversity trends are complex and heterogeneous. Proc. Natl Acad. Sci. USA 118, e2002549117 (2021).

    Article  CAS  Google Scholar 

  39. Lamarre, G. P. et al. Monitoring tropical insects in the 21st century. Adv. Ecol. Res. 62, 295–330 (Elsevier, 2020).

  40. Basset, Y. et al. Abundance, occurrence and time series: long-term monitoring of social insects in a tropical rainforest. Ecol. Indic. 150, 110243 (2023).

    Article  Google Scholar 

  41. Schowalter, T. D., Pandey, M., Presley, S. J., Willig, M. R. & Zimmerman, J. K. Arthropods are not declining but are responsive to disturbance in the Luquillo Experimental Forest, Puerto Rico. Proc. Natl Acad. Sci. USA 118, e2002556117 (2021).

    Article  CAS  Google Scholar 

  42. Didham, R. K. et al. Interpreting insect declines: seven challenges and a way forward. Insect Conserv. Diversity 13, 103–114 (2020).

    Article  Google Scholar 

  43. Corlett, R. T. & Primack, R. B. Tropical rainforests and the need for cross-continental comparisons. Trends Ecol. Evol. 21, 104–110 (2006).

    Article  Google Scholar 

  44. Howard, C., Flather, C. H. & Stephens, P. A. A global assessment of the drivers of threatened terrestrial species richness. Nat. Commun. 11, 993 (2020).

    Article  CAS  Google Scholar 

  45. Langner, A. & Siegert, F. Spatiotemporal fire occurrence in Borneo over a period of 10 years. Glob. Change Biol. 15, 48–62 (2009).

    Article  Google Scholar 

  46. Silveira, M. V. F., Silva-Junior, C. H. L., Anderson, L. O. & Aragão, L. E. O. C. Amazon fires in the 21st century: the year of 2020 in evidence. Glob. Ecol. Biogeogr. 31, 2026–2040 (2022).

    Article  Google Scholar 

  47. Carvalho, R. L. et al. Pervasive gaps in Amazonian ecological research. Curr. Biol. 33, 3495–3504.e3494 (2023).

    Article  CAS  Google Scholar 

  48. Dornelas, M. et al. Quantifying temporal change in biodiversity: challenges and opportunities. Proc. R. Soc. B 280, 20121931 (2013).

    Article  Google Scholar 

  49. Soga, M. & Gaston, K. J. Shifting baseline syndrome: causes, consequences, and implications. Front. Ecol. Env. 16, 222–230 (2018).

    Article  Google Scholar 

  50. Macgregor, C. J., Williams, J. H., Bell, J. R. & Thomas, C. D. Moth biomass has fluctuated over 50 years in Britain but lacks a clear trend. Nat. Ecol. Evol. 3, 1645–1649 (2019).

    Article  Google Scholar 

  51. Chechina, M. & Hamann, A. Climatic drivers of dipterocarp mass-flowering in south-east Asia. J. Trop. Ecol. 35, 108–117 (2019).

    Article  Google Scholar 

  52. Hosaka, T. et al. Abundance of insect seed predators and intensity of seed predation on Shorea (Dipterocarpaceae) in two consecutive masting events in peninsular Malaysia. J. Trop. Ecol. 27, 651–655 (2011).

    Article  Google Scholar 

  53. Kishimoto-Yamada, K. et al. Population fluctuations of light-attracted chrysomelid beetles in relation to supra-annual environmental changes in a Bornean rainforest. Bull. Entomol. Res. 99, 217–227 (2009).

    Article  CAS  Google Scholar 

  54. Adamescu, G. S. et al. Annual cycles are the most common reproductive strategy in African tropical tree communities. Biotropica 50, 418–430 (2018).

    Article  Google Scholar 

  55. Stork, N. E., Boyle, M. J., Wardhaugh, C. & Beaver, R. What can an analysis of Australian tropical rainforest bark beetles suggest about the missing millions of Earth’s insect species? Insect Conserv. Diversity 17, 1156–1166 (2024).

    Article  Google Scholar 

  56. Basset, Y. et al. Arthropod diversity in a tropical forest. Science 338, 1481–1484 (2012).

    Article  CAS  Google Scholar 

  57. Brydegaard, M. et al. Towards global insect biomonitoring with frugal methods. Phil. Trans. R. Soc. B 379, 20230103 (2024).

    Article  CAS  Google Scholar 

  58. Bierman, A. & Lloyd, M. in Routledge Handbook of Insect Conservation (eds Pryke, J. S. et al.) 487–500 (Routledge, 2024).

  59. Scheffers, B. R., Joppa, L. N., Pimm, S. L. & Laurance, W. F. What we know and don’t know about Earth’s missing biodiversity. Trends Ecol. Evol. 27, 501–510 (2012).

    Article  Google Scholar 

  60. Boyle, M. J. W. et al. Tropical beetles more sensitive to impacts are less likely to be known to science. Curr. Biol. 34, R770–R771 (2024).

    Article  CAS  Google Scholar 

  61. França, F. M. et al. Climatic and local stressor interactions threaten tropical forests and coral reefs. Phil. Trans. R. Soc. B 375, 20190116 (2020).

    Article  Google Scholar 

  62. Ismaeel, A. et al. Patterns of tropical forest understory temperatures. Nat. Commun. 15, 549 (2024).

    Article  CAS  Google Scholar 

  63. Paaijmans, K. P. et al. Temperature variation makes ectotherms more sensitive to climate change. Glob. Change Biol. 19, 2373–2380 (2013).

    Article  Google Scholar 

  64. Vasseur, D. A. et al. Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. B 281, 20132612 (2014).

    Article  Google Scholar 

  65. Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

    Article  CAS  Google Scholar 

  66. Thomas, C., Jones, T. H. & Hartley, S. E. ‘‘Insectageddon”: a call for more robust data and rigorous analyses. Glob. Change Biol. 25, 1891–1892 (2019).

    Article  Google Scholar 

  67. Saunders, M. E., Janes, J. K. & O’Hanlon, J. C. Moving on from the insect apocalypse narrative: engaging with evidence-based insect conservation. Bioscience 70, 80–89 (2019).

    Article  Google Scholar 

  68. Dudgeon, D., Ng, L. C. Y. & Tsang, T. P. N. Shifts in aquatic insect composition in a tropical forest stream after three decades of climatic warming. Glob. Change Biol. 26, 6399–6412 (2020).

    Article  Google Scholar 

  69. Lamarre, G. P. A. et al. More winners than losers over 12 years of monitoring tiger moths (Erebidae: Arctiinae) on Barro Colorado Island, Panama. Biol. Lett. 18, 20210519 (2022).

    Article  Google Scholar 

  70. Colwell, R. K., Brehm, G., Cardelus, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).

    Article  CAS  Google Scholar 

  71. Sundar, S., Silva, D. P., de Oliveira Roque, F., Simião-Ferreira, J. & Heino, J. Predicting climate effects on aquatic true bugs in a tropical biodiversity hotspot. J. Insect Conserv. 25, 229–241 (2021).

    Article  Google Scholar 

  72. Abarca, M. & Spahn, R. Direct and indirect effects of altered temperature regimes and phenological mismatches on insect populations. Curr. Opin. Insect Sci. 47, 67–74 (2021).

    Article  Google Scholar 

  73. Ma, G., Ma, C.-S., Lann, C. L. & van Baaren, J. in Effects of Climate Change on Insects: Physiological, Evolutionary, and Ecological Responses (eds González-Tokman, D. & Dáttilo, W.) Ch. 6 (Oxford Univ. Press, 2024).

  74. Cornelissen, T. Climate change and its effects on terrestrial insects and herbivory patterns. Neotrop. Entomol. 40, 155–163 (2011).

    Article  CAS  Google Scholar 

  75. Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A.-L. & Totland, Ø. How does climate warming affect plant–pollinator interactions? Ecol. Lett. 12, 184–195 (2009).

    Article  Google Scholar 

  76. Boyle, M. J. et al. Localised climate change defines ant communities in human‐modified tropical landscapes. Funct. Ecol. 35, 1094–1108 (2021).

    Article  CAS  Google Scholar 

  77. Mirtl, M. et al. Genesis, goals and achievements of long-term ecological research at the global scale: a critical review of ILTER and future directions. Sci. Total. Env. 626, 1439–1462 (2018).

    Article  CAS  Google Scholar 

  78. Jucker, T. et al. Canopy structure and topography jointly constrain the microclimate of human‐modified tropical landscapes. Glob. Change Biol. 24, 5243–5258 (2018).

    Article  Google Scholar 

  79. Xing, S. et al. Ecological patterns and processes in the vertical dimension of terrestrial ecosystems. J. Anim. Ecol. 92, 538–551 (2023).

    Article  Google Scholar 

  80. Bujan, J. & Yanoviak, S. P. Behavioral response to heat stress of twig-nesting canopy ants. Oecologia 198, 947–955 (2022).

    Article  Google Scholar 

  81. Ewers, R. M. et al. Thresholds for adding degraded tropical forest to the conservation estate. Nature 631, 808–813 (2024).

    Article  CAS  Google Scholar 

  82. Intergovernmental Panel on Climate Change (IPCC). AR6 Synthesis Report: Climate Change 2023. Contribution of Working Group I to the Six Assessment Report of the Intergovernmental Panel on Climate Change. IPCC https://www.ipcc.ch/report/sixth-assessment-report-cycle/ (2023).

  83. Harvey, J. A., Heinen, R., Gols, R. & Thakur, M. P. Climate change-mediated temperature extremes and insects: from outbreaks to breakdowns. Glob. Change Biol. 26, 6685–6701 (2020).

    Article  Google Scholar 

  84. Newell, F. L., Ausprey, I. J. & Robinson, S. K. Wet and dry extremes reduce arthropod biomass independently of leaf phenology in the wet tropics. Glob. Change Biol. 29, 308–323 (2023).

    Article  CAS  Google Scholar 

  85. Tng, D. Y. P. et al. Drought reduces the growth and health of tropical rainforest understory plants. For. Ecol. Manage 511, 120128 (2022).

    Article  Google Scholar 

  86. McCluney, K. E. Implications of animal water balance for terrestrial food webs. Curr. Opin. Insect Sci. 23, 13–21 (2017).

    Article  Google Scholar 

  87. Chaves, L. F., Morrison, A. C., Kitron, U. D. & Scott, T. W. Nonlinear impacts of climatic variability on the density-dependent regulation of an insect vector of disease. Glob. Change Biol. 18, 457–468 (2012).

    Article  Google Scholar 

  88. Van Bael, S. A. et al. General herbivore outbreak following an El Niño-related drought in a lowland Panamanian forest. J. Trop. Ecol. 20, 625–633 (2004).

    Article  Google Scholar 

  89. Céréghino, R. et al. Desiccation resistance traits predict freshwater invertebrate survival and community response to drought scenarios in a neotropical ecosystem. Ecol. Indic. 119, 106839 (2020).

    Article  Google Scholar 

  90. Shivoga, W. A. The influence of hydrology on the structure of invertebrate communities in two streams flowing into Lake Nakuru, Kenya. Hydrobiologia 458, 121–130 (2001).

    Article  Google Scholar 

  91. Walsh, R. P. Drought frequency changes in Sabah and adjacent parts of northern Borneo since the late nineteenth century and possible implications for tropical rain forest dynamics. J. Trop. Ecol. 12, 385–407 (1996).

    Article  Google Scholar 

  92. Walsh, R. & Newbery, D. The ecoclimatology of Danum, Sabah, in the context of the world’s rainforest regions, with particular reference to dry periods and their impact. Phil. Trans. R. Soc. Lond. B 354, 1869–1883 (1999).

    Article  CAS  Google Scholar 

  93. Hilker, T. et al. Vegetation dynamics and rainfall sensitivity of the Amazon. Proc. Natl Acad. Sci. USA 111, 16041–16046 (2014).

    Article  CAS  Google Scholar 

  94. Sakai, S. General flowering in lowland mixed dipterocarp forests of south-east Asia. Biol. J. Linn. Soc. 75, 233–247 (2002).

    Article  Google Scholar 

  95. Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014).

    Article  Google Scholar 

  96. Wang, G. et al. Continued increase of extreme El Niño frequency long after 1.5 °C warming stabilization. Nat. Clim. Change 7, 568–572 (2017).

    Article  Google Scholar 

  97. Peng, Q., Xie, S.-P. & Deser, C. Collapsed upwelling projected to weaken ENSO under sustained warming beyond the twenty-first century. Nat. Clim. Change 14, 815–822 (2024).

    Article  Google Scholar 

  98. Didham, R. K., Ghazoul, J., Stork, N. E. & Davis, A. J. Insects in fragmented forests: a functional approach. Trends Ecol. Evol. 11, 255–260 (1996).

    Article  CAS  Google Scholar 

  99. França, F. M. et al. Selective logging intensity and time since logging drive tropical bird and dung beetle diversity: a case study from Amazonia. Env. Conserv. 51, 112–121 (2024).

    Article  Google Scholar 

  100. Stork, N. E. et al. Consistency of effects of tropical-forest disturbance on species composition and richness relative to use of indicator taxa. Conserv. Biol. 31, 924–933 (2017).

    Article  CAS  Google Scholar 

  101. Hamer, K. et al. Ecology of butterflies in natural and selectively logged forests of northern Borneo: the importance of habitat heterogeneity. J. Appl. Ecol. 40, 150–162 (2003).

    Article  Google Scholar 

  102. Thorn, S. et al. Impacts of salvage logging on biodiversity: a meta-analysis. J. Appl. Ecol. 55, 279–289 (2018).

    Article  Google Scholar 

  103. Lewis, O. T. & Basset, Y. in Insect Conservation Biology (eds Stewart, A. J. A. et al.) 34–56 (Royal Entomological Society of London, 2007).

  104. Solar, R. Rd. C. et al. How pervasive is biotic homogenization in human‐modified tropical forest landscapes? Ecol. Lett. 18, 1108–1118 (2015).

    Article  Google Scholar 

  105. Faria, A. P. J., Paiva, C. K. S., Calvão, L. B., Cruz, G. M. & Juen, L. Response of aquatic insects to an environmental gradient in Amazonian streams. Env. Monit. Assess. 193, 763 (2021).

    Article  Google Scholar 

  106. Brasil, L. S., de Lima, E. L., Spigoloni, Z. A., Ribeiro-Brasil, D. R. G. & Juen, L. The habitat integrity index and aquatic insect communities in tropical streams: a meta-analysis. Ecol. Indic. 116, 106495 (2020).

    Article  Google Scholar 

  107. Cunha, E. J. & Juen, L. Impacts of oil palm plantations on changes in environmental heterogeneity and Heteroptera (Gerromorpha and Nepomorpha) diversity. J. Insect Conserv. 21, 111–119 (2017).

    Article  Google Scholar 

  108. Amaral, P. H. M. D., Silveira, L. S. D., Rosa, B. F. J. V., Oliveira, V. C. D. & Alves, R. D. G. Influence of habitat and land use on the assemblages of Ephemeroptera, Plecoptera, and Trichoptera in neotropical streams. J. Insect Sci. 15, 60 (2015).

    Article  Google Scholar 

  109. de Paiva, C. K. S., de Faria, A. P. J., Calvao, L. B. & Juen, L. Effect of oil palm on the Plecoptera and Trichoptera (Insecta) assemblages in streams of eastern Amazon. Env. Monit. Assess. 189, 393 (2017).

    Article  Google Scholar 

  110. Oliveira-Junior, J. & Juen, L. The Zygoptera/Anisoptera ratio (Insecta: Odonata): a new tool for habitat alterations assessment in Amazonian streams. Neotrop. Entomol. 48, 552–560 (2019).

    Article  CAS  Google Scholar 

  111. Dias-Silva, K., Brasil, L. S., Veloso, G. K. O., Cabette, H. S. R. & Juen, L. Land use change causes environmental homogeneity and low beta-diversity in Heteroptera of streams. Int. J. Limnol. 56, 9 (2020).

    Article  Google Scholar 

  112. Malhi, Y. et al. Logged tropical forests have amplified and diverse ecosystem energetics. Nature 612, 707–713 (2022).

    Article  CAS  Google Scholar 

  113. Pimm, S. L. & Raven, P. Extinction by numbers. Nature 403, 843–845 (2000).

    Article  CAS  Google Scholar 

  114. Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).

    Article  CAS  Google Scholar 

  115. Fitzherbert, E. B. et al. How will oil palm expansion affect biodiversity? Trends Ecol. Evol. 23, 538–545 (2008).

    Article  Google Scholar 

  116. Wilker, I. et al. Land-use change in the Amazon decreases ant diversity but increases ant-mediated predation. Insect Conserv. Diversity 16, 379–392 (2023).

    Article  Google Scholar 

  117. Perry, J. et al. How natural forest conversion affects insect biodiversity in the Peruvian Amazon: can agroforestry help? Forests 7, 82 (2016).

    Article  Google Scholar 

  118. Novotny, V. et al. Low beta diversity of herbivorous insects in tropical forests. Nature 448, 692–695 (2007).

    Article  CAS  Google Scholar 

  119. Sloan, S., Jenkins, C. N., Joppa, L. N., Gaveau, D. L. & Laurance, W. F. Remaining natural vegetation in the global biodiversity hotspots. Biol. Conserv. 177, 12–24 (2014).

    Article  Google Scholar 

  120. Stoll, E., Roopsind, A., Maharaj, G., Velazco, S. & Caughlin, T. T. Detecting gold mining impacts on insect biodiversity in a tropical mining frontier with SmallSat imagery. Remote. Sens. Ecol. Conserv. 8, 379–390 (2022).

    Article  Google Scholar 

  121. Kyerematen, R., Adu-Acheampong, S., Acquah-Lamptey, D. & Anderson, R. S. Using Orthoptera and Hymenoptera indicator groups as evidence of degradation in a mining concession (Tarkwa gold mine) in Ghana. Int. J. Trop. Insect Sci. 40, 221–224 (2020).

    Article  Google Scholar 

  122. Monge-Salazar, M. J. The effect of artisanal gold mining on aquatic insect communities: a case study in Costa Rica. Aquat. Insects 42, 160–178 (2021).

    Article  Google Scholar 

  123. Enríquez Espinosa, A. C. et al. Effects of mining and reduced turnover of Ephemeroptera (Insecta) in streams of the Eastern Brazilian Amazon. J. Insect Conserv. 24, 1061–1072 (2020).

    Article  Google Scholar 

  124. Rivera-Pérez, J. M. et al. Effect of mining on the EPT (Ephemeroptera, Plecoptera and Trichoptera) assemblage of Amazonian streams based on their environmental specificity. Hydrobiologia 850, 645–664 (2023).

    Article  Google Scholar 

  125. Dedieu, N., Rhone, M., Vigouroux, R. & Céréghino, R. Assessing the impact of gold mining in headwater streams of eastern Amazonia using Ephemeroptera assemblages and biological traits. Ecol. Indic. 52, 332–340 (2015).

    Article  Google Scholar 

  126. Sarkar, S., Gil, J. D. B., Keeley, J. & Jansen, K. The use of pesticides in developing countries and their impact on health and the right to food. European Union https://op.europa.eu/en/publication-detail/-/publication/652ce244-6b53-11eb-aeb5-01aa75ed71a1/language-en (2021).

  127. Weiss, F. T., Ruepert, C., Echeverría-Sáenz, S., Eggen, R. I. L. & Stamm, C. Agricultural pesticides pose a continuous ecotoxicological risk to aquatic organisms in a tropical horticulture catchment. Environ. Adv. 11, 100339 (2023).

    Article  CAS  Google Scholar 

  128. Pelinson, R. M., Valente, B. R. S., Shimabukuro, E. M. & Schiesari, L. Impacts of agrochemical intensification and spatial isolation on the assembly and reassembly of temporary pond metacommunities. J. Appl. Ecol. 60, 2235–2250 (2023).

    Article  Google Scholar 

  129. Rodríguez-Rodríguez, C. E. et al. Environmental monitoring and risk assessment in a tropical Costa Rican catchment under the influence of melon and watermelon crop pesticides. Env. Pollut. 284, 117498 (2021).

    Article  Google Scholar 

  130. Cabrera, M. et al. Effects of intensive agriculture and urbanization on water quality and pesticide risks in freshwater ecosystems of the Ecuadorian Amazon. Chemosphere 337, 139286 (2023).

    Article  CAS  Google Scholar 

  131. Rico, A. et al. Ecological risk assessment of pesticides in urban streams of the Brazilian Amazon. Chemosphere 291, 132821 (2022).

    Article  CAS  Google Scholar 

  132. Ali, U. et al. Organochlorine pesticides (OCPs) in South Asian region: a review. Sci. Total. Env. 476–477, 705–717 (2014).

    Article  Google Scholar 

  133. Wong, F. et al. Organochlorine pesticides in soils and air of southern Mexico: chemical profiles and potential for soil emissions. Atmos. Env. 42, 7737–7745 (2008).

    Article  CAS  Google Scholar 

  134. Dalla Villa, R., de Carvalho Dores, E. F. G., Carbo, L. & Cunha, M. L. F. Dissipation of DDT in a heavily contaminated soil in Mato Grosso, Brazil. Chemosphere 64, 549–554 (2006).

    Article  CAS  Google Scholar 

  135. Chakraborty, P., Zhang, G., Li, J., Sivakumar, A. & Jones, K. C. Occurrence and sources of selected organochlorine pesticides in the soil of seven major Indian cities: assessment of air–soil exchange. Env. Pollut. 204, 74–80 (2015).

    Article  CAS  Google Scholar 

  136. Lalah, J., Kaigwara, P., Getenga, Z., Mghenyi, J. & Wandiga, S. The major environmental factors that influence rapid disappearance of pesticides from tropical soils in Kenya. Toxicol. Environ. Chem. 81, 161–197 (2001).

    Article  CAS  Google Scholar 

  137. Rosendahl, I., Laabs, V., Atcha-Ahowé, C., James, B. & Amelung, W. Insecticide dissipation from soil and plant surfaces in tropical horticulture of southern Benin, West Africa. J. Env. Monit. 11, 1157–1164 (2009).

    Article  CAS  Google Scholar 

  138. Vryzas, Z. Pesticide fate in soil–sediment–water environment in relation to contamination preventing actions. Curr. Opin. Environ. Sci. Health 4, 5–9 (2018).

    Article  Google Scholar 

  139. Schulz, R., Bub, S., Petschick, L. L., Stehle, S. & Wolfram, J. Applied pesticide toxicity shifts toward plants and invertebrates, even in GM crops. Science 372, 81–84 (2021).

    Article  CAS  Google Scholar 

  140. Siviter, H. et al. Agrochemicals interact synergistically to increase bee mortality. Nature 596, 389–392 (2021).

    Article  CAS  Google Scholar 

  141. de Carvalho Dores, E. F. G. & Naria De-Lamonica-Freire, E. Contaminação do ambiente aquático por pesticidas: vias de contaminação e dinâmica dos pesticidas no ambiente aquático. Pesticidas Rev. Ecotoxicol. E https://doi.org/10.5380/pes.v9i0.39598 (1999).

  142. Hamada, N. et al. Insetos aquáticos na Amazônia Brasileira: Taxonomia, Biologia e Ecologia (Editora do INPA, 2014).

  143. Corbi, J. J., Froehlich, C. G., Strixino, S. T. & dos Santos, A. Bioaccumulation of metals in aquatic insects of streams located in areas with sugar cane cultivation. Química Nova 33, 644–648 (2010).

    Article  CAS  Google Scholar 

  144. Heye, K., Lotz, T., Wick, A. & Oehlmann, J. Interactive effects of biotic and abiotic environmental stressors on carbamazepine toxicity in the non-biting midge Chironomus riparius. Water Res. 156, 92–101 (2019).

    Article  CAS  Google Scholar 

  145. Couceiro, S. R., Forsberg, B. R., Hamada, N. & Ferreira, R. Effects of an oil spill and discharge of domestic sewage on the insect fauna of Cururu stream, Manaus, AM, Brazil. Braz. J. Biol. 66, 35–44 (2006).

    Article  CAS  Google Scholar 

  146. Martins, R. T., Couceiro, S. R., Melo, A. S., Moreira, M. P. & Hamada, N. Effects of urbanization on stream benthic invertebrate communities in Central Amazon. Ecol. Indic. 73, 480–491 (2017).

    Article  CAS  Google Scholar 

  147. Monchanin, C., Devaud, J.-M., Barron, A. B. & Lihoreau, M. Current permissible levels of metal pollutants harm terrestrial invertebrates. Sci. Total. Env. 779, 146398 (2021).

    Article  CAS  Google Scholar 

  148. Archer, C. et al. State of the Tropics 2020 report. James Cook University https://www.jcu.edu.au/state-of-the-tropics/publications/state-of-the-tropics-2020-report (2020).

  149. Seto, K. C., Güneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).

    Article  CAS  Google Scholar 

  150. Bonebrake, T. C. et al. Tropical cities as windows into the ecosystems of our present and future. Biotropica 57, e13369 (2025).

    Article  Google Scholar 

  151. New, T. R. Promoting and developing insect conservation in Australia’s urban environments. Austral Entomol. 57, 182–193 (2018).

    Article  Google Scholar 

  152. Md Meftaul, I., Venkateswarlu, K., Dharmarajan, R., Annamalai, P. & Megharaj, M. Pesticides in the urban environment: a potential threat that knocks at the door. Sci. Total. Environ. 711, 134612 (2020).

    Article  CAS  Google Scholar 

  153. Gaona, F. P., Iñiguez-Armijos, C., Brehm, G., Fiedler, K. & Espinosa, C. I. Drastic loss ofinsects (Lepidoptera: Geometridae) in urban landscapes in a tropical biodiversity hotspot. J. Insect Conserv. 25, 395–405 (2021).

    Article  Google Scholar 

  154. Zakardjian, M., Geslin, B., Mitran, V., Franquet, E. & Jourdan, H. Effects of urbanization on plant–pollinator interactions in the tropics: an experimental approach using exotic plants. Insects 11, 773 (2020).

    Article  Google Scholar 

  155. Wenzel, A., Grass, I., Nölke, N., Pannure, A. & Tscharntke, T. Wild bees benefit from low urbanization levels and suffer from pesticides in a tropical megacity. Agricult. Ecosyst. Environ. 336, 108019 (2022).

    Article  Google Scholar 

  156. Sing, K.-W. et al. Diversity and human perceptions of bees (Hymenoptera: Apoidea) in southeast Asian megacities. Genome 59, 827–839 (2016).

    Article  Google Scholar 

  157. Antonini, Y., Martins, R. P., Aguiar, L. M. & Loyola, R. D. Richness, composition and trophic niche of stingless bee assemblages in urban forest remnants. Urban. Ecosyst. 16, 527–541 (2013).

    Article  Google Scholar 

  158. Wiederkehr, F. et al. Urbanisation affects ecosystem functioning more than structure in tropical streams. Biol. Conserv. 249, 108634 (2020).

    Article  Google Scholar 

  159. Ensaldo-Cárdenas, A. S., Rocha-Ortega, M., Schneider, D., Robertson, B. A. & Córdoba-Aguilar, A. Ultraviolet polarized light and individual condition drive habitat selection in tropical damselflies and dragonflies. Anim. Behav. 180, 229–238 (2021).

    Article  Google Scholar 

  160. Shivanna, K. R. Impact of light pollution on nocturnal pollinators and their pollination services. Proc. Indian Natl Sci. Acad. 88, 626–633 (2022).

    Article  Google Scholar 

  161. Desouhant, E., Gomes, E., Mondy, N. & Amat, I. Mechanistic, ecological, and evolutionary consequences of artificial light at night for insects: review and prospective. Entomol. Exp. Appl. 167, 37–58 (2019).

    Article  Google Scholar 

  162. Freitas, J. R. D., Bennie, J., Mantovani, W. & Gaston, K. J. Exposure of tropical ecosystems to artificial light at night: Brazil as a case study. PLoS ONE 12, e0171655 (2017).

    Article  Google Scholar 

  163. Andrade-Núñez, M. J. & Aide, T. M. Using nighttime lights to assess infrastructure expansion within and around protected areas in South America. Environ. Res. Commun. 2, 021002 (2020).

    Article  Google Scholar 

  164. Camacho, L. F., Barragán, G. & Espinosa, S. Local ecological knowledge reveals combined landscape effects of light pollution, habitat loss, and fragmentation on insect populations. Biol. Conserv. 262, 109311 (2021).

    Article  Google Scholar 

  165. Pan, H., Liang, G. & Lu, Y. Response of different insect groups to various wavelengths of light under field conditions. Insects 12, 427 (2021).

    Article  Google Scholar 

  166. Boyes, D. H., Evans, D. M., Fox, R., Parsons, M. S. & Pocock, M. J. O. Street lighting has detrimental impacts on local insect populations. Sci. Adv. 7, eabi8322 (2021).

    Article  Google Scholar 

  167. Deichmann, J. L. et al. Reducing the blue spectrum of artificial light at night minimises insect attraction in a tropical lowland forest. Insect Conserv. Divers. 14, 247–259 (2021).

    Article  Google Scholar 

  168. Coleman, J. L., Lum, D. W. H. & Yao, X. From sodium-vapour to LEDs: how an outdoor lighting retrofit affects insects in Singapore. J. Urban. Ecol. 9, juad009 (2023).

    Article  Google Scholar 

  169. Wilson, A. A. et al. Artificial night light and anthropogenic noise interact to influence bird abundance over a continental scale. Glob. Change Biol. 27, 3987–4004 (2021).

    Article  CAS  Google Scholar 

  170. Kalinkat, G. et al. Assessing long-term effects of artificial light at night on insects: what is missing and how to get there. Insect Conserv. Divers. 14, 260–270 (2021).

    Article  Google Scholar 

  171. Kfir, R. Competitive displacement of Busseola fusca (Lepidoptera: Noctuidae) by Chilo partellus (Lepidoptera: Pyralidae). Ann. Entomol. Soc. Am. 90, 619–624 (1997).

    Article  Google Scholar 

  172. Overholt, W. A. In Encyclopedia of Entomology (ed. Capinera, J. L.) 1640–1641 (Springer Netherlands, 2008).

  173. Fortuna, T. M., Le Gall, P., Mezdour, S. & Calatayud, P.-A. Impact of invasive insects on native insect communities. Curr. Opin. Insect Sci. 51, 100904 (2022).

    Article  Google Scholar 

  174. Lach, L., Tillberg, C. V. & Suarez, A. V. Contrasting effects of an invasive ant on a native and an invasive plant. Biol. Invasions 12, 3123–3133 (2010).

    Article  Google Scholar 

  175. Berggren, Å., Jansson, A. & Low, M. Approaching ecological sustainability in the emerging insects-as-food industry. Trends Ecol. Evol. 34, 132–138 (2019).

    Article  Google Scholar 

  176. Tallamy, D. W., Narango, D. L. & Mitchell, A. B. Do non-native plants contribute to insect declines? Ecol. Entomol. 46, 729–742 (2021).

    Article  Google Scholar 

  177. Stroud, J. T. & Feeley, K. J. A downside of diversity? A response to Gallagher et al. Trends Ecol. Evol. 30, 296–297 (2015).

    Article  Google Scholar 

  178. Pincebourde, S. & Casas, J. Narrow safety margin in the phyllosphere during thermal extremes. Proc. Natl Acad. Sci. USA 116, 5588–5596 (2019).

    Article  CAS  Google Scholar 

  179. Clusella-Trullas, S., Garcia, R. A., Terblanche, J. S. & Hoffmann, A. A. How useful are thermal vulnerability indices? Trends Ecol. Evol. 36, 1000–1010 (2021).

    Article  Google Scholar 

  180. Stuart-Fox, D., Newton, E. & Clusella-Trullas, S. Thermal consequences of colour and near-infrared reflectance. Phil. Trans. R. Soc. B 372, 20160345 (2017).

    Article  Google Scholar 

  181. Law, S. J. et al. Darker ants dominate the canopy: testing macroecological hypotheses for patterns in colour along a microclimatic gradient. J. Anim. Ecol. 89, 347–359 (2020).

    Article  Google Scholar 

  182. Jucker, T. et al. A research agenda for microclimate ecology in human-modified tropical forests. Front. For. Glob. Change 2, 92 (2020).

    Article  Google Scholar 

  183. Williamson, J. et al. Local‐scale temperature gradients driven by human disturbance shape the physiological and morphological traits of dung beetle communities in a Bornean oil palm–forest mosaic. Funct. Ecol. 36, 1655–1667 (2022).

    Article  Google Scholar 

  184. Moore, M. P., Nalley, S. E. & Hamadah, D. An evolutionary innovation for mating facilitates ecological niche expansion and buffers species against climate change. Proc. Natl Acad. Sci. USA 121, e2313371121 (2024).

    Article  CAS  Google Scholar 

  185. Parrett, J. M., Mann, D. J., Chung, A. Y., Slade, E. M. & Knell, R. J. Sexual selection predicts the persistence of populations within altered environments. Ecol. Lett. 22, 1629–1637 (2019).

    Article  Google Scholar 

  186. Hanski, I. & Ovaskainen, O. The metapopulation capacity of a fragmented landscape. Nature 404, 755–758 (2000).

    Article  CAS  Google Scholar 

  187. Årevall, J., Early, R., Estrada, A., Wennergren, U. & Eklöf, A. C. Conditions for successful range shifts under climate change: the role of species dispersal and landscape configuration. Divers. Distrib. 24, 1598–1611 (2018).

    Article  Google Scholar 

  188. Ma, C.-S., Ma, G. & Pincebourde, S. Survive a warming climate: insect responses to extreme high temperatures. Annu. Rev. Entomol. 66, 163–184 (2021).

    Article  CAS  Google Scholar 

  189. Schebeck, M. et al. Seasonality of forest insects: why diapause matters. Trends Ecol. Evol. 39, 757–770 (2024).

    Article  Google Scholar 

  190. Hoffmann, A. A. & Bridle, J. Plasticity and the costs of incorrect responses. Trends Ecol. Evol. 38, 219–220 (2023).

    Article  Google Scholar 

  191. da Silva, C. R., Beaman, J. E., Youngblood, J. P., Kellermann, V. & Diamond, S. E. Vulnerability to climate change increases with trophic level in terrestrial organisms. Sci. Total. Environ. 865, 161049 (2023).

    Article  Google Scholar 

  192. Wenda, C. et al. Heat tolerance variation reveals vulnerability of tropical herbivore–parasitoid interactions to climate change. Ecol. Lett. 26, 278–290 (2023).

    Article  Google Scholar 

  193. Parr, C. L. & Bishop, T. R. The response of ants to climate change. Glob. Change Biol. 28, 3188–3205 (2022).

    Article  CAS  Google Scholar 

  194. Novotny, V. et al. Why are there so many species of herbivorous insects in tropical rainforests? Science 313, 1115–1118 (2006).

    Article  CAS  Google Scholar 

  195. Coley, P. D. & Barone, J. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 27, 305–335 (1996).

    Article  Google Scholar 

  196. Agrawal, A. A. & Maron, J. L. Long‐term impacts of insect herbivores on plant populations and communities. J. Ecol. 110, 2800–2811 (2022).

    Article  Google Scholar 

  197. Szefer, P., Molem, K., Sau, A. & Novotny, V. Impact of pathogenic fungi, herbivores and predators on secondary succession of tropical rainforest vegetation. J. Ecol. 108, 1978–1988 (2020).

    Article  CAS  Google Scholar 

  198. Ruiz‐Guerra, B., Guevara, R., Mariano, N. A. & Dirzo, R. Insect herbivory declines with forest fragmentation and covaries with plant regeneration mode: evidence from a Mexican tropical rain forest. Oikos 119, 317–325 (2010).

    Article  Google Scholar 

  199. Lewis, O. T. & Gripenberg, S. Insect seed predators and environmental change. J. Appl. Ecol. 45, 1593–1599 (2008).

    Article  Google Scholar 

  200. Novotny, V. et al. Guild‐specific patterns of species richness and host specialization in plant–herbivore food webs from a tropical forest. J. Anim. Ecol. 79, 1193–1203 (2010).

    Article  Google Scholar 

  201. Ingala, M. R. et al. Molecular diet analysis of neotropical bats based on fecal DNA metabarcoding. Ecol. Evol. 11, 7474–7491 (2021).

    Article  Google Scholar 

  202. Hemprich‐Bennett, D. R. et al. Altered structure of bat–prey interaction networks in logged tropical forests revealed by metabarcoding. Mol. Ecol. 30, 5844–5857 (2021).

    Article  Google Scholar 

  203. Hawkins, B. A., Cornell, H. V. & Hochberg, M. E. Predators, parasitoids, and pathogens as mortality agents in phytophagous insect populations. Ecology 78, 2145–2152 (1997).

    Article  Google Scholar 

  204. Griffiths, H. M., Bardgett, R. D., Louzada, J. & Barlow, J. The value of trophic interactions for ecosystem function: dung beetle communities influence seed burial and seedling recruitment in tropical forests. Proc. R. Soc. B 283, 20161634 (2016).

    Article  Google Scholar 

  205. Ashton, L. A. et al. Termites mitigate the ecosystem-wide effects of drought in tropical rainforest. Science 363, 174–177 (2019).

    Article  CAS  Google Scholar 

  206. Griffiths, H. M., Ashton, L. A., Parr, C. L. & Eggleton, P. The impact of invertebrate decomposers on plants and soil. N. Phytol. 231, 2142–2149 (2021).

    Article  Google Scholar 

  207. Barton, P. S. & Evans, M. J. Insect biodiversity meets ecosystem function: differential effects of habitat and insects on carrion decomposition. Ecol. Entomol. 42, 364–374 (2017).

    Article  Google Scholar 

  208. Handa, I. T. et al. Consequences of biodiversity loss for litter decomposition across biomes. Nature 509, 218–221 (2014).

    Article  CAS  Google Scholar 

  209. Griffiths, H. M., Ashton, L. A., Evans, T. A., Parr, C. L. & Eggleton, P. Termites can decompose more than half of deadwood in tropical rainforest. Curr. Biol. 29, R118–R119 (2019).

    Article  CAS  Google Scholar 

  210. Zeng, X. et al. Global contribution of invertebrates to forest litter decomposition. Ecol. Lett. 27, e14423 (2024).

    Article  Google Scholar 

  211. Medina Madariaga, G. et al. Multiple-stressor effects on leaf litter decomposition in freshwater ecosystems: a meta-analysis. Funct. Ecol. 38, 1523–1536 (2024).

    Article  CAS  Google Scholar 

  212. Lemes da Silva, A. L., Lemes, W. P., Andriotti, J., Petrucio, M. M. & Feio, M. J. Recent land-use changes affect stream ecosystem processes in a subtropical island in Brazil. Austral Ecol. 45, 644–658 (2020).

    Article  Google Scholar 

  213. Pérez, J. et al. Agricultural impacts on lowland tropical streams detected through leaf litter decomposition. Ecol. Indic. 154, 110819 (2023).

    Article  Google Scholar 

  214. Luke, S. H., Fayle, T. M., Eggleton, P., Turner, E. C. & Davies, R. G. Functional structure of ant and termite assemblages in old growth forest, logged forest and oil palm plantation in Malaysian Borneo. Biodivers. Conserv. 23, 2817–2832 (2014).

    Article  Google Scholar 

  215. Nooten, S. S., Chan, K. H., Schultheiss, P., Bogar, T. A. & Guénard, B. Ant body size mediates functional performance and species interactions in carrion decomposer communities. Funct. Ecol. 36, 1279–1291 (2022).

    Article  CAS  Google Scholar 

  216. Nichols, E. et al. Global dung beetle response to tropical forest modification and fragmentation: a quantitative literature review and meta-analysis. Biol. Conserv. 137, 1–19 (2007).

    Article  Google Scholar 

  217. Gregory, N., Gómez, A., Oliveira, T. M. Fd. S. & Nichols, E. Big dung beetles dig deeper: trait-based consequences for faecal parasite transmission. Int. J. Parasitol. 45, 101–105 (2015).

    Article  Google Scholar 

  218. Alvarado-Montero, S., Boesing, A. L., Metzger, J. P. & Jaffé, R. Higher forest cover and less contrasting matrices improve carrion removal service by scavenger insects in tropical landscapes. J. Appl. Ecol. 58, 2637–2649 (2021).

    Article  Google Scholar 

  219. Ferreira, P. A. et al. Forest and connectivity loss simplify tropical pollination networks. Oecologia 192, 577–590 (2020).

    Article  Google Scholar 

  220. Millard, J. et al. Key tropical crops at risk from pollinator loss due to climate change and land use. Sci. Adv. 9, eadh0756 (2023).

    Article  Google Scholar 

  221. Garibaldi, L. A. et al. Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science 351, 388–391 (2016).

    Article  CAS  Google Scholar 

  222. Woodcock, B. A. et al. Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield. Nat. Commun. 10, 1481 (2019).

    Article  CAS  Google Scholar 

  223. Saunders, M. E. et al. Climate mediates roles of pollinator species in plant–pollinator networks. Glob. Ecol. Biogeogr. 32, 511–518 (2023).

    Article  Google Scholar 

  224. Zattara, E. E. & Aizen, M. A. Worldwide occurrence records suggest a global decline in bee species richness. One Earth 4, 114–123 (2021).

    Article  Google Scholar 

  225. Rader, R. et al. Non-bee insects are important contributors to global crop pollination. Proc. Natl Acad. Sci. USA 113, 146–151 (2016).

    Article  CAS  Google Scholar 

  226. Li, K., Tscharntke, T., Saintes, B., Buchori, D. & Grass, I. Critical factors limiting pollination success in oil palm: a systematic review. Agric. Ecosyst. Environ. 280, 152–160 (2019).

    Article  Google Scholar 

  227. Chai, S. K. & Wong, S. Y. Five pollination guilds of aroids (Araceae) at Mulu National Park (Sarawak, Malaysian Borneo). Webbia 74, 353–371 (2019).

    Article  Google Scholar 

  228. Sakai, S., Momose, K., Yumoto, T., Kato, M. & Inoue, T. Beetle pollination of Shorea parvifolia (section Mutica, Dipterocarpaceae) in a general flowering period in Sarawak, Malaysia. Am. J. Bot. 86, 62–69 (1999).

    Article  CAS  Google Scholar 

  229. Wardhaugh, C. W. How many species of arthropods visit flowers? Arthropod–Plant Interact. 9, 547–565 (2015).

    Article  Google Scholar 

  230. Moreira, E. F., Boscolo, D. & Viana, B. F. Spatial heterogeneity regulates plant–pollinator networks across multiple landscape scales. PLoS ONE 10, e0123628 (2015).

    Article  Google Scholar 

  231. Aizen, M. A., Sabatino, M. & Tylianakis, J. M. Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science 335, 1486–1489 (2012).

    Article  CAS  Google Scholar 

  232. Soares, R. G. S., Ferreira, P. A. & Lopes, L. E. Can plant–pollinator network metrics indicate environmental quality? Ecol. Indic. 78, 361–370 (2017).

    Article  Google Scholar 

  233. Zoller, L., Bennett, J. & Knight, T. M. Plant–pollinator network change across a century in the subarctic. Nat. Ecol. Evol. 7, 102–112 (2023).

    Article  Google Scholar 

  234. Tylianakis, J. M., Tscharntke, T. & Lewis, O. T. Habitat modification alters the structure of tropical host–parasitoid food webs. Nature 445, 202–205 (2007).

    Article  CAS  Google Scholar 

  235. Saunders, M. Ecosystem services in agriculture: understanding the multifunctional role of invertebrates. Agric. For. Entomol. 20, 298–300 (2018).

    Article  Google Scholar 

  236. Ghisbain, G., Gérard, M., Wood, T. J., Hines, H. M. & Michez, D. Expanding insect pollinators in the Anthropocene. Biol. Rev. 96, 2755–2770 (2021).

    Article  Google Scholar 

  237. Hardwick, S. R. et al. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: forest disturbance drives changes in microclimate. Agric. For. Meteorol. 201, 187–195 (2015).

    Article  Google Scholar 

  238. Blonder, B. et al. Extreme and highly heterogeneous microclimates in selectively logged tropical forests. Front. For. Glob. Change 1, 5 (2018).

    Article  Google Scholar 

  239. van Klink, R. Delivering on a promise: futureproofing automated insect monitoring methods. Phil. Trans. R. Soc. B 379, 20230105 (2024).

    Article  Google Scholar 

  240. Buchner, D. et al. Upscaling biodiversity monitoring: metabarcoding estimates 31,846 insect species from Malaise traps across Germany. Mol. Ecol. Resour. 25, e14023 (2024).

    Article  Google Scholar 

  241. Alvarado-Robledo, E. J. et al. Metabarcoding: opportunities for accelerating monitoring and understanding insect tropical biodiversity. J. Insect Conserv. 28, 589–604 (2024).

    Article  Google Scholar 

  242. Strutzenberger, P. et al. DNA metabarcoding of light trap samples vs. morphological species identification. Ecol. Entomol. 49, 245–256 (2024).

    Article  Google Scholar 

  243. Sire, L. et al. Persisting roadblocks in arthropod monitoring using non-destructive metabarcoding from collection media of passive traps. PeerJ 11, e16022 (2023).

    Article  Google Scholar 

  244. Souto-Vilarós, D. et al. Illuminating arthropod diversity in a tropical forest: assessing biodiversity by automatic light trapping and DNA metabarcoding. Environ. DNA 6, e540 (2024).

    Article  Google Scholar 

  245. Creedy, T. J., Ng, W. S. & Vogler, A. P. Toward accurate species‐level metabarcoding of arthropod communities from the tropical forest canopy. Ecol. Evol. 9, 3105–3116 (2019).

    Article  Google Scholar 

  246. Iwaszkiewicz-Eggebrecht, E. et al. FAVIS: fast and versatile protocol for non-destructive metabarcoding of bulk insect samples. PLoS ONE 18, e0286272 (2023).

    Article  CAS  Google Scholar 

  247. Macher, T.-H., Schütz, R., Hörren, T., Beermann, A. J. & Leese, F. It’s raining species: rainwash eDNA metabarcoding as a minimally invasive method to assess tree canopy invertebrate diversity. Environ. DNA 5, 3–11 (2023).

    Article  Google Scholar 

  248. Arribas, P. et al. Toward global integration of biodiversity big data: a harmonized metabarcode data generation module for terrestrial arthropods. GigaScience 11, giac065 (2022).

    Article  Google Scholar 

  249. Høye, T. T. et al. Deep learning and computer vision will transform entomology. Proc. Natl Acad. Sci. USA 118, e2002545117 (2021).

    Article  Google Scholar 

  250. Chua, P. Y. S. et al. Future of DNA-based insect monitoring. Trends Genet. 39, 531–544 (2023).

    Article  CAS  Google Scholar 

  251. Meier, R., Hartop, E., Pylatiuk, C. & Srivathsan, A. Towards holistic insect monitoring: species discovery, description, identification and traits for all insects. Phil. Trans. R. Soc. B 379, 20230120 (2024).

    Article  Google Scholar 

  252. Geiger, M. F. et al. Testing the global Malaise trap program — how well does the current barcode reference library identify flying insects in Germany? Biodivers. Data J. 4, e10671 (2016).

    Article  Google Scholar 

  253. Do Nascimento, L. A., Pérez-Granados, C., Alencar, J. B. R. & Beard, K. H. Time and habitat structure shape insect acoustic activity in the Amazon. Phil. Trans. R. Soc. B 379, 20230112 (2024).

    Article  Google Scholar 

  254. Sethi, S. S. et al. Characterizing soundscapes across diverse ecosystems using a universal acoustic feature set. Proc. Natl Acad. Sci. USA 117, 17049–17055 (2020).

    Article  CAS  Google Scholar 

  255. Sethi, S. S., Ewers, R. M., Jones, N. S., Orme, C. D. L. & Picinali, L. Robust, real‐time and autonomous monitoring of ecosystems with an open, low‐cost, networked device. Methods Ecol. Evol. 9, 2383–2387 (2018).

    Article  Google Scholar 

  256. Haest, B. et al. Continental-scale patterns in diel flight timing of high-altitude migratory insects. Phil. Trans. R. Soc. B 379, 20230116 (2024).

    Article  Google Scholar 

  257. Bauer, S., Tielens, E. K. & Haest, B. Monitoring aerial insect biodiversity: a radar perspective. Phil. Trans. R. Soc. B 379, 20230113 (2024).

    Article  Google Scholar 

  258. Liu, D. et al. Radar monitoring unveils migration dynamics of the yellow-spined bamboo locust (Orthoptera: Arcypteridae). Comput. Electron. Agric. 187, 106306 (2021).

    Article  Google Scholar 

  259. Anjita, N. A. et al. Doppler weather radars as a game changer in desert locust swarm tracking. Sci. Rep. 14, 31715 (2024).

    Article  CAS  Google Scholar 

  260. Chen, H. et al. Lidar as a potential tool for monitoring migratory insects. iScience 27, 109588 (2024).

    Article  Google Scholar 

  261. Wang, Y., Zhao, C., Dong, D. & Wang, K. Real-time monitoring of insects based on laser remote sensing. Ecol. Indic. 151, 110302 (2023).

    Article  Google Scholar 

  262. Rydhmer, K. et al. Automating insect monitoring using unsupervised near-infrared sensors. Sci. Rep. 12, 2603 (2022).

    Article  CAS  Google Scholar 

  263. Møller, A. P. Parallel declines in abundance of insects and insectivorous birds in Denmark over 22 years. Ecol. Evol. 9, 6581–6587 (2019).

    Article  Google Scholar 

  264. Møller, A. P. et al. Citizen science for quantification of insect abundance on windshields of cars across two continents. Front. Ecol. Evol. 9, 657178 (2021).

    Article  Google Scholar 

  265. Slade, E. M. & Ong, X. R. The future of tropical insect diversity: strategies to fill data and knowledge gaps. Curr. Opin. Insect Sci. 58, 101063 (2023).

    Article  Google Scholar 

  266. Sánchez Herrera, M. et al. Systematic challenges and opportunities in insect monitoring: a Global South perspective. Phil. Trans. R. Soc. B 379, 20230102 (2024).

    Article  Google Scholar 

  267. Grinder, R. M. & Wiens, J. J. Niche width predicts extinction from climate change and vulnerability of tropical species. Glob. Change Biol. 29, 618–630 (2023).

    Article  CAS  Google Scholar 

  268. Ollerton, J. Biogeography: are tropical species less specialised? Curr. Biol. 22, R914–R915 (2012).

    Article  CAS  Google Scholar 

  269. Doré, M. et al. Mutualistic interactions shape global spatial congruence and climatic niche evolution in neotropical mimetic butterflies. Ecol. Lett. 26, 843–857 (2023).

    Article  Google Scholar 

  270. Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    Article  CAS  Google Scholar 

  271. Gibb, H. et al. Habitat disturbance selects against both small and large species across varying climates. Ecography 41, 1184–1193 (2018).

    Article  Google Scholar 

  272. Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406 (2011).

    Article  Google Scholar 

  273. Boyle, M. J. The Resilience of Tropical Forest Invertebrates to Microclimate Change. PhD thesis (Imperial College London, 2020).

  274. Overgaard, J., Kristensen, T. N., Mitchell, K. A. & Hoffmann, A. A. Thermal tolerance in widespread and tropical Drosophila species: does phenotypic plasticity increase with latitude? Am. Nat. 178, S80–S96 (2011).

    Article  Google Scholar 

  275. Shah, A. A., Funk, W. C. & Ghalambor, C. K. Thermal acclimation ability varies in temperate and tropical aquatic insects from different elevations. Integr. Comp. Biol. 57, 977–987 (2017).

    Article  Google Scholar 

  276. Scheffers, B. R., Evans, T. A., Williams, S. E. & Edwards, D. P. Microhabitats in the tropics buffer temperature in a globally coherent manner. Biol. Lett. 10, 20140819 (2014).

    Article  Google Scholar 

  277. Kang, C. et al. Climate predicts both visible and near-infrared reflectance in butterflies. Ecol. Lett. 24, 1869–1879 (2021).

    Article  Google Scholar 

  278. Polato, N. R. et al. Narrow thermal tolerance and low dispersal drive higher speciation in tropical mountains. Proc. Natl Acad. Sci. USA 115, 12471–12476 (2018).

    Article  CAS  Google Scholar 

  279. Henle, K., Sarre, S. & Wiegand, K. The role of density regulation in extinction processes and population viability analysis. Biodivers. Conserv. 13, 9–52 (2004).

    Article  Google Scholar 

  280. Porter, E. E. & Hawkins, B. A. Latitudinal gradients in colony size for social insects: termites and ants show different patterns. Am. Nat. 157, 97–106 (2001).

    Article  CAS  Google Scholar 

  281. Kaspari, M. & Vargo, E. L. Colony size as a buffer against seasonality: Bergmann’s rule in social insects. Am. Nat. 145, 610–632 (1995).

    Article  Google Scholar 

  282. Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article  CAS  Google Scholar 

  283. Muñoz Sabater, J. ERA5 — Land monthly averaged data from 1981 to present. Copernicus Climate Change Service Climate Data Store https://essd.copernicus.org/articles/13/4349/2021/essd-13-4349-2021-assets.html (2019).

  284. Elvidge, C. D., Zhizhin, M., Ghosh, T., Hsu, F.-C. & Taneja, J. Annual time series of global VIIRS nighttime lights derived from monthly averages: 2012 to 2019. Remote. Sens. 13, 922 (2021).

    Article  Google Scholar 

  285. Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch‐Mordo, S. & Kiesecker, J. Managing the middle: a shift in conservation priorities based on the global human modification gradient. Glob. Change Biol. 25, 811–826 (2019).

    Article  Google Scholar 

  286. Chuvieco, E. et al. ESA Fire Climate Change Initiative (Fire_cci): MODIS Fire_cci Burned Area Pixel product, version 5.1. Centre for Environmental Data Analysis https://cir.nii.ac.jp/crid/1880583643079782016 (2018).

  287. Maggi, F., Tang, F., La Cecilia, D. & McBratney, A. Global pesticide grids (PEST-CHEMGRIDS), version 1.01. NASA Socioeconomic Data and Applications Center (SEDAC) https://www.earthdata.nasa.gov/data/catalog/sedac-ciesin-sedac-fermanv1-pestg-v1.01-1.01 (2020)

  288. Fernández-Palacios, J. M. et al. Scientists’ warning — the outstanding biodiversity of islands is in peril. Glob. Ecol. Conserv. 31, e01847 (2021).

    Google Scholar 

  289. Sharp, A. C., Barclay, M. V., Chung, A. Y. & Ewers, R. M. Tropical logging and deforestation impacts multiple scales of weevil beta-diversity. Biol. Conserv. 234, 172–179 (2019).

    Article  Google Scholar 

  290. Tawatao, N. et al. Biodiversity of leaf-litter ants in fragmented tropical rainforests of Borneo: the value of publically and privately managed forest fragments. Biodivers. Conserv. 23, 3113–3126 (2014).

    Article  Google Scholar 

  291. Scriven, S. A. et al. Assessing the effectiveness of protected areas for conserving range‐restricted rain forest butterflies in Sabah, Borneo. Biotropica 52, 380–391 (2020).

    Article  Google Scholar 

  292. Hanski, I., Koivulehto, H., Cameron, A. & Rahagalala, P. Deforestation and apparent extinctions of endemic forest beetles in Madagascar. Biol. Lett. 3, 344–347 (2007).

    Article  Google Scholar 

  293. Fonseca, C. R. The silent mass extinction of insect herbivores in biodiversity hotspots. Conserv. Biol. 23, 1507–1515 (2009).

    Article  Google Scholar 

  294. Ranarilalatiana, T. et al. Remaining forests on the central highlands of Madagascar — endemic and endangered aquatic beetle fauna uncovered. Ecol. Evol. 12, e9580 (2022).

    Article  Google Scholar 

  295. Steibl, S., Franke, J. & Laforsch, C. Tourism and urban development as drivers for invertebrate diversity loss on tropical islands. R. Soc. Open. Sci. 8, 210411 (2021).

    Article  Google Scholar 

  296. Wagner, D. L. & Van Driesche, R. G. Threats posed to rare or endangered insects by invasions of non-native species. Annu. Rev. Entomol. 55, 547–568 (2010).

    Article  CAS  Google Scholar 

  297. Corlett, R. T. Invasive aliens on tropical East Asian islands. Biodivers. Conserv. 19, 411–423 (2010).

    Article  Google Scholar 

  298. Roy, H. et al. Summary for policymakers of the thematic assessment report on invasive alien species and their control. IPBES https://www.ipbes.net/ias (2023).

  299. Gray, A. et al. The status of the invertebrate fauna on the South Atlantic island of St Helena: problems, analysis, and recommendations. Biodivers. Conserv. 28, 275–296 (2019).

    Article  Google Scholar 

  300. Tercel, M. P., Cuff, J. P., Symondson, W. O. & Vaughan, I. P. Non‐native ants drive dramatic declines in animal community diversity: a meta‐analysis. Insect Conserv. Divers. 16, 733–744 (2023).

    Article  Google Scholar 

  301. Sharp, A. & Tawatao, N. Colonization and coexistence of non‐native ants on a model Atlantic island. Divers. Distrib. 29, 1278–1288 (2023).

    Article  Google Scholar 

  302. Roura‐Pascual, N., Sanders, N. J. & Hui, C. The distribution and diversity of insular ants: do exotic species play by different rules? Glob. Ecol. Biogeogr. 25, 642–654 (2016).

    Article  Google Scholar 

  303. Aulus-Giacosa, L., Ollier, S. & Bertelsmeier, C. Non-native ants are breaking down biogeographic boundaries and homogenizing community assemblages. Nat. Commun. 15, 2266 (2024).

    Article  CAS  Google Scholar 

  304. Wetterer, J. K. Worldwide spread of the African big-headed ant, Pheidole megacephala (Hymenoptera: Formicidae). Myrmecol. N. 17, 51–62 (2012).

    Google Scholar 

  305. Nakamura, A. et al. The role of human disturbance in island biogeography of arthropods and plants: an information theoretic approach. J. Biogeogr. 42, 1406–1417 (2015).

    Article  Google Scholar 

  306. Wetterer, J. K. Biology and impacts of Pacific Island invasive species. 3. The African big-headed ant, Pheidole megacephala (Hymenoptera: Formicidae). Pacif. Sci. 61, 437–456 (2007).

    Article  Google Scholar 

  307. Wetterer, J. K. & Espadaler, X. Ants (Hymenoptera: Formicidae) of the Cabo Verde Islands. Trans. Am. Entomol. Soc. 147, 485–502 (2021).

    Article  Google Scholar 

  308. St Clair, J. J. The impacts of invasive rodents on island invertebrates. Biol. Conserv. 144, 68–81 (2011).

    Article  Google Scholar 

  309. Harper, G. A. & Bunbury, N. Invasive rats on tropical islands: their population biology and impacts on native species. Glob. Ecol. Conserv. 3, 607–627 (2015).

    Google Scholar 

  310. Ashmole, P. & Ashmole, M. St Helena and Ascension Island: a Natural History (Anthony Nelson, 2000).

  311. Priddel, D., Carlile, N., Humphrey, M., Fellenberg, S. & Hiscox, D. Rediscovery of the ‘extinct’ Lord Howe Island stick-insect (Dryococelus australis (Montrouzier)) (Phasmatodea) and recommendations for its conservation. Biodivers. Conserv. 12, 1391–1403 (2003).

    Article  Google Scholar 

  312. Kwak, M. L. Australia’s vanishing fleas (Insecta: Siphonaptera): a case study in methods for the assessment and conservation of threatened flea species. J. Insect Conserv. 22, 545–550 (2018).

    Article  Google Scholar 

  313. Pickering, J. & Norris, C. A. New evidence concerning the extinction of the endemic murid Rattus macleari from Christmas Island, Indian Ocean. Aust. Mammal. 19, 19–25 (1996).

    Article  Google Scholar 

  314. Russell, J. C. & Holmes, N. D. Tropical island conservation: rat eradication for species recovery. Biol. Conserv. 185, 1–7 (2015).

    Article  Google Scholar 

  315. Gaigher, R., Samways, M., Jolliffe, K. & Jolliffe, S. Precision control of an invasive ant on an ecologically sensitive tropical island: a principle with wide applicability. Ecol. Appl. 22, 1405–1412 (2012).

    Article  CAS  Google Scholar 

  316. Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Putting the heat on tropical animals. Science 320, 1296–1297 (2008).

    Article  CAS  Google Scholar 

  317. Deutsch, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science 361, 916–919 (2018).

    Article  CAS  Google Scholar 

  318. Fukagawa, N. K. & Ziska, L. H. Rice: importance for global nutrition. J. Nutr. Sci. Vitaminol. 65, S2–S3 (2019).

    Article  Google Scholar 

  319. Heong. K. L., Song, Y. H., Pimsamarn, S., Zhang, R. & Bae, S. D. in Climate Change and Rice (eds Peng, S. et al.) 326–335 (Springer, 1995).

  320. Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).

    Article  Google Scholar 

  321. Malcolm, S. B. Anthropogenic impacts on mortality and population viability of the monarch butterfly. Annu. Rev. Entomol. 63, 277–302 (2018).

    Article  CAS  Google Scholar 

  322. Kenna, D. et al. Pesticide exposure affects flight dynamics and reduces flight endurance in bumblebees. Ecol. Evol. 9, 5637–5650 (2019).

    Article  Google Scholar 

  323. Farnan, H., Yeeles, P. & Lach, L. Sublethal doses of insecticide reduce thermal tolerance of a stingless bee and are not avoided in a resource choice test. R. Soc. Open. Sci. 10, 230949 (2023).

    Article  CAS  Google Scholar 

  324. Gintoron, C. S. et al. Factors affecting pollination and pollinators in oil palm plantations: a review with an emphasis on the Elaeidobius kamerunicus weevil (Coleoptera: Curculionidae). Insects 14, 454 (2023).

    Article  Google Scholar 

  325. Luke, S. H. et al. Riparian buffers in tropical agriculture: scientific support, effectiveness and directions for policy. J. Appl. Ecol. 56, 85–92 (2019).

    Article  Google Scholar 

  326. Williamson, J. et al. Riparian buffers act as a microclimatic refugia in oil palm landscapes. J. Appl. Ecol. 58, 431–442 (2021).

    Article  Google Scholar 

  327. Mohd-Azlan, J., Conway, S., Travers, T. & Lawes, M. The filtering effect of oil palm plantations on potential insect pollinator assemblages from remnant forest patches. Land 12, 1256 (2023).

    Article  Google Scholar 

  328. Vector-borne diseases. World Health Organization https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases (2024).

  329. Paixão, E. S., Teixeira, M. G. & Rodrigues, L. C. Zika, chikungunya and dengue: the causes and threats of new and re-emerging arboviral diseases. BMJ Glob. Health 3, e000530 (2018).

    Article  Google Scholar 

  330. Mordecai, E. A. et al. Thermal biology of mosquito‐borne disease. Ecol. Lett. 22, 1690–1708 (2019).

    Article  Google Scholar 

  331. Shah, H. A., Huxley, P., Elmes, J. & Murray, K. A. Agricultural land-uses consistently exacerbate infectious disease risks in southeast Asia. Nat. Commun. 10, 4299 (2019).

    Article  Google Scholar 

  332. KM, F. et al. Association between landscape factors and spatial patterns of Plasmodium knowlesi infections in Sabah, Malaysia. Emerg. Infect. Dis. 22, 201–208 (2016).

    Article  Google Scholar 

  333. Brady, O. J. & Hay, S. I. The global expansion of dengue: how Aedes aegypti mosquitoes enabled the first pandemic arbovirus. Annu. Rev. Entomol. 65, 191–208 (2020).

    Article  CAS  Google Scholar 

  334. Mordecai, E. A., Ryan, S. J., Caldwell, J. M., Shah, M. M. & LaBeaud, A. D. Climate change could shift disease burden from malaria to arboviruses in Africa. Lancet Planet. Health 4, e416–e423 (2020).

    Article  Google Scholar 

  335. Chaves, L. F., Cohen, J. M., Pascual, M. & Wilson, M. L. Social exclusion modifies climate and deforestation impacts on a vector-borne disease. PLoS Negl. Trop. Dis. 2, e176 (2008).

    Article  Google Scholar 

  336. Narladkar, B. W. Projected economic losses due to vector and vector-borne parasitic diseases in livestock of India and its significance in implementing the concept of integrated practices for vector management. Vet. World 11, 151–160 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the RGC Collaborative Research Fund (C7048-22GF) and the NSFC National Excellent Young Scientist Fund (AR215206). F.M.F. and K.D.d.S. are funded by the UKRI FLF (MR/X032949/1]) and CNPq (311550/2023-1, 443860/2024-6, 441257/2023-2 and 444350/2024-1). O.T.L. is funded by NERC NE/X000117/1. The authors thank P. Eggleton for comments on an early version of this manuscript and V. Amaral for assistance with Fig. 3.

Author information

Authors and Affiliations

Authors

Contributions

M.J.W.B. and L.A.A. conceptualized and led the development of the manuscript. All authors contributed equally to the writing and editing.

Corresponding author

Correspondence to Louise A. Ashton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Biodiversity thanks G. Maharaj, D. Amorim and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyle, M.J.W., Bonebrake, T.C., Dias da Silva, K. et al. Causes and consequences of insect decline in tropical forests. Nat. Rev. Biodivers. 1, 315–331 (2025). https://doi.org/10.1038/s44358-025-00038-9

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44358-025-00038-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing