Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Assessing, monitoring and mitigating the effects of offshore wind farms on biodiversity

Abstract

Offshore wind farms (OWFs) are integral to the global shift towards renewable energy, yet they introduce complex challenges for marine biodiversity. OWF development affects a range of species — including fish, invertebrates, seabirds and marine mammals — through noise pollution, habitat alteration, physical barriers and potential entanglement. Conversely, turbine structures can act as artificial reefs and fish refuges, enhancing local biodiversity. This Review synthesizes current knowledge of OWF impacts across their life cycle — from construction to decommissioning — highlighting both direct and indirect ecological effects, including food web changes and displacement of fisheries. The Review discusses assessment, monitoring and mitigation strategies, and emphasizes the need for more coordinated international approaches, particularly in the areas of data sharing, cumulative impact assessments and long-term ecological monitoring. Differences in governance, regulation, data collection and mitigation strategies across countries or regions lead to varying biodiversity outcomes at OWFs. We outline priority steps that could be taken to improve assessment and monitoring across regional and international scales, including the use of emerging technologies, adaptive management, the development of more sophisticated models and decision-support tools, and the establishment of regionally tailored ecosystem monitoring programmes to better understand the impacts of OWF energy developments on biodiversity.

Key points

  • Offshore wind farms affect marine life in complex ways, creating both risks (including noise, disturbance and habitat loss) and benefits (including new habitat for some species).

  • Turbine structures can support marine biodiversity by acting as artificial reefs, attracting fish, invertebrates and algae — although this effect varies by design and location.

  • Noise from construction is a major concern, especially for marine mammals and fish, but new technologies and better planning can reduce harmful impacts.

  • Floating wind farms and decommissioning remain poorly studied, meaning their full effects on biodiversity are still uncertain and need more attention.

  • Current monitoring and impact assessments are inconsistent across countries, making it hard to understand long-term or large-scale effects on ecosystems.

  • Stronger collaboration, shared data and smarter tools — including sensors, modelling and DNA-based monitoring — are needed to guide nature-positive offshore wind development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global spatial distribution of offshore wind farm projects in different stages of development.
Fig. 2: Six ways that offshore wind farms affect species and marine ecosystems.
Fig. 3: The assessment, mitigation and monitoring of collision risk and noise disturbance.

Similar content being viewed by others

References

  1. Global Wind Energy Council. Global wind report 2024. GWEC https://www.gwec.net/reports/globaloffshorewindreport/2024#Download (2024).

  2. IRENA & GWEC. Enabling frameworks for offshore wind scaleup: innovations in permitting. International Renewable Energy Agency https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2023/Sep/IRENA_GWEC_Enabling_frameworks_offshore_wind_2023.pdf (2023).

  3. Akhtar, N., Geyer, B. & Schrum, C. Larger wind turbines as a solution to reduce environmental impacts. Sci. Rep. 14, 6608 (2024).

    Article  CAS  Google Scholar 

  4. Watson, S. C. L. et al. The global impact of offshore wind farms on ecosystem services. Ocean. Coast. Manag. 249, 107023 (2024).

    Article  Google Scholar 

  5. Bailey, H., Brookes, K. L. & Thompson, P. M. Assessing environmental impacts of offshore wind farms: lessons learned and recommendations for the future. Aquat. Biosyst. 10, 1–13 (2014).

    Article  Google Scholar 

  6. Lloret, J. et al. Unravelling the ecological impacts of large-scale offshore wind farms in the Mediterranean Sea. Sci. Total. Environ. 824, 153803 (2022).

    Article  CAS  Google Scholar 

  7. Langhamer, O. Artificial reef effect in relation to offshore renewable energy conversion: state of the art. Sci. World J. 2012, 386713 (2012).

    Article  Google Scholar 

  8. Willsteed, E. A., Jude, S., Gill, A. B. & Birchenough, S. N. R. Obligations and aspirations: a critical evaluation of offshore wind farm cumulative impact assessments. Renew. Sustain. Energy Rev. 82, 2332–2345 (2018).

    Article  Google Scholar 

  9. Merchant, N. D. Underwater noise abatement: economic factors and policy options. Env. Sci. Policy 92, 116–123 (2019).

    Article  Google Scholar 

  10. Hooper, T., Austen, M. & Lannin, A. Developing policy and practice for marine net gain. J. Env. Manage 277, 111387 (2021).

    Article  Google Scholar 

  11. Edwards-Jones, A., Watson, S. C. L., Szostek, C. L. & Beaumont, N. J. Stakeholder insights into embedding marine net gain for offshore wind farm planning and delivery. Environ. Chall. 14, 100814 (2024).

    Article  Google Scholar 

  12. Inger, R. et al. Marine renewable energy: potential benefits to biodiversity? An urgent call for research. J. Appl. Ecol. 46, 1145–1153 (2009).

    Article  Google Scholar 

  13. Bennun, L. et al. Mitigating Biodiversity Impacts Associated with Solar and Wind Energy Development: Guidelines for Project Developers (IUCN, 2021).

  14. Galparsoro, I. et al. Reviewing the ecological impacts of offshore wind farms. NPJ Ocean. Sustain. 1, 1–8 (2022).

    Article  Google Scholar 

  15. Szostek, C. L., Edwards-Jones, A., Beaumont, N. J. & Watson, S. C. L. Primary vs grey: a critical evaluation of literature sources used to assess the impacts of offshore wind farms. Env. Sci. Policy 154, 103693 (2024).

    Article  Google Scholar 

  16. Shafiee, M. & Adedipe, T. Offshore wind decommissioning: an assessment of the risk of operations. Int. J. Sustain. Energy 41, 1057–1083 (2022).

    Article  Google Scholar 

  17. Kordan, M. B. & Yakan, S. D. The effect of offshore wind farms on the variation of the phytoplankton population. Reg. Stud. Mar. Sci. 69, 103358 (2024).

    Google Scholar 

  18. Daewel, U., Akhtar, N., Christiansen, N. & Schrum, C. Offshore wind farms are projected to impact primary production and bottom water deoxygenation in the North Sea. Commun. Earth Environ. 3, 292 (2022).

    Article  Google Scholar 

  19. van Hal, R., Griffioen, A. B. & van Keeken, O. A. Changes in fish communities on a small spatial scale, an effect of increased habitat complexity by an offshore wind farm. Mar. Env. Res. 126, 26–36 (2017).

    Article  Google Scholar 

  20. ter Hofstede, R., Driessen, F. M. F., Elzinga, P. J., Van Koningsveld, M. & Schutter, M. Offshore wind farms contribute to epibenthic biodiversity in the North Sea. J. Sea Res. 185, 102229 (2022).

    Article  Google Scholar 

  21. Methratta, E. T. & Dardick, W. R. Meta-analysis of finfish abundance at offshore wind farms. Rev. Fish. Sci. Aquac. 27, 242–260 (2019).

    Article  Google Scholar 

  22. Li, C. et al. Offshore wind energy and marine biodiversity in the North Sea: life cycle impact assessment for benthic communities. Env. Sci. Technol. 57, 6455–6464 (2023).

    Article  CAS  Google Scholar 

  23. Song, M. et al. Evaluation of artificial reef habitats as reconstruction or enhancement tools of benthic fish communities in northern Yellow Sea. Mar. Pollut. Bull. 182, 113968 (2022).

    Article  CAS  Google Scholar 

  24. Ashley, M. C., Mangi, S. C. & Rodwell, L. D. The potential of offshore windfarms to act as marine protected areas—a systematic review of current evidence. Mar. Policy 45, 301–309 (2014).

    Article  Google Scholar 

  25. Degraer, S. et al. Offshore wind farm artificial reefs affect ecosystem structure and functioning. Oceanography 33, 48–57 (2020).

    Article  Google Scholar 

  26. Zupan, M. et al. Life on every stone: characterizing benthic communities from scour protection layers of offshore wind farms in the southern North Sea. J. Sea Res. 201, 102522 (2024).

    Article  Google Scholar 

  27. Glarou, M., Zrust, M. & Svendsen, J. C. Using artificial-reef knowledge to enhance the ecological function of offshore wind turbine foundations: implications for fish abundance and diversity. J. Mar. Sci. Eng. 8, 332 (2020).

    Article  Google Scholar 

  28. Karlsson, R., Tivefälth, M., Duranovi, I., Kjølhamar, A. & Murvoll, K. M. Artificial hard substrate colonisation in the offshore Hywind Scotland pilot park. Wind Energy Sci. 7, 801–814 (2022).

    Article  Google Scholar 

  29. Adgé, M., Lobry, J., Tessier, A. & Planes, S. Modeling the impact of floating offshore wind turbines on marine food webs in the Gulf of Lion, France. Front. Mar. Sci. 11, 1379331 (2024).

    Article  Google Scholar 

  30. Bergström, L., Sundqvist, F. & Bergström, U. Effects of an offshore wind farm on temporal and spatial patterns in the demersal fish community. Mar. Ecol. Prog. Ser. 485, 199–210 (2013).

    Article  Google Scholar 

  31. Reubens, J. T., De Rijcke, M., Degraer, S. & Vincx, M. Diel variation in feeding and movement patterns of juvenile Atlantic cod at offshore wind farms. J. Sea Res. 85, 214–221 (2014).

    Article  Google Scholar 

  32. Reubens, J. T., Vandendriessche, S., Zenner, A. N., Degraer, S. & Vincx, M. Offshore wind farms as productive sites or ecological traps for gadoid fishes?—Impact on growth, condition index and diet composition. Mar. Env. Res. 90, 66–74 (2013).

    Article  CAS  Google Scholar 

  33. Wilber, D. H., Carey, D. A. & Griffin, M. Flatfish habitat use near North America’s first offshore wind farm. J. Sea Res. 139, 24–32 (2018).

    Article  Google Scholar 

  34. De Mesel, I., Kerckhof, F., Norro, A., Rumes, B. & Degraer, S. Succession and seasonal dynamics of the epifauna community on offshore wind farm foundations and their role as stepping stones for non-indigenous species. Hydrobiologia 756, 37–50 (2015).

    Article  Google Scholar 

  35. Bray, L. et al. Expected effects of offshore wind farms on Mediterranean marine life. J. Mar. Sci. Eng. 4, 18 (2016).

    Article  Google Scholar 

  36. Lemasson, A. J. et al. A global meta-analysis of ecological effects from offshore marine artificial structures. Nat. Sustain. 7, 485–495 (2024).

    Article  Google Scholar 

  37. Spielmann, V., Dannheim, J., Brey, T. & Coolen, J. W. P. Decommissioning of offshore wind farms and its impact on benthic ecology. J. Env. Manage 347, 119022 (2023).

    Article  Google Scholar 

  38. Huang, L. F. et al. Underwater noise characteristics of offshore exploratory drilling and its impact on marine mammals. Front. Mar. Sci. 10, 1097701 (2023).

    Article  Google Scholar 

  39. Rezaei, F., Contestabile, P., Vicinanza, D. & Azzellino, A. Towards understanding environmental and cumulative impacts of floating wind farms: lessons learned from the fixed-bottom offshore wind farms. Ocean. Coast. Management 243, 106772 (2023).

    Article  Google Scholar 

  40. Carroll, A. G., Przeslawski, R., Duncan, A., Gunning, M. & Bruce, B. A critical review of the potential impacts of marine seismic surveys on fish & invertebrates. Mar. Pollut. Bull. 114, 9–24 (2017).

    Article  CAS  Google Scholar 

  41. Raoux, A. et al. Benthic and fish aggregation inside an offshore wind farm: which effects on the trophic web functioning? Ecol. Indic. 72, 33–46 (2017).

    Article  Google Scholar 

  42. Solé, M. et al. Commercial cuttlefish exposed to noise from offshore windmill construction show short-range acoustic trauma. Environ. Pollut. 312, 119853 (2022).

    Article  Google Scholar 

  43. Scott, K., Piper, A. J. R., Chapman, E. C. N. & Rochas, C. M. V. Literature review of the effects of underwater sound, vibration and electromagnetic fields on crustaceans. Seafish https://www.seafish.org/document/?id=6ea84e37-c291-4769-8485-b3ac7786b29a (2020).

  44. Gigot, M. et al. Noise pollution causes parental stress on marine invertebrates, the giant scallop example. Mar. Pollut. Bull. 203, 116454 (2024).

    Article  CAS  Google Scholar 

  45. Tougaard, J., Carstensen, J., Teilmann, J., Skov, H. & Rasmussen, P. Pile driving zone of responsiveness extends beyond 20 km for harbor porpoises (Phocoena phocoena (L)). J. Acoust. Soc. Am. 126, 11–14 (2009).

    Article  Google Scholar 

  46. Benhemma-Le Gall, A., Graham, I. M., Merchant, N. D. & Thompson, P. M. Broad-scale responses of harbor porpoises to pile-driving and vessel activities during offshore windfarm construction. Front. Mar. Sci. 8, 664724 (2021).

    Article  Google Scholar 

  47. Tougaard, J., Henriksen, O. D. & Miller, L. A. Underwater noise from three types of offshore wind turbines: estimation of impact zones for harbor porpoises and harbor seals. J. Acoust. Soc. Am. 125, 3766–3773 (2009).

    Article  Google Scholar 

  48. Wahlberg, M. & Westerberg, H. Hearing in fish and their reactions to sounds from offshore wind farms. Mar. Ecol. Prog. Ser. 288, 295–309 (2005).

    Article  Google Scholar 

  49. Maxwell, S. M. et al. Potential impacts of floating wind turbine technology for marine species and habitats. J. Environ. Manag. 307, 114577 (2022).

    Article  Google Scholar 

  50. Baldachini, M. et al. Assessing the potential acoustic impact of floating offshore wind farms in the central Mediterranean Sea. Mar. Pollut. Bull. 212, 117615 (2025).

    Article  CAS  Google Scholar 

  51. Hemery, L. G. et al. Animal displacement from marine energy development: mechanisms and consequences. Sci. Total. Environ. 917, 170390 (2024).

    Article  CAS  Google Scholar 

  52. van Bemmelen, R. S. A. et al. Avoidance of offshore wind farms by sandwich terns increases with turbine density. Ornithological Applications 126, 1–10 (2024).

    Article  Google Scholar 

  53. Garthe, S. et al. Large-scale effects of offshore wind farms on seabirds of high conservation concern. Sci. Rep. 13, 4779 (2023).

    Article  CAS  Google Scholar 

  54. Russell, D. J. F. et al. Marine mammals trace anthropogenic structures at sea. Curr. Biol. 24, 638–639 (2014).

    Article  Google Scholar 

  55. van Kooten T. et al The consequences of seabird habitat loss from offshore wind turbines, version 2: displacement and population-level effects in five selected species. Wageningen marine research report C063/19. Wageningen University & Research https://edepot.wur.nl/496173 (2019).

  56. Smyth, K. et al. Renewables-to-reefs?—Decommissioning options for the offshore wind power industry. Mar. Pollut. Bull. 90, 247–258 (2015).

    Article  CAS  Google Scholar 

  57. National Grid. Hornsea project three offshore wind farm: Appendix 19 to deadline I submission - Vattenfall and Ørsted circuit crossing -EMF information. planninginspectorate.gov.uk https://nsip-documents.planninginspectorate.gov.uk/published-documents/EN010080-001141-DI_HOW03_Appendix%2019.pdf (2018).

  58. Klimley, A. P., Putman, N. F., Keller, B. A. & Noakes, D. A call to assess the impacts of electromagnetic fields from subsea cables on the movement ecology of marine migrants. Conserv. Sci. Pract. 3, e436 (2021).

    Article  Google Scholar 

  59. Hutchison, Z. L., Gill, A. B., Sigray, P., He, H. & King, J. W. Anthropogenic electromagnetic fields (EMF) influence the behaviour of bottom-dwelling marine species. Sci. Rep. 10, 4219 (2020).

    Article  CAS  Google Scholar 

  60. Dai, L., Ehlers, S., Rausand, M. & Utne, I. B. Risk of collision between service vessels and offshore wind turbines. Reliab. Eng. Syst. Saf. 109, 18–31 (2013).

    Article  Google Scholar 

  61. Farmer, N. A. et al. Protected species considerations for ocean planning: a case study for offshore wind energy development in the U.S. Gulf of Mexico. Mar. Coast. Fish. 15, e10246 (2023).

    Article  Google Scholar 

  62. Barkaszi M. J., Fonseca M., Foster T., Malhotra A. & Olsen, K. Risk assessment to model encounter rates between large whales and sea turtles and vessel traffic from offshore wind energy on the Atlantic OCS. OCS Study BOEM 2021-034. TETHYS https://tethys.pnnl.gov/publications/risk-assessment-model-encounter-rates-between-large-whales-sea-turtles-vessel-traffic (2021).

  63. Kraus, S. D., Kenney, R. D. & Thomas, L. A framework for studying the effects of offshore wind development on marine mammals and turtles. BOEM https://www.boem.gov/about-boem/framework-studying-effects (2019).

  64. Secor, D. H., O’brien, M. H. P. & Bailey, H. The flyway construct and assessment of offshore wind farm impacts on migratory marine fauna. ICES J. Mar. Sci. 82, fsae138 (2025).

    Article  Google Scholar 

  65. Dyndo, M., Wiśniewska, D. M., Rojano-Doñate, L. & Madsen, P. T. Harbour porpoises react to low levels of high frequency vessel noise. Sci. Rep. 5, 11083 (2015).

    Article  CAS  Google Scholar 

  66. Frankish, C. K. et al. Ship noise causes tagged harbour porpoises to change direction or dive deeper. Mar. Pollut. Bull. 197, 115755 (2023).

    Article  CAS  Google Scholar 

  67. Platteeuw, M., Fijn, R., Jongbloed, R. & van Horssen, P. A. Framework for assessing ecological and cumulative effects (FAECE) of offshore wind farms on birds, bats and marine mammals in the southern North Sea. In Wind Energy and Wildlife Interactions: Presentations from the CWW2015 Conf. (ed. Köppel, J.) 219–237 (Springer International, 2017).

  68. Voigt, C. C., Kaiser, K., Look, S., Scharnweber, K. & Scholz, C. Wind turbines without curtailment produce large numbers of bat fatalities throughout their lifetime: a call against ignorance and neglect. Glob. Ecol. Conserv. 37, e02149 (2022).

    Google Scholar 

  69. Rydell, J. & Wickman, A. Bat activity at a small wind turbine in the Baltic Sea. Acta Chiropt. 17, 359–364 (2015).

    Article  Google Scholar 

  70. Marques, A. T. et al. Understanding bird collisions at wind farms: an updated review on the causes and possible mitigation strategies. Biol. Conserv. 179, 40–52 (2014).

    Article  Google Scholar 

  71. Schwemmer, P. et al. Assessing potential conflicts between offshore wind farms and migration patterns of a threatened shorebird species. Anim. Conserv. 26, 303–316 (2023).

    Article  Google Scholar 

  72. Mikami, K., Kazama, K., Kazama, M. T. & Watanuki, Y. Mapping the collision risk between two gull species and offshore wind turbines: modelling and validation. J. Env. Manage 316, 115220 (2022).

    Article  Google Scholar 

  73. Harnois, V., Smith, H. C. M., Benjamins, S. & Johanning, L. Assessment of entanglement risk to marine megafauna due to offshore renewable energy mooring systems. Int. J. Mar. Energy 11, 27–49 (2015).

    Article  Google Scholar 

  74. Fortune, I. S. & Paterson, D. M. Ecological best practice in decommissioning: a review of scientific research. ICES J. Mar. Sci. 77, 1079–1091 (2020).

    Article  Google Scholar 

  75. Perrow, M. R., Gilroy, J. J., Skeate, E. R. & Tomlinson, M. L. Effects of the construction of Scroby Sands offshore wind farm on the prey base of little tern Sternula albifrons at its most important UK colony. Mar. Pollut. Bull. 62, 1661–1670 (2011).

    Article  CAS  Google Scholar 

  76. Slavik, K. et al. The large-scale impact of offshore wind farm structures on pelagic primary productivity in the southern North Sea. Hydrobiologia 845, 35–53 (2019).

    Article  CAS  Google Scholar 

  77. Voet, H. E. E., Van Colen, C. & Vanaverbeke, J. Climate change effects on the ecophysiology and ecological functioning of an offshore wind farm artificial hard substrate community. Sci. Total. Environ. 810, 152194 (2022).

    Article  CAS  Google Scholar 

  78. Raghukumar, K. et al. Projected cross-shore changes in upwelling induced by offshore wind farm development along the California coast. Commun. Earth Environ. 4, 116 (2023).

    Article  Google Scholar 

  79. Sellers, A. J., Leung, B. & Torchin, M. E. Global meta-analysis of how marine upwelling affects herbivory. Glob. Ecol. Biogeogr. 29, 370–383 (2020).

    Article  Google Scholar 

  80. Chen, C. et al. Potential impacts of offshore wind energy development on physical processes and scallop larval dispersal over the US northeast shelf. Prog. Oceanogr. 224, 103263 (2024).

    Article  Google Scholar 

  81. Farr, H., Ruttenberg, B., Walter, R. K., Wang, Y. H. & White, C. Potential environmental effects of deepwater floating offshore wind energy facilities. Ocean. Coast. Manag. 207, 105611 (2021).

    Article  Google Scholar 

  82. Fowler, A. M. et al. The ecology of infrastructure decommissioning in the North Sea: what we need to know and how to achieve it. ICES J. Mar. Sci. 77, 1109–1126 (2020).

    Article  Google Scholar 

  83. James, M. K. et al. The ‘everything is everywhere’ framework: holistic network analysis as a marine spatial management tool. Ecol. Inf. 87, 103105 (2025).

    Article  Google Scholar 

  84. Dannheim, J. et al. Benthic effects of offshore renewables: identification of knowledge gaps and urgently needed research. ICES J. Mar. Sci. 77, 1092–1108 (2020).

    Article  Google Scholar 

  85. Coates, D. A., Deschutter, Y., Vincx, M. & Vanaverbeke, J. Enrichment and shifts in macrobenthic assemblages in an offshore wind farm area in the Belgian part of the North Sea. Mar. Env. Res. 95, 1–12 (2014).

    Article  CAS  Google Scholar 

  86. Hutchison, Z. et al. Offshore wind energy and benthic habitat changes: lessons from block island wind farm. Oceanography 33, 58–69 (2020).

    Article  Google Scholar 

  87. Wilson, J. C. & Elliott, M. The habitat-creation potential of offshore wind farms. Wind. Energy 12, 203–212 (2009).

    Article  Google Scholar 

  88. Lange, C. J., Ballard, B. M. & Collins, D. P. Impacts of wind turbines on redheads in the Laguna Madre. J. Wildl. Manag. 82, 531–537 (2018).

    Article  Google Scholar 

  89. Kirchgeorg, T. et al. Emissions from corrosion protection systems of offshore wind farms: evaluation of the potential impact on the marine environment. Mar. Pollut. Bull. 136, 257–268 (2018).

    Article  CAS  Google Scholar 

  90. Hengstmann, E. et al. Chemical emissions from offshore wind farms: from identification to challenges in impact assessment and regulation. Mar. Pollut. Bull. 215, 117915 (2025).

    Article  CAS  Google Scholar 

  91. Watson, G. J., Watson, S. C. L., Beaumont, N. J. & Hodkin, A. Offshore wind energy: assessing trace element inputs and the risks for co-location of aquaculture. npj Ocean Sustain. 4, 1 (2025).

  92. Szostek, C. L., Watson, S. C. L., Trifonova, N., Beaumont, N. J. & Scott, B. E. Spatial conflict in offshore wind farms: challenges and solutions for the commercial fishing industry. Energy Policy 200, 114555 (2025).

    Article  Google Scholar 

  93. Hammar, L., Perry, D. & Gullström, M. Offshore wind power for marine conservation. Open. J. Mar. Sci. 6, 66–78 (2016).

    Article  Google Scholar 

  94. Vandendriessche, S., Derweduwen, J. & Hostens, K. Equivocal effects of offshore wind farms in Belgium on soft substrate epibenthos and fish assemblages. Hydrobiologia 756, 19–35 (2015).

    Article  Google Scholar 

  95. Halouani, G. et al. A spatial food web model to investigate potential spillover effects of a fishery closure in an offshore wind farm. J. Mar. Syst. 212, 103434 (2020).

    Article  Google Scholar 

  96. Reubens, J. T. et al. Aggregation at windmill artificial reefs: CPUE of Atlantic cod (Gadus morhua) and pouting (Trisopterus luscus) at different habitats in the Belgian part of the North Sea. Fish. Res. 139, 28–34 (2013).

    Article  Google Scholar 

  97. Stelzenmüller, V. et al. Sustainable co-location solutions for offshore wind farms and fisheries need to account for socio-ecological trade-offs. Sci. Total. Environ. 776, 145918 (2021).

    Article  Google Scholar 

  98. Thatcher, H., Stamp, T., Wilcockson, D. & Moore, P. J. Residency and habitat use of European lobster (Homarus gammarus) within an offshore wind farm. ICES J. Mar. Sci. 80, 1410–1421 (2023).

    Article  Google Scholar 

  99. Berkenhagen, J. et al. Decision bias in marine spatial planning of offshore wind farms: problems of singular versus cumulative assessments of economic impacts on fisheries. Mar. Policy 34, 733–736 (2010).

    Article  Google Scholar 

  100. Willis-Norton, E., Mangin, T., Schroeder, D. M., Cabral, R. B. & Gaines, S. D. A synthesis of socioeconomic and sociocultural indicators for assessing the impacts of offshore renewable energy on fishery participants and fishing communities. Mar. Policy 161, 106013 (2024).

    Article  Google Scholar 

  101. Hooper, T., Ashley, M. & Austen, M. Perceptions of fishers and developers on the co-location of offshore wind farms and decapod fisheries in the UK. Mar. Policy 61, 16–22 (2015).

    Article  Google Scholar 

  102. Bergström, L. et al. Effects of offshore wind farms on marine wildlife—a generalized impact assessment. Environ. Res. Lett. 9, 034012 (2014).

    Article  Google Scholar 

  103. Lindeboom, H. J. et al. Short-term ecological effects of an offshore wind farm in the Dutch coastal zone; acompilation. Environ. Res. Lett. 6, 035101 (2011).

    Article  Google Scholar 

  104. World Bank Group. Key factors for successful development of offshore wind in emerging markets. World Bank Group https://documents1.worldbank.org/curated/en/343861632842395836/pdf/Key-Factors-for-Successful-Development-of-Offshore-Wind-in-Emerging-Markets.pdf (2021).

  105. Lindeboom, H., Degraer, S., Dannheim, J., Gill, A. B. & Wilhelmsson, D. Offshore wind park monitoring programmes, lessons learned and recommendations for the future. Hydrobiologia 756, 169–180 (2015).

    Article  Google Scholar 

  106. Pardo, J. C. F., Aune, M., Harman, C., Walday, M. & Skjellum, S. F. A synthesis review of nature positive approaches and coexistence in the offshore wind industry. ICES J. Mar. Sci. 82 (4), fsad191 (2023).

    Google Scholar 

  107. Croll, D. A. et al. Framework for assessing and mitigating the impacts of offshore wind energy development on marine birds. Biol. Conserv. 276, 109795 (2022).

    Article  Google Scholar 

  108. Stephenson, P. J. A review of biodiversity data needs and monitoring protocols for the offshore wind energy sector in the Baltic Sea and North Sea. Renewables Grid Initiative https://renewables-grid.eu/fileadmin/user_upload/_RGI_Report_PJ-Stephenson_October.pdf (2021).

  109. Offshore Renewable Energy (ORE). Accelerating offshore wind: developing a regional ecosystem monitoring programme for the uk offshore wind industry. Catapult https://cms.ore.catapult.org.uk/wp-content/uploads/2024/11/LUN2629_REMP-report_AW_3_digital_DP.pdf (2024).

  110. Bureau of Ocean Energy Management. Vineyard wind 1 offshore wind energy project: final environmental impact statement. BOEM https://www.boem.gov/sites/default/files/documents/renewable-energy/state-activities/Vineyard-Wind-1-FEIS-Volume-1.pdf (2021).

  111. Bicknell, A. W. J. et al. The role of acoustic telemetry to assess the effects of offshore wind infrastructure on fish behaviour, populations and predation. Renewable Sustainable Energy Rev. 212, 115306 (2025).

    Article  Google Scholar 

  112. Serivichyaswat, P. T., Scholte, T., Wilms, T., Stranddorf, L. & van der Valk, T. Metagenomic biodiversity assessment within an offshore wind farm. Sci. Rep. 15, 16786 (2025).

    Article  CAS  Google Scholar 

  113. Masoumi, M. Machine learning solutions for offshore wind farms: a review of applications and impacts. J. Mar. Sci. Eng. 11, 1855 (2023).

    Article  Google Scholar 

  114. Danovaro, R. et al. Making eco-sustainable floating offshore wind farms: siting, mitigations, and compensations. Renew. Sustain. Energy Rev. 197, 114386 (2024).

    Article  Google Scholar 

  115. Knights, A., Lemasson, A., Frost, M. & Somerfield, P. The world must rethink plans for ageing oil and gas platforms. Nature 627, 34–37 (2024).

    Article  CAS  Google Scholar 

  116. Greenhill, L. Mitigating the Impacts of Offshore Wind Farms on Protected Sites and Species in the UK. Technical Report No. ME5602 (Howell Marine Consulting for Defra, 2021).

  117. The Biodiversity Consultancy. A cross-sector guide for implementing the mitigation hierarchy. The Biodiversity Consultancy https://www.thebiodiversityconsultancy.com/fileadmin/user_upload/A_cross-sector_guide_for_implementing_the_Mitigation_Hierarchy.pdf (2015).

  118. Gulka, J. et al., Strategies for mitigating impacts to aerofauna from offshore wind energy development: available evidence and data gaps. Preprint at bioRxiv https://doi.org/10.1101/2024.08.20.608845 (2024).

  119. Verfuss, U. K., Sparling, C. E., Arnot, C., Judd, A. & Coyle, M. Review of offshore wind farm impact monitoring and mitigation with regard to marine mammals. In The Effects of Noise on Aquatic Life II (Adv. Exp. Med. Biol. 875) (eds Popper, A. N. & Hawkins, A. D.) 1175–1182 (Springer, 2016).

  120. Macrander, A. M., Brzuzy, L., Raghukumar, K., Preziosi, D. & Jones, C. Convergence of emerging technologies: development of a risk-based paradigm for marine mammal monitoring for offshore wind energy operations. Integr. Env. Assess. Manag. 18, 939–949 (2022).

    Article  Google Scholar 

  121. Gill, A. B. et al. Limited evidence base for determining impacts (or not) of offshore wind energy developments on commercial fisheries species. Fish. Fish. 26, 155–170 (2025).

    Article  Google Scholar 

  122. Knights, A. M. et al. To what extent can decommissioning options for marine artificial structures move us toward environmental targets? J. Env. Manage 350, 119644 (2024).

    Article  Google Scholar 

  123. Isaksson, N. et al. A paradigm for understanding whole ecosystem effects of offshore wind farms in shelf seas. ICES J. Mar. Sci. 82, 194 (2025).

    Article  Google Scholar 

  124. Christiansen, S., Durussel, C., Guilhon, M., Singh, P. & Unger, S. Towards an ecosystem approach to management in areas beyond national jurisdiction: REMPs for deep seabed mining and the proposed BBNJ instrument. Front. Mar. Sci. 9, 830 (2022).

    Article  Google Scholar 

  125. Willmott, J. R., Forcey, G. & Vukovich, M. New insights into the influence of turbines on the behaviour of migrant birds: implications for predicting impacts of offshore wind developments on wildlife. J. Physics Conf. Ser. 2507, 012006 (2023).

    Article  Google Scholar 

  126. Vanermen, N. et al. Seabird avoidance and attraction at an offshore wind farm in the Belgian part of the North Sea. Hydrobiologia 756, 51–61 (2015).

    Article  Google Scholar 

  127. Dierschke, V., Furness, R. W. & Garthe, S. Seabirds and offshore wind farms in European waters: avoidance and attraction. Biol. Conservation. 202, 59–68 (2016).

    Article  Google Scholar 

  128. Peschko, V., Mercker, M. & Garthe, S. Telemetry reveals strong effects of offshore wind farms on behaviour and habitat use of common guillemots (Uria aalge) during the breeding season. Mar. Biol. 167, 13 (2020).

    Article  Google Scholar 

  129. Welcker, J. & Nehls, G. Displacement of seabirds by an offshore wind farm in the North Sea. Mar. Ecol. Prog. Ser. 554, 173–182 (2016).

    Article  Google Scholar 

  130. Thaxter, C. B. et al. Dodging the blades: new insights into three-dimensional space use of offshore wind farms by lesser black-backed gulls Larus fuscus. Mar. Ecol. Prog. Ser. 587, 247–253 (2018).

    Article  Google Scholar 

  131. Vilela, R. et al. Use of an INLA latent gaussian modeling approach to assess bird population changes due to the development of offshore wind farms. Front. Mar. Sci. 8, 11 (2021).

    Article  Google Scholar 

  132. Guillemette, M. & Larsen, J. K. Postdevelopment experiments to detect anthropogenic disturbances: the case of sea ducks and wind parks. Ecol. Appl. 12, 868–877 (2002).

    Article  Google Scholar 

  133. Jech, J. M., Lipsky, A., Moran, P., Matte, G. & Diaz, G. Fish distribution in three dimensions around the block island wind farm as observed with conventional and volumetric echosounders. Mar. Coast. Fish. 15, e210265 (2023).

    Article  Google Scholar 

  134. Wilber, D. H., Brown, L., Griffin, M., Decelles, G. R. & Carey, D. A. Demersal fish and invertebrate catches relative to construction and operation of North America’s first offshore wind farm. ICES J. Mar. Sci. 79, 1274–1288 (2022).

    Article  Google Scholar 

  135. Kilfoyle, A. K., Jermain, R. F., Dhanak, M. R., Huston, J. P. & Spieler, R. E. Effects of EMF emissions from undersea electric cables on coral reef fish. Bioelectromagnetics 39, 35–52 (2018).

    Article  Google Scholar 

  136. Wilber, D. H., Brown, L., Griffin, M., DeCelles, G. R. & Carey, D. A. Offshore wind farm effects on flounder and gadid dietary habits and condition on the northeastern US coast. Mar. Ecol. Prog. Ser. 683, 123–138 (2022).

    Article  Google Scholar 

  137. Siddagangaiah, S., Chen, C. F., Hu, W. C. & Pieretti, N. Impact of pile-driving and offshore windfarm operational noise on fish chorusing. Remote. Sens. Ecol. Conserv. 8, 119–134 (2022).

    Article  Google Scholar 

  138. Karama, K. S. et al. Movement pattern of red seabream Pagrus major and yellowtail Seriola quinqueradiata around offshore wind turbine and the neighboring habitats in the waters near Goto Islands. Japan. Aquac. Fish. 6, 300–308 (2021).

    Article  Google Scholar 

  139. Wright, S. R. et al. Structure in a sea of sand: fish abundance in relation to man-made structures in the North Sea. ICES J. Mar. Sci. 77, 1206–1218 (2020).

    Article  Google Scholar 

  140. Kok, A. C. M. et al. An echosounder view on the potential effects of impulsive noise pollution on pelagic fish around windfarms in the North Sea. Environ. Pollut. 290, 118063 (2021).

    Article  CAS  Google Scholar 

  141. Langhamer, O., Dahlgren, T. G. & Rosenqvist, G. Effect of an offshore wind farm on the viviparous eelpout: biometrics, brood development and population studies in Lillgrund, Sweden. Ecol. Indic. 84, 1–6 (2018).

    Article  Google Scholar 

  142. Scheidat, M. et al. Harbour porpoises (Phocoena phocoena) and wind farms: a case study in the Dutch North Sea. Environ. Res. Lett. 6, 025102 (2011).

    Article  Google Scholar 

  143. Fernandez-Betelu, O., Graham, I. M. & Thompson, P. M. Reef effect of offshore structures on the occurrence and foraging activity of harbour porpoises. Front. Mar. Sci. 9, 980388 (2022).

    Article  Google Scholar 

  144. Brandt, M. J. et al. Disturbance of harbour porpoises during construction of the first seven offshore wind farms in Germany. Mar. Ecol. Prog. Ser. 596, 213–232 (2018).

    Article  Google Scholar 

  145. Virgili, A. et al. Prospective modelling of operational offshore wind farms on the distribution of marine megafauna in the southern North Sea. Front. Mar. Sci. 11, 1344013 (2024).

    Article  Google Scholar 

  146. Vallejo, G. C. et al. Responses of two marine top predators to an offshore wind farm. Ecol. Evol. 7, 8698–8708 (2017).

    Article  Google Scholar 

  147. Cones, S. F. et al. Offshore windfarm construction elevates metabolic rate and increases predation vulnerability of a key marine invertebrate. Environ. Pollut. 360, 124709 (2024).

    Article  CAS  Google Scholar 

  148. Love, M. S., Nishimoto, M. M., Clark, S., McCrea, M. & Bull, A. S. Assessing potential impacts of energized submarine power cables on crab harvests. Cont. Shelf Res. 151, 23–29 (2017).

    Article  Google Scholar 

  149. Wang, T. et al. Evidence that offshore wind farms might affect marine sediment quality and microbial communities. Sci. Total. Environ. 856, 158782 (2023).

    Article  CAS  Google Scholar 

  150. Pearce, B. et al. Repeated mapping of reefs constructed by Sabellaria spinulosa Leuckart 1849 at an offshore wind farm site. Cont. Shelf Res. 83, 3–13 (2014).

    Article  Google Scholar 

  151. Krone, R., Gutow, L., Brey, T., Dannheim, J. & Schröder, A. Mobile demersal megafauna at artificial structures in the German bight—likely effects of offshore wind farm development. Estuar. Coast. Shelf Sci. 125, 1–9 (2013).

    Article  Google Scholar 

  152. Jakubowska, M., Urban-Malinga, B., Otremba, Z. & Andrulewicz, E. Effect of low frequency electromagnetic field on the behavior and bioenergetics of the polychaete Hediste diversicolor. Mar. Env. Res. 150, 104766 (2019).

    Article  CAS  Google Scholar 

  153. Pine, M. K., Jeffs, A. G. & Radford, C. A. Turbine sound may influence the metamorphosis behaviour of estuarine crab megalopae. PLoS One 7, e51790 (2012).

    Article  CAS  Google Scholar 

  154. Janßen, H., Augustin, C. B., Hinrichsen, H. H. & Kube, S. Impact of secondary hard substrate on the distribution and abundance of Aurelia aurita in the western Baltic Sea. Mar. Pollut. Bull. 75, 224–234 (2013).

    Article  Google Scholar 

  155. Bergman, M. J. N., Ubels, S. M., Duineveld, G. C. A. & Meesters, E. W. G. Effects of a 5-year trawling ban on the local benthic community in a wind farm in the Dutch coastal zone. ICES J. Mar. Sci. 72, 962–972 (2015).

    Article  Google Scholar 

  156. Boutin, K., Gaudron, S. M., Denis, J. & Ben Rais Lasram, F. Potential marine benthic colonisers of offshore wind farms in the English channel: a functional trait-based approach. Mar. Env. Res. 190, 106061 (2023).

    Article  CAS  Google Scholar 

  157. Wang, J., Zou, X., Yu, W., Zhang, D. & Wang, T. Effects of established offshore wind farms on energy flow of coastal ecosystems: a case study of the Rudong offshore wind farms in China. Ocean. Coast. Manag. 171, 111–118 (2019).

    Article  CAS  Google Scholar 

  158. Wang, T. et al. Zooplankton community responses and the relation to environmental factors from established offshore wind farms within the Rudong coastal area of China. J. Coast. Res. 344, 843–855 (2018).

    Article  Google Scholar 

  159. Hooper, T., Beaumont, N. & Hattam, C. The implications of energy systems for ecosystem services: a detailed case study of offshore wind. Renew. Sustain. Energy Rev. 70, 230–241 (2017).

    Article  Google Scholar 

  160. Van Parijs, S. M. et al. NOAA and BOEM minimum recommendations for use of passive acoustic listening systems in offshore wind energy development monitoring and mitigation programs. Front. Mar. Sci. 8,760840 (2021).

    Article  Google Scholar 

  161. McLeod, L. E. & Costello, M. J. Light traps for sampling marine biodiversity. Helgoland Marine Res. 71, 2 (2017).

    Article  Google Scholar 

  162. Brandao, I. L. S., van der Molen, J. & van der Wal, D. Effects of offshore wind farms on suspended particulate matter derived from satellite remote sensing. Sci. Total. Environ. 866, 161114 (2023).

    Article  CAS  Google Scholar 

  163. Hu, C., Albertani, R. & Suryan, R. M. Wind turbine sensor array for monitoring avian and bat collisions. Wind. Energy 21, 255–263 (2018).

    Article  Google Scholar 

  164. Jiang, B., Xu, Z., Yang, S., Chen, Y. & Ren, Q. Profile autonomous underwater vehicle system for offshore surveys. Sensors 23, 3722 (2023).

    Article  Google Scholar 

  165. Campos, D. F., Matos, A. & Pinto, A. M. Multi-domain inspection of offshore wind farms using an autonomous surface vehicle. SN Appl. Sci. 3, 455 (2021).

    Article  Google Scholar 

  166. Zhang, K., Pakrashi, V., Murphy, J. & Hao, G. Inspection of floating offshore wind turbines using multi-rotor unmanned aerial vehicles: literature review and trends. Sensors. 24, 911 (2024).

    Article  Google Scholar 

  167. Niemi, J. & Tanttu, J. T. Deep learning-based automatic bird identification system for offshore wind farms. Wind. Energy 23, 1394–1407 (2020).

    Article  Google Scholar 

  168. Carstensen, J., Henriksen, O. D. & Teilmann, J. Impacts of offshore wind farm construction on harbour porpoises: acoustic monitoring of echolocation activity using porpoise detectors (T-PODs). Mar. Ecol. Prog. Ser. 321, 295–308 (2006).

    Article  Google Scholar 

  169. Berges, B. J. P., van der Knaap, I., van Keeken, O. A., Reubens, J. & Winter, H. V. Strong site fidelity, residency and local behaviour of Atlantic cod (Gadus morhua) at two types of artificial reefs in an offshore wind farm. R. Soc. Open. Sci. 11, 240339 (2024).

    Article  CAS  Google Scholar 

  170. Ahlén, I., Baagøe, H. J. & Bach, L. Behavior of Scandinavian bats during migration and foraging at sea. J. Mammal. 90, 1318–1323 (2009).

    Article  Google Scholar 

  171. Lengkeek, W. Benthic communities on hard substrates within the first Dutch offshore wind farm (OWEZ). Ned. Faun. Meded. 41, 59–67 (2013).

    Google Scholar 

  172. Methratta, E. T. Monitoring fisheries resources at offshore wind farms: BACI vs. BAG designs. ICES J. Mar. Sci. 77, 890–900 (2020).

    Article  Google Scholar 

  173. BVG Associates. Guide to an offshore wind farm. Crown Estate https://www.thecrownestate.co.uk/media/2860/guide-to-offshore-wind-farm-2019.pdf (2019).

  174. Declerck, M., Trifonova, N., Hartley, J. & Scott, B. E. Cumulative effects of offshore renewables: from pragmatic policies to holistic marine spatial planning tools. Env. Impact Assess. Rev. 101, 107153 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank J. White of Plymouth Marine Laboratory for designing earlier versions of Figs. 2 and  3. S.C.L.W., C.L.S., A.E.-J. and N.J.B. are supported by the UK Research and Innovation Energy Programme under grant number EP/S029575/1, as part of the UK Energy Research Centre research programme.

Author information

Authors and Affiliations

Authors

Contributions

Overall project lead and coordination by S.C.L.W. Overall conceptualization by S.C.L.W., C.L.S., A.E.-J., B.W., G.J.W. and N.J.B. Lead writing of the article by S.C.L.W. and B.W. S.C.L.W., C.L.S., A.E.-J., B.W., G.J.W. and N.J.B. all contributed to the discussion of content, writing, visualization and review/editing of the manuscript before submission.

Corresponding author

Correspondence to Stephen C. L. Watson.

Ethics declarations

Competing interests

B.W. is employed by the Department for the Environment, Food and Rural Affairs (Defra) UK but contributed to this Review as a visiting fellow to Plymouth Marine Laboratory. All views are her own and do not express the views or opinions of Defra as an organization. The remaining authors declare no competing interests.

Citation diversity statement

The authors acknowledge that papers authored by scholars from historically excluded groups are systematically under-cited. Here, the authors have made every attempt to reference relevant papers in a manner that is equitable in terms of racial, ethnic, gender and geographical representation.

Peer review

Peer review information

Nature Reviews Biodiversity thanks Ellen Willis-Norton and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watson, S.C.L., Szostek, C.L., Edwards-Jones, A. et al. Assessing, monitoring and mitigating the effects of offshore wind farms on biodiversity. Nat. Rev. Biodivers. 1, 581–596 (2025). https://doi.org/10.1038/s44358-025-00074-5

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44358-025-00074-5

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene