Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Effects of the low-carbon energy transition on air pollution and health

Abstract

The transition to a low-carbon energy system could simultaneously mitigate carbon emissions, reduce air pollution and protect human health. Although these potential benefits have been widely acknowledged, major questions remain regarding key factors that determine the impacts of energy strategies on health and health disparities, as well as ways to incorporate health benefits into real-world energy decisions. In this Perspective, we summarize the current understanding and analytical framework related to the pollution and health impacts of the energy transition, discuss the analytical challenges and knowledge gaps in assessing and projecting the magnitude and distribution of the pollution and health impacts, and identify plausible entry points to enhance the real-world relevance of health benefits in decision-making about energy systems. The energy transition will affect pollution and health impacts at the global, national and subnational scales, resulting in complex distributional effects across regions and population groups. Although current analytical frameworks are useful to quantify the general patterns of health benefits, they are often insufficient for characterizing distributional effects, quantifying potential trade-offs, and incorporating considerations of deep and interacting uncertainties. Given the complexity of the actors involved and the policymaking landscape, it will be necessary to make knowledge actionable by, for example, establishing a co-production process between researchers and practitioners.

Key points

  • The transition from a fossil-fuel-heavy to a low-carbon energy system could simultaneously mitigate carbon emissions and reduce the health impacts from air pollution.

  • The assessment of health benefits of energy transitions often relies on an integrated modelling framework that couples energy system, air quality and health modelling.

  • The scientific community currently has a good understanding of the aggregate health impacts of different energy strategies, whereas the distribution of these impacts across regions and populations is more complicated and remains poorly understood.

  • Incorporating health benefits into real-world energy policies will require research efforts to integrate insights from multiple disciplines and a close collaboration between researchers, decision-makers and relevant stakeholders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The effects of the low-carbon energy transition on outdoor air pollution, health and health disparities.
Fig. 2: Historical trends and projected changes in greenhouse gas emissions and air pollution-related health impacts.
Fig. 3: Health benefits of clean-energy transitions vary across subnational regions.
Fig. 4: Overview of the integrated modelling approach.
Fig. 5: Clean-energy policies and programmes adopted globally.
Fig. 6: An iterative process for knowledge co-production to integrate health benefits into energy decisions.

Similar content being viewed by others

Data availability

All the data used to generate Figs. 2, 3, and 5 are available in the following Zenodo repository: https://doi.org/10.5281/zenodo.15466238.

Code availability

All the codes used to generate Figs. 2, 3 and 5 are available in the following Zenodo repository: https://doi.org/10.5281/zenodo.15466238.

References

  1. Intergovernmental Panel on Climate Change. In Climate Change 2022 — Mitigation of Climate Change: Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change 295–408 (Cambridge Univ. Press, 2023).

  2. Davis, S. J. et al. in Fifth National Climate Assessment (eds Crimmins, A. R. et al.) Ch. 32 (US Global Change Research Program, 2023).

  3. Anenberg Susan, C. et al. Global air quality and health co-benefits of mitigating near-term climate change through methane and black carbon emission controls. Environ. Health Perspect. 120, 831–839 (2012).

    Article  CAS  Google Scholar 

  4. Shindell, D. & Smith, C. J. Climate and air-quality benefits of a realistic phase-out of fossil fuels. Nature 573, 408–411 (2019).

    Article  CAS  Google Scholar 

  5. West, J. J. et al. Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health. Nat. Clim. Change 3, 885–889 (2013).

    Article  CAS  Google Scholar 

  6. Chen, Z., Wang, J.-N., Ma, G.-X. & Zhang, Y.-S. China tackles the health effects of air pollution. Lancet 382, 1959–1960 (2013).

    Article  Google Scholar 

  7. Montrone, L., Ohlendorf, N. & Chandra, R. The political economy of coal in India — evidence from expert interviews. Energy Sustain. Dev. 61, 230–240 (2021).

    Article  Google Scholar 

  8. Myers, T. A., Nisbet, M. C., Maibach, E. W. & Leiserowitz, A. A. A public health frame arouses hopeful emotions about climate change. Clim. Change 113, 1105–1112 (2012).

    Article  Google Scholar 

  9. Abildtrup, J. et al. Preferences for climate change policies: the role of co-benefits. J. Environ. Econ. Policy 13, 110–128 (2024).

    Article  Google Scholar 

  10. Jennings, N., Fecht, D. & De Matteis, S. Mapping the co-benefits of climate change action to issues of public concern in the UK: a narrative review. Lancet Planet. Health 4, e424–e433 (2020).

    Article  Google Scholar 

  11. Goldemberg, J., Martinez-Gomez, J., Sagar, A. & Smith, K. R. Household air pollution, health, and climate change: cleaning the air. Environ. Res. Lett. 13, 030201 (2018).

    Article  Google Scholar 

  12. Smith, K. R. & Haigler, E. Co-benefits of climate mitigation and health protection in energy systems: scoping methods. Annu. Rev. Public. Health 29, 11–25 (2008).

    Article  Google Scholar 

  13. Shindell, D. et al. Simultaneously mitigating near-term climate change and improving human health and food security. Science 335, 183 (2012).

    Article  CAS  Google Scholar 

  14. Markandya, A. et al. Health co-benefits from air pollution and mitigation costs of the Paris Agreement: a modelling study. Lancet Planet. Health 2, e126–e133 (2018).

    Article  Google Scholar 

  15. Dimanchev, E. G. et al. Health co-benefits of sub-national renewable energy policy in the US. Environ. Res. Lett. 14, 085012 (2019).

    Article  CAS  Google Scholar 

  16. Li, M., Zhang, D., Li, C.-T., Selin, N. E. & Karplus, V. J. Co-benefits of China’s climate policy for air quality and human health in China and transboundary regions in 2030. Environ. Res. Lett. 14, 084006 (2019).

    Article  CAS  Google Scholar 

  17. Li, M. et al. Air quality co-benefits of carbon pricing in China. Nat. Clim. Change 8, 398–403 (2018).

    Article  Google Scholar 

  18. Picciano, P. et al. Air quality related equity implications of U.S. decarbonization policy. Nat. Commun. 14, 5543 (2023).

    Article  CAS  Google Scholar 

  19. Peng, W., Yang, J., Wagner, F. & Mauzerall, D. L. Substantial air quality and climate co-benefits achievable now with sectoral mitigation strategies in China. Sci. Total. Environ. 598, 1076–1084 (2017).

    Article  CAS  Google Scholar 

  20. Peng, W. et al. The critical role of policy enforcement in achieving health, air quality, and climate benefits from India’s clean electricity transition. Environ. Sci. Technol. 54, 11720–11731 (2020).

    Article  CAS  Google Scholar 

  21. Peng, W., Yang, J., Lu, X. & Mauzerall, D. L. Potential co-benefits of electrification for air quality, health, and CO2 mitigation in 2030 China. Appl. Energy 218, 511–519 (2018).

    Article  CAS  Google Scholar 

  22. Yang, J., Li, X., Peng, W., Wagner, F. & Mauzerall, D. L. Climate, air quality and human health benefits of various solar photovoltaic deployment scenarios in China in 2030. Environ. Res. Lett. 13, 064002 (2018).

    Article  Google Scholar 

  23. Huang, X. et al. Substantial air quality and health co-benefits from combined federal and subnational climate actions in the United States. One Earth 8, 101232 (2025).

    Article  Google Scholar 

  24. Buonocore, J. J., Luckow, P., Fisher, J., Kempton, W. & Levy, J. I. Health and climate benefits of offshore wind facilities in the mid-Atlantic United States. Environ. Res. Lett. 11, 074019 (2016).

    Article  Google Scholar 

  25. Buonocore, J. J., Levy, J. I., Guinto, R. R. & Bernstein, A. S. Climate, air quality, and health benefits of a carbon fee-and-rebate bill in Massachusetts, USA. Environ. Res. Lett. 13, 114014 (2018).

    Article  CAS  Google Scholar 

  26. Yang, H., Pham, A. T., Landry, J. R., Blumsack, S. A. & Peng, W. Emissions and health implications of Pennsylvania’s entry into the regional greenhouse gas initiative. Environ. Sci. Technol. 55, 12153–12161 (2021).

    Article  CAS  Google Scholar 

  27. Campos et al. Designing retirement strategies for coal-fired power plants to mitigate air pollution and health impacts. Environ. Sci. Technol. 58, 15371–15380 (2024).

    Article  Google Scholar 

  28. Thompson, T. M., Rausch, S., Saari, R. K. & Selin, N. E. A systems approach to evaluating the air quality co-benefits of US carbon policies. Nat. Clim. Change 4, 917–923 (2014).

    Article  Google Scholar 

  29. Apte, J. S., Marshall, J. D., Cohen, A. J. & Brauer, M. Addressing global mortality from ambient PM2.5. Environ. Sci. Technol. 49, 8057–8066 (2015).

    Article  CAS  Google Scholar 

  30. Cohen, A. J. et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 389, 1907–1918 (2017).

    Article  Google Scholar 

  31. Liu, J. et al. Disparities in air pollution exposure in the United States by race/ethnicity and income, 1990–2010. Environ. Health Perspect. 129, 127005 (2021).

    Article  CAS  Google Scholar 

  32. Colmer, J., Hardman, I., Shimshack, J. & Voorheis, J. Disparities in PM2.5 air pollution in the United States. Science 369, 575–578 (2020).

    Article  CAS  Google Scholar 

  33. Tessum, C. W. et al. PM2.5 polluters disproportionately and systemically affect people of color in the United States. Sci. Adv. 7, eabf4491 (2021).

    Article  Google Scholar 

  34. Zhao, B. et al. Air quality and health cobenefits of different deep decarbonization pathways in California. Environ. Sci. Technol. 53, 7163–7171 (2019).

    Article  CAS  Google Scholar 

  35. Tessum, C. W., Marshall, J. D. & Hill, J. D. A spatially and temporally explicit life cycle inventory of air pollutants from gasoline and ethanol in the United States. Environ. Sci. Technol. 46, 11408–11417 (2012).

    Article  CAS  Google Scholar 

  36. Hsieh, I.-Y. L. et al. An integrated assessment of emissions, air quality, and public health impacts of China’s transition to electric vehicles. Environ. Sci. Technol. 56, 6836–6846 (2022).

    Article  CAS  Google Scholar 

  37. Choma, E. F., Evans, J. S., Hammitt, J. K., Gómez-Ibáñez, J. A. & Spengler, J. D. Assessing the health impacts of electric vehicles through air pollution in the United States. Environ. Int. 144, 106015 (2020).

    Article  CAS  Google Scholar 

  38. Ji, S. et al. Environmental justice aspects of exposure to PM2.5 emissions from electric vehicle use in China. Environ. Sci. Technol. 49, 13912–13920 (2015).

    Article  CAS  Google Scholar 

  39. Sharma, A. et al. Multisectoral emission impacts of electric vehicle transition in China and India. Environ. Sci. Technol. 58, 19639–19650 (2024).

    Article  Google Scholar 

  40. Le Quéré, C. et al. Drivers of declining CO2 emissions in 18 developed economies. Nat. Clim. Change 9, 213–217 (2019).

    Article  Google Scholar 

  41. Zhang, Q. et al. Drivers of improved PM2.5 air quality in China from 2013–2017. Proc. Natl Acad. Sci. USA 116, 24463 (2019).

    Article  CAS  Google Scholar 

  42. Geng, G. et al. Drivers of PM2.5 air pollution deaths in China 2002–2017. Nat. Geosci. 14, 645–650 (2021).

    Article  CAS  Google Scholar 

  43. Liu, Y. et al. Population aging might have delayed the alleviation of China’s PM2.5 health burden. Atmos. Environ. 270, 118895 (2022).

    Article  CAS  Google Scholar 

  44. Yang, H., Huang, X., Westervelt, D. M., Horowitz, L. & Peng, W. Socio-demographic factors shaping the future global health burden from air pollution. Nat. Sustain. 6, 58–68 (2023).

    Article  Google Scholar 

  45. Huang, X., Srikrishnan, V., Lamontagne, J., Keller, K. & Peng, W. Effects of global climate mitigation on regional air quality and health. Nat. Sustain. 6, 1054–1066 (2023).

    Article  Google Scholar 

  46. Shindell, D., Faluvegi, G., Seltzer, K. & Shindell, C. Quantified, localized health benefits of accelerated carbon dioxide emissions reductions. Nat. Clim. Change 8, 291–295 (2018).

    Article  CAS  Google Scholar 

  47. Vandyck, T. et al. Air quality co-benefits for human health and agriculture counterbalance costs to meet Paris Agreement pledges. Nat. Commun. 9, 4939 (2018).

    Article  Google Scholar 

  48. Vandyck, T., Keramidas, K., Tchung-Ming, S., Weitzel, M. & Van Dingenen, R. Quantifying air quality co-benefits of climate policy across sectors and regions. Clim. Change 163, 1501–1517 (2020).

    Article  CAS  Google Scholar 

  49. Peshin, T. et al. Air quality, health, and equity impacts of vehicle electrification in India. Environ. Res. Lett. 19, 024015 (2024).

    Article  Google Scholar 

  50. Clayton, C. J. et al. The co-benefits of a low-carbon future for PM2.5 and O3 air pollution in Europe. Atmos. Chem. Phys. 24, 10717–10740 (2024).

    Article  CAS  Google Scholar 

  51. Wells, C. D., Kasoar, M., Ezzati, M. & Voulgarakis, A. Significant human health co-benefits of mitigating African emissions. Atmos. Chem. Phys. 24, 1025–1039 (2024).

    Article  CAS  Google Scholar 

  52. Liu, Y., Zhou, Y. & Lu, J. Exploring the relationship between air pollution and meteorological conditions in China under environmental governance. Sci. Rep. 10, 14518 (2020).

    Article  CAS  Google Scholar 

  53. Liu, M. et al. How magnitude of PM2.5 exposure disparities have evolved across Chinese urban-rural population during 2010–2019. J. Clean. Prod. 382, 135333 (2023).

    Article  CAS  Google Scholar 

  54. Mohai, P., Pellow, D. & Roberts, J. T. Environmental justice. Annu. Rev. Environ. Resour. 34, 405–430 (2009).

    Article  Google Scholar 

  55. Kerr, G. H., Goldberg, D. L. & Anenberg, S. C. COVID-19 pandemic reveals persistent disparities in nitrogen dioxide pollution. Proc. Natl Acad. Sci. USA 118, e2022409118 (2021).

    Article  CAS  Google Scholar 

  56. Jbaily, A. et al. Air pollution exposure disparities across US population and income groups. Nature 601, 228–233 (2022).

    Article  CAS  Google Scholar 

  57. Hajat, A., Hsia, C. & O’Neill, M. S. Socioeconomic disparities and air pollution exposure: A global review. Curr. Environ. Health Rep. 2, 440–450 (2015).

    Article  CAS  Google Scholar 

  58. Gouveia, N., Slovic, A. D., Kanai, C. M. & Soriano, L. Air pollution and environmental justice in Latin America: where are we and how can we move forward? Curr. Environ. Health Rep. 9, 152–164 (2022).

    Article  Google Scholar 

  59. Moreno-Jiménez, A., Cañada-Torrecilla, R., Vidal-Domínguez, M. J., Palacios-García, A. & Martínez-Suárez, P. Assessing environmental justice through potential exposure to air pollution: a socio-spatial analysis in Madrid and Barcelona, Spain. Geoforum 69, 117–131 (2016).

    Article  Google Scholar 

  60. Yang, H. et al. Regional disparities in health and employment outcomes of China’s transition to a low-carbon electricity system. Environ. Res. Energy 1, 025001 (2024).

    Article  Google Scholar 

  61. Mayfield, E. N. Phasing out coal power plants based on cumulative air pollution impact and equity objectives in net zero energy system transitions. Environ. Res. Infrastruct. Sustain. 2, 021004 (2022).

    Article  CAS  Google Scholar 

  62. Sergi, B. J. et al. Optimizing emissions reductions from the U.S. power sector for climate and health benefits. Environ. Sci. Technol. 54, 7513–7523 (2020).

    Article  CAS  Google Scholar 

  63. Qiu, M., Weng, Y., Cao, J., Selin, N. E. & Karplus, V. J. Improving evaluation of energy policies with multiple goals: comparing ex ante and ex post approaches. Environ. Sci. Technol. 54, 15584–15593 (2020).

    Article  CAS  Google Scholar 

  64. Hernandez-Cortes, D. & Meng, K. C. Do environmental markets cause environmental injustice? Evidence from California’s carbon market. J. Public. Econ. 217, 104786 (2023).

    Article  Google Scholar 

  65. Millstein, D., Wiser, R., Bolinger, M. & Barbose, G. The climate and air-quality benefits of wind and solar power in the United States. Nat. Energy 2, 17134 (2017).

    Article  Google Scholar 

  66. Severnini, E. Impacts of nuclear plant shutdown on coal-fired power generation and infant health in the Tennessee Valley in the 1980s. Nat. Energy 2, 17051 (2017).

    Article  Google Scholar 

  67. Loughlin, D. H. et al. Health and air pollutant emission impacts of net zero CO2 by 2050 scenarios from the Energy Modeling Forum 37 study. Energy Clim. Change 5, 100165 (2024).

    Article  CAS  Google Scholar 

  68. Rao, S. et al. A multi-model assessment of the co-benefits of climate mitigation for global air quality. Environ. Res. Lett. 11, 124013 (2016).

    Article  Google Scholar 

  69. Shi, W. et al. Projecting state-level air pollutant emissions using an integrated assessment model: GCAM-USA. Appl. Energy 208, 511–521 (2017).

    Article  CAS  Google Scholar 

  70. Ou, Y., West, J. J., Smith, S. J., Nolte, C. G. & Loughlin, D. H. Air pollution control strategies directly limiting national health damages in the US. Nat. Commun. 11, 957 (2020).

    Article  CAS  Google Scholar 

  71. Moglen, R. et al. The state of macro-energy systems research: common critiques, current progress, and research priorities. iScience 26, 106325 (2023).

    Article  Google Scholar 

  72. Bistline, J. E. T. Roadmaps to net-zero emissions systems: emerging insights and modeling challenges. Joule 5, 2551–2563 (2021).

    Article  Google Scholar 

  73. Tessum, C. W., Hill, J. D. & Marshall, J. D. Life cycle air quality impacts of conventional and alternative light-duty transportation in the United States. Proc. Natl Acad. Sci. USA 111, 18490–18495 (2014).

    Article  CAS  Google Scholar 

  74. Singh, M., Tessum, C. W., Marshall, J. D. & Azevedo, I. M. L. Distributional impacts of fleet-wide change in light duty transportation: mortality risks of PM2.5 emissions from electric vehicles and Tier 3 conventional vehicles. Environ. Res. Lett. 19, 034034 (2024).

    Article  Google Scholar 

  75. Camilleri, S. F. et al. Air quality, health and equity implications of electrifying heavy-duty vehicles. Nat. Sustain. 6, 1643–1653 (2023).

    Article  Google Scholar 

  76. Mousavinezhad, S., Choi, Y., Khorshidian, N., Ghahremanloo, M. & Momeni, M. Air quality and health co-benefits of vehicle electrification and emission controls in the most populated United States urban hubs: insights from New York, Los Angeles, Chicago, and Houston. Sci. Total. Environ. 912, 169577 (2024).

    Article  CAS  Google Scholar 

  77. Peng, L. et al. Alternative-energy-vehicles deployment delivers climate, air quality, and health co-benefits when coupled with decarbonizing power generation in China. One Earth 4, 1127–1140 (2021).

    Article  Google Scholar 

  78. Liang, X. et al. Air quality and health benefits from fleet electrification in China. Nat. Sustain. 2, 962–971 (2019).

    Article  Google Scholar 

  79. Ou, Y. et al. Evaluating long-term emission impacts of large-scale electric vehicle deployment in the US using a human–Earth systems model. Appl. Energy 300, 117364 (2021).

    Article  CAS  Google Scholar 

  80. Bistline, J. E. T. et al. Economy-wide evaluation of CO2 and air quality impacts of electrification in the United States. Nat. Commun. 13, 6693 (2022).

    Article  CAS  Google Scholar 

  81. Ou, Y. et al. Estimating environmental co-benefits of U.S. low-carbon pathways using an integrated assessment model with state-level resolution. Appl. Energy 216, 482–493 (2018).

    Article  Google Scholar 

  82. Rafaj, P. et al. Air quality and health implications of 1.5–2 °C climate pathways under considerations of ageing population: a multi-model scenario analysis. Environ. Res. Lett. 16, 045005 (2021).

    Article  CAS  Google Scholar 

  83. Cherp, A., Vinichenko, V., Tosun, J., Gordon, J. A. & Jewell, J. National growth dynamics of wind and solar power compared to the growth required for global climate targets. Nat. Energy 6, 742–754 (2021).

    Article  Google Scholar 

  84. Vinichenko, V., Cherp, A. & Jewell, J. Historical precedents and feasibility of rapid coal and gas decline required for the 1.5 °C target. One Earth 4, 1477–1490 (2021).

    Article  Google Scholar 

  85. Way, R., Ives, M. C., Mealy, P. & Farmer, J. D. Empirically grounded technology forecasts and the energy transition. Joule 6, 2057–2082 (2022).

    Article  Google Scholar 

  86. Zhu, Q. et al. Enhancing policy realism in energy system optimization models: politically feasible decarbonization pathways for the United States. Energy Policy 161, 112754 (2022).

    Article  CAS  Google Scholar 

  87. Yin, P. et al. Long-term fine particulate matter exposure and nonaccidental and cause-specific mortality in a large national cohort of Chinese men. Environ. Health Perspect. 125, 117002 (2017).

    Article  Google Scholar 

  88. Denby, B. R. et al. Sub-grid variability and its impact on exposure in regional scale air quality and integrated assessment models: application of the uEMEP downscaling model. Atmos. Environ. 333, 120586 (2024).

    Article  CAS  Google Scholar 

  89. Zeighami, A., Kern, J., Yates, A. J., Weber, P. & Bruno, A. A. U. S. West Coast droughts and heat waves exacerbate pollution inequality and can evade emission control policies. Nat. Commun. 14, 1415 (2023).

    Article  CAS  Google Scholar 

  90. Tong, D. et al. Health co-benefits of climate change mitigation depend on strategic power plant retirements and pollution controls. Nat. Clim. Change 11, 1077–1083 (2021).

    Article  Google Scholar 

  91. Jacobson, M. Z. The health and climate impacts of carbon capture and direct air capture. Energy Environ. Sci. 12, 3567–3574 (2019).

    Article  CAS  Google Scholar 

  92. Feng, L. et al. The generation of gridded emissions data for CMIP6. Geosci. Model. Dev. 13, 461–482 (2020).

    Article  CAS  Google Scholar 

  93. Maamoun, N. et al. Multi-dimensional and region-specific planning for coal retirements. iScience 26, 106739 (2023).

    Article  Google Scholar 

  94. Dong, J. et al. Provincial equity and enhanced health are key drivers for China’s 2060 carbon neutrality. J. Clean. Prod. 473, 143531 (2024).

    Article  CAS  Google Scholar 

  95. Ding, D. et al. Unveiling the health impacts of air pollution transport in China. Environ. Int. 191, 108947 (2024).

    Article  CAS  Google Scholar 

  96. Simon, H. et al. Evaluating reduced-form modeling tools for simulating ozone and PM2.5 monetized health impacts. Environ. Sci. Atmos. 3, 1306–1318 (2023).

    Article  CAS  Google Scholar 

  97. Hennessy, E. M., de Chalendar, J. A., Benson, S. M. & Azevedo, I. M. L. Distributional health impacts of electricity imports in the United States. Environ. Res. Lett. 17, 064011 (2022).

    Article  Google Scholar 

  98. Goforth, T. & Nock, D. Air pollution disparities and equality assessments of US national decarbonization strategies. Nat. Commun. 13, 7488 (2022).

    Article  CAS  Google Scholar 

  99. Gallagher, C. L., Holloway, T., Tessum, C. W., Jackson, C. M. & Heck, C. Combining satellite-derived PM2.5 data and a reduced-form air quality model to support air quality analysis in US cities. GeoHealth 7, e2023GH000788 (2023).

    Article  Google Scholar 

  100. Jackson, C. M., Holloway, T. & Tessum, C. W. City-scale analysis of annual ambient PM2.5 source contributions with the InMAP reduced-complexity air quality model: a case study of Madison, Wisconsin. Environ. Res. Infrastruct. Sustain. 3, 015002 (2023).

    Article  CAS  Google Scholar 

  101. Nolte, C. G. et al. Regional temperature-ozone relationships across the U.S. under multiple climate and emissions scenarios. J. Air Waste Manag. Assoc. 71, 1251–1264 (2021).

    Article  CAS  Google Scholar 

  102. Chen, K. et al. Future ozone-related acute excess mortality under climate and population change scenarios in China: a modeling study. PLoS Med. 15, e1002598 (2018).

    Article  Google Scholar 

  103. Murray, L. T., Leibensperger, E. M., Mickley, L. J. & Tai, A. P. K. Estimating future climate change impacts on human mortality and crop yields via air pollution. Proc. Natl Acad. Sci. USA 121, e2400117121 (2024).

    Article  CAS  Google Scholar 

  104. Fuzzi, S. et al. Particulate matter, air quality and climate: lessons learned and future needs. Atmos. Chem. Phys. 15, 8217–8299 (2015).

    Article  CAS  Google Scholar 

  105. Orru, H., Ebi, K. L. & Forsberg, B. The interplay of climate change and air pollution on health. Curr. Environ. Health Rep. 4, 504–513 (2017).

    Article  CAS  Google Scholar 

  106. Hess Jeremy, J. et al. Guidelines for modeling and reporting health effects of climate change mitigation actions. Environ. Health Perspect. 128, 115001 (2020).

    Article  CAS  Google Scholar 

  107. van Donkelaar, A. et al. Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter. Environ. Health Perspect. 123, 135–143 (2015).

    Article  Google Scholar 

  108. Anenberg, S. C. et al. Using satellites to track indicators of global air pollution and climate change impacts: lessons learned from a NASA-supported science-stakeholder collaborative. GeoHealth 4, e2020GH000270 (2020).

    Article  Google Scholar 

  109. Martin, R. V. et al. No one knows which city has the highest concentration of fine particulate matter. Atmos. Environ. X 3, 100040 (2019).

    CAS  Google Scholar 

  110. Holloway, T. et al. Satellite monitoring for air quality and health. Annu. Rev. Biomed. Data Sci. 4, 417–447 (2021).

    Article  Google Scholar 

  111. Pozzer, A. et al. Mortality attributable to ambient air pollution: a review of global estimates. GeoHealth 7, e2022GH000711 (2023).

    Article  CAS  Google Scholar 

  112. de Bont, J. et al. Ambient air pollution and cardiovascular diseases: an umbrella review of systematic reviews and meta-analyses. J. Intern. Med. 291, 779–800 (2022).

    Article  Google Scholar 

  113. Burnett, R. et al. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter. Proc. Natl Acad. Sci. USA 115, 9592–9597 (2018).

    Article  CAS  Google Scholar 

  114. Sampedro, J. et al. Implications of different income distributions for future residential energy demand in the U.S. Environ. Res. Lett. 17, 014031 (2022).

    Article  CAS  Google Scholar 

  115. Krey, V. et al. Urban and rural energy use and carbon dioxide emissions in Asia. Energy Econ. 34, S272–S283 (2012).

    Article  Google Scholar 

  116. Srikrishnan, V. et al. Uncertainty analysis in multi-sector systems: considerations for risk analysis, projection, and planning for complex systems. Earths Future 10, e2021EF002644 (2022).

    Article  Google Scholar 

  117. Lempert, R. J. et al. The use of decision making under deep uncertainty in the IPCC. Front. Clim. 6, 54 (2024).

    Article  Google Scholar 

  118. Lempert, R. J. A new decision sciences for complex systems. Proc. Natl Acad. Sci. USA 99, 7309 (2002).

    Article  CAS  Google Scholar 

  119. Guivarch, C. et al. Using large ensembles of climate change mitigation scenarios for robust insights. Nat. Clim. Change 12, 428–435 (2022).

    Article  Google Scholar 

  120. DeCarolis, J. F. Using modeling to generate alternatives (MGA) to expand our thinking on energy futures. Energy Econ. 33, 145–152 (2011).

    Article  Google Scholar 

  121. Hadka, D., Herman, J., Reed, P. & Keller, K. An open source framework for many-objective robust decision making. Environ. Model. Softw. 74, 114–129 (2015).

    Article  Google Scholar 

  122. Moezzi, M., Janda, K. B. & Rotmann, S. Using stories, narratives, and storytelling in energy and climate change research. Energy Res. Soc. Sci. 31, 1–10 (2017).

    Article  Google Scholar 

  123. Allan, B., Lewis, J. I. & Oatley, T. Green industrial policy and the global transformation of climate politics. Glob. Environ. Polit. 21, 1–19 (2021).

    Article  Google Scholar 

  124. Stechemesser, A. et al. Climate policies that achieved major emission reductions: global evidence from two decades. Science 385, 884–892 (2024).

    Article  CAS  Google Scholar 

  125. Siler-Evans, K., Azevedo, I. L., Morgan, M. G. & Apt, J. Regional variations in the health, environmental, and climate benefits of wind and solar generation. Proc. Natl Acad. Sci. USA 110, 11768–11773 (2013).

    Article  CAS  Google Scholar 

  126. Peng, W. et al. Seizing the policy opportunities for health- and equity-improving energy decisions. One Earth 8, 101171 (2025).

    Article  Google Scholar 

  127. Vandyck, T. et al. Integrate health into decision-making to foster climate action. Environ. Res. Lett. 16, 041005 (2021).

    Article  CAS  Google Scholar 

  128. Peng, W. & Ou, Y. Integrating air quality and health considerations into power sector decarbonization strategies. Environ. Res. Lett. 17, 081002 (2022).

    Article  CAS  Google Scholar 

  129. Peng, W., Kim, S. E., Purohit, P., Urpelainen, J. & Wagner, F. Incorporating political-feasibility concerns into the assessment of India’s clean-air policies. One Earth 4, 1163–1174 (2021).

    Article  Google Scholar 

  130. Stokes, L. C. & Warshaw, C. Renewable energy policy design and framing influence public support in the United States. Nat. Energy 2, 17107 (2017).

    Article  Google Scholar 

  131. Bergquist, P., Mildenberger, M. & Stokes, L. C. Combining climate, economic, and social policy builds public support for climate action in the US. Environ. Res. Lett. 15, 054019 (2020).

    Article  Google Scholar 

  132. Norström, A. V. et al. Principles for knowledge co-production in sustainability research. Nat. Sustain. 3, 182–190 (2020).

    Article  Google Scholar 

  133. International Energy Agency. World energy balances. IEA https://www.iea.org/data-and-statistics/data-product/world-energy-balances (2025).

  134. International Energy Agency. Greenhouse gas emissions from energy highlights. IEA https://www.iea.org/data-and-statistics/data-product/greenhouse-gas-emissions-from-energy-highlights (2024).

  135. State of Global Air. Explore the data. State of Global Air https://www.stateofglobalair.org/data/#/health/table (2024).

  136. Agency for Toxic Substances and Disease Registry. SVI data and documentation download. ATSDR https://www.atsdr.cdc.gov/place-health/php/svi/svi-data-documentation-download.html?CDC_AAref_Val=https://www.atsdr.cdc.gov/placeandhealth/svi/data_documentation_download.html (2024).

  137. Commonwealth of Pennsylvania. PA environmental justice areas. Commonwealth of Pennsylvania https://www.pa.gov/agencies/dep/public-participation/office-of-environmental -justice/pa-environmental-justice-areas.html (2023).

  138. Sabin Center for Climate Change Law. Inflation Reduction Act database. IRA tracker https://iratracker.org/ira-database/ (2025).

  139. Chambers, J. M. et al. Six modes of co-production for sustainability. Nat. Sustain. 4, 983–996 (2021).

    Article  Google Scholar 

  140. Keller, K., Helgeson, C. & Srikrishnan, V. Climate risk management. Annu. Rev. Earth Planet. Sci. 49, 95–116 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors received funding from the National Science Foundation (NSF award 2420344 to M.B., N.S., W.P., J.S. and C.C.M. and NSF award 2423254 to W.P., J.S. and C.C.M.) for research activities relevant to this Perspective. W.P., J.S., C.C.M. and H.L. acknowledge additional funding support from Princeton’s Andlinger Center for Energy and the Environment and the School of Public and International Affairs. G.I. is also affiliated with Pacific Northwest National Laboratory, which did not provide specific support for this paper. The authors thank X. Huang and H. Yang for sharing data used in Fig. 3. The authors thank K. Keller, V. Srikrishnan and C. Helgeson for their feedback on Fig. 6.

Author information

Authors and Affiliations

Authors

Contributions

W.P., M.B. and N.S. conceptualized the paper. W.P., J.S., C.C.M. and H.L. analysed the data and generated the figures. W.P., J.S. and C.C.M. wrote the first draft. All authors reviewed and revised the paper.

Corresponding author

Correspondence to Wei Peng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clean Technology thanks Jia Xing, who co-reviewed with Jiaxin Dong; Jon Sampedro, who co-reviewed with Clàudia Rodés-Bachs; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Climate Pollution Reduction Grants: https://www.epa.gov/inflation-reduction-act/climate-pollution-reduction-grants

Cross-State Air Pollution: https://www.epa.gov/Cross-State-Air-Pollution

Regional Greenhouse Gas Initiative: https://www.rggi.org

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, W., Morales, C.C., Shiwang, J. et al. Effects of the low-carbon energy transition on air pollution and health. Nat. Rev. Clean Technol. 1, 432–445 (2025). https://doi.org/10.1038/s44359-025-00070-0

Download citation

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44359-025-00070-0

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene